1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502
|
//===-- RISCVLegalizerInfo.cpp ----------------------------------*- C++ -*-===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
/// \file
/// This file implements the targeting of the Machinelegalizer class for RISC-V.
/// \todo This should be generated by TableGen.
//===----------------------------------------------------------------------===//
#include "RISCVLegalizerInfo.h"
#include "RISCVMachineFunctionInfo.h"
#include "RISCVSubtarget.h"
#include "llvm/CodeGen/GlobalISel/GenericMachineInstrs.h"
#include "llvm/CodeGen/GlobalISel/LegalizerHelper.h"
#include "llvm/CodeGen/GlobalISel/MachineIRBuilder.h"
#include "llvm/CodeGen/MachineRegisterInfo.h"
#include "llvm/CodeGen/TargetOpcodes.h"
#include "llvm/CodeGen/ValueTypes.h"
#include "llvm/IR/DerivedTypes.h"
#include "llvm/IR/Type.h"
using namespace llvm;
using namespace LegalityPredicates;
using namespace LegalizeMutations;
// Is this type supported by scalar FP arithmetic operations given the current
// subtarget.
static LegalityPredicate typeIsScalarFPArith(unsigned TypeIdx,
const RISCVSubtarget &ST) {
return [=, &ST](const LegalityQuery &Query) {
return Query.Types[TypeIdx].isScalar() &&
((ST.hasStdExtF() && Query.Types[TypeIdx].getSizeInBits() == 32) ||
(ST.hasStdExtD() && Query.Types[TypeIdx].getSizeInBits() == 64));
};
}
RISCVLegalizerInfo::RISCVLegalizerInfo(const RISCVSubtarget &ST)
: STI(ST), XLen(STI.getXLen()), sXLen(LLT::scalar(XLen)) {
const LLT sDoubleXLen = LLT::scalar(2 * XLen);
const LLT p0 = LLT::pointer(0, XLen);
const LLT s1 = LLT::scalar(1);
const LLT s8 = LLT::scalar(8);
const LLT s16 = LLT::scalar(16);
const LLT s32 = LLT::scalar(32);
const LLT s64 = LLT::scalar(64);
const LLT nxv1s8 = LLT::scalable_vector(1, s8);
const LLT nxv2s8 = LLT::scalable_vector(2, s8);
const LLT nxv4s8 = LLT::scalable_vector(4, s8);
const LLT nxv8s8 = LLT::scalable_vector(8, s8);
const LLT nxv16s8 = LLT::scalable_vector(16, s8);
const LLT nxv32s8 = LLT::scalable_vector(32, s8);
const LLT nxv64s8 = LLT::scalable_vector(64, s8);
const LLT nxv1s16 = LLT::scalable_vector(1, s16);
const LLT nxv2s16 = LLT::scalable_vector(2, s16);
const LLT nxv4s16 = LLT::scalable_vector(4, s16);
const LLT nxv8s16 = LLT::scalable_vector(8, s16);
const LLT nxv16s16 = LLT::scalable_vector(16, s16);
const LLT nxv32s16 = LLT::scalable_vector(32, s16);
const LLT nxv1s32 = LLT::scalable_vector(1, s32);
const LLT nxv2s32 = LLT::scalable_vector(2, s32);
const LLT nxv4s32 = LLT::scalable_vector(4, s32);
const LLT nxv8s32 = LLT::scalable_vector(8, s32);
const LLT nxv16s32 = LLT::scalable_vector(16, s32);
const LLT nxv1s64 = LLT::scalable_vector(1, s64);
const LLT nxv2s64 = LLT::scalable_vector(2, s64);
const LLT nxv4s64 = LLT::scalable_vector(4, s64);
const LLT nxv8s64 = LLT::scalable_vector(8, s64);
using namespace TargetOpcode;
auto AllVecTys = {nxv1s8, nxv2s8, nxv4s8, nxv8s8, nxv16s8, nxv32s8,
nxv64s8, nxv1s16, nxv2s16, nxv4s16, nxv8s16, nxv16s16,
nxv32s16, nxv1s32, nxv2s32, nxv4s32, nxv8s32, nxv16s32,
nxv1s64, nxv2s64, nxv4s64, nxv8s64};
getActionDefinitionsBuilder({G_ADD, G_SUB, G_AND, G_OR, G_XOR})
.legalFor({s32, sXLen})
.legalIf(all(
typeInSet(0, AllVecTys),
LegalityPredicate([=, &ST](const LegalityQuery &Query) {
return ST.hasVInstructions() &&
(Query.Types[0].getScalarSizeInBits() != 64 ||
ST.hasVInstructionsI64()) &&
(Query.Types[0].getElementCount().getKnownMinValue() != 1 ||
ST.getELen() == 64);
})))
.widenScalarToNextPow2(0)
.clampScalar(0, s32, sXLen);
getActionDefinitionsBuilder(
{G_UADDE, G_UADDO, G_USUBE, G_USUBO}).lower();
getActionDefinitionsBuilder({G_SADDO, G_SSUBO}).minScalar(0, sXLen).lower();
auto &ShiftActions = getActionDefinitionsBuilder({G_ASHR, G_LSHR, G_SHL});
if (ST.is64Bit())
ShiftActions.customFor({{s32, s32}});
ShiftActions.legalFor({{s32, s32}, {s32, sXLen}, {sXLen, sXLen}})
.widenScalarToNextPow2(0)
.clampScalar(1, s32, sXLen)
.clampScalar(0, s32, sXLen)
.minScalarSameAs(1, 0);
if (ST.is64Bit()) {
getActionDefinitionsBuilder({G_ZEXT, G_SEXT, G_ANYEXT})
.legalFor({{sXLen, s32}})
.maxScalar(0, sXLen);
getActionDefinitionsBuilder(G_SEXT_INREG)
.customFor({sXLen})
.maxScalar(0, sXLen)
.lower();
} else {
getActionDefinitionsBuilder({G_ZEXT, G_SEXT, G_ANYEXT}).maxScalar(0, sXLen);
getActionDefinitionsBuilder(G_SEXT_INREG).maxScalar(0, sXLen).lower();
}
// Merge/Unmerge
for (unsigned Op : {G_MERGE_VALUES, G_UNMERGE_VALUES}) {
auto &MergeUnmergeActions = getActionDefinitionsBuilder(Op);
unsigned BigTyIdx = Op == G_MERGE_VALUES ? 0 : 1;
unsigned LitTyIdx = Op == G_MERGE_VALUES ? 1 : 0;
if (XLen == 32 && ST.hasStdExtD()) {
MergeUnmergeActions.legalIf(
all(typeIs(BigTyIdx, s64), typeIs(LitTyIdx, s32)));
}
MergeUnmergeActions.widenScalarToNextPow2(LitTyIdx, XLen)
.widenScalarToNextPow2(BigTyIdx, XLen)
.clampScalar(LitTyIdx, sXLen, sXLen)
.clampScalar(BigTyIdx, sXLen, sXLen);
}
getActionDefinitionsBuilder({G_FSHL, G_FSHR}).lower();
auto &RotateActions = getActionDefinitionsBuilder({G_ROTL, G_ROTR});
if (ST.hasStdExtZbb() || ST.hasStdExtZbkb()) {
RotateActions.legalFor({{s32, sXLen}, {sXLen, sXLen}});
// Widen s32 rotate amount to s64 so SDAG patterns will match.
if (ST.is64Bit())
RotateActions.widenScalarIf(all(typeIs(0, s32), typeIs(1, s32)),
changeTo(1, sXLen));
}
RotateActions.lower();
getActionDefinitionsBuilder(G_BITREVERSE).maxScalar(0, sXLen).lower();
auto &BSWAPActions = getActionDefinitionsBuilder(G_BSWAP);
if (ST.hasStdExtZbb() || ST.hasStdExtZbkb())
BSWAPActions.legalFor({sXLen}).clampScalar(0, sXLen, sXLen);
else
BSWAPActions.maxScalar(0, sXLen).lower();
auto &CountZerosActions = getActionDefinitionsBuilder({G_CTLZ, G_CTTZ});
auto &CountZerosUndefActions =
getActionDefinitionsBuilder({G_CTLZ_ZERO_UNDEF, G_CTTZ_ZERO_UNDEF});
if (ST.hasStdExtZbb()) {
CountZerosActions.legalFor({{s32, s32}, {sXLen, sXLen}})
.clampScalar(0, s32, sXLen)
.widenScalarToNextPow2(0)
.scalarSameSizeAs(1, 0);
} else {
CountZerosActions.maxScalar(0, sXLen).scalarSameSizeAs(1, 0).lower();
CountZerosUndefActions.maxScalar(0, sXLen).scalarSameSizeAs(1, 0);
}
CountZerosUndefActions.lower();
auto &CTPOPActions = getActionDefinitionsBuilder(G_CTPOP);
if (ST.hasStdExtZbb()) {
CTPOPActions.legalFor({{s32, s32}, {sXLen, sXLen}})
.clampScalar(0, s32, sXLen)
.widenScalarToNextPow2(0)
.scalarSameSizeAs(1, 0);
} else {
CTPOPActions.maxScalar(0, sXLen).scalarSameSizeAs(1, 0).lower();
}
getActionDefinitionsBuilder({G_CONSTANT, G_IMPLICIT_DEF})
.legalFor({s32, sXLen, p0})
.widenScalarToNextPow2(0)
.clampScalar(0, s32, sXLen);
getActionDefinitionsBuilder(G_ICMP)
.legalFor({{sXLen, sXLen}, {sXLen, p0}})
.widenScalarToNextPow2(1)
.clampScalar(1, sXLen, sXLen)
.clampScalar(0, sXLen, sXLen);
auto &SelectActions = getActionDefinitionsBuilder(G_SELECT).legalFor(
{{s32, sXLen}, {p0, sXLen}});
if (XLen == 64 || ST.hasStdExtD())
SelectActions.legalFor({{s64, sXLen}});
SelectActions.widenScalarToNextPow2(0)
.clampScalar(0, s32, (XLen == 64 || ST.hasStdExtD()) ? s64 : s32)
.clampScalar(1, sXLen, sXLen);
auto &LoadStoreActions =
getActionDefinitionsBuilder({G_LOAD, G_STORE})
.legalForTypesWithMemDesc({{s32, p0, s8, 8},
{s32, p0, s16, 16},
{s32, p0, s32, 32},
{p0, p0, sXLen, XLen}});
auto &ExtLoadActions =
getActionDefinitionsBuilder({G_SEXTLOAD, G_ZEXTLOAD})
.legalForTypesWithMemDesc({{s32, p0, s8, 8}, {s32, p0, s16, 16}});
if (XLen == 64) {
LoadStoreActions.legalForTypesWithMemDesc({{s64, p0, s8, 8},
{s64, p0, s16, 16},
{s64, p0, s32, 32},
{s64, p0, s64, 64}});
ExtLoadActions.legalForTypesWithMemDesc(
{{s64, p0, s8, 8}, {s64, p0, s16, 16}, {s64, p0, s32, 32}});
} else if (ST.hasStdExtD()) {
LoadStoreActions.legalForTypesWithMemDesc({{s64, p0, s64, 64}});
}
LoadStoreActions.clampScalar(0, s32, sXLen).lower();
ExtLoadActions.widenScalarToNextPow2(0).clampScalar(0, s32, sXLen).lower();
getActionDefinitionsBuilder({G_PTR_ADD, G_PTRMASK}).legalFor({{p0, sXLen}});
getActionDefinitionsBuilder(G_PTRTOINT)
.legalFor({{sXLen, p0}})
.clampScalar(0, sXLen, sXLen);
getActionDefinitionsBuilder(G_INTTOPTR)
.legalFor({{p0, sXLen}})
.clampScalar(1, sXLen, sXLen);
getActionDefinitionsBuilder(G_BRCOND).legalFor({sXLen}).minScalar(0, sXLen);
getActionDefinitionsBuilder(G_BRJT).legalFor({{p0, sXLen}});
getActionDefinitionsBuilder(G_BRINDIRECT).legalFor({p0});
getActionDefinitionsBuilder(G_PHI)
.legalFor({p0, sXLen})
.widenScalarToNextPow2(0)
.clampScalar(0, sXLen, sXLen);
getActionDefinitionsBuilder({G_GLOBAL_VALUE, G_JUMP_TABLE, G_CONSTANT_POOL})
.legalFor({p0});
if (ST.hasStdExtM() || ST.hasStdExtZmmul()) {
getActionDefinitionsBuilder(G_MUL)
.legalFor({s32, sXLen})
.widenScalarToNextPow2(0)
.clampScalar(0, s32, sXLen);
// clang-format off
getActionDefinitionsBuilder({G_SMULH, G_UMULH})
.legalFor({sXLen})
.lower();
// clang-format on
getActionDefinitionsBuilder({G_SMULO, G_UMULO}).minScalar(0, sXLen).lower();
} else {
getActionDefinitionsBuilder(G_MUL)
.libcallFor({sXLen, sDoubleXLen})
.widenScalarToNextPow2(0)
.clampScalar(0, sXLen, sDoubleXLen);
getActionDefinitionsBuilder({G_SMULH, G_UMULH}).lowerFor({sXLen});
getActionDefinitionsBuilder({G_SMULO, G_UMULO})
.minScalar(0, sXLen)
// Widen sXLen to sDoubleXLen so we can use a single libcall to get
// the low bits for the mul result and high bits to do the overflow
// check.
.widenScalarIf(typeIs(0, sXLen),
LegalizeMutations::changeTo(0, sDoubleXLen))
.lower();
}
if (ST.hasStdExtM()) {
getActionDefinitionsBuilder({G_UDIV, G_SDIV, G_UREM, G_SREM})
.legalFor({s32, sXLen})
.libcallFor({sDoubleXLen})
.clampScalar(0, s32, sDoubleXLen)
.widenScalarToNextPow2(0);
} else {
getActionDefinitionsBuilder({G_UDIV, G_SDIV, G_UREM, G_SREM})
.libcallFor({sXLen, sDoubleXLen})
.clampScalar(0, sXLen, sDoubleXLen)
.widenScalarToNextPow2(0);
}
auto &AbsActions = getActionDefinitionsBuilder(G_ABS);
if (ST.hasStdExtZbb())
AbsActions.customFor({s32, sXLen}).minScalar(0, sXLen);
AbsActions.lower();
auto &MinMaxActions =
getActionDefinitionsBuilder({G_UMAX, G_UMIN, G_SMAX, G_SMIN});
if (ST.hasStdExtZbb())
MinMaxActions.legalFor({sXLen}).minScalar(0, sXLen);
MinMaxActions.lower();
getActionDefinitionsBuilder(G_FRAME_INDEX).legalFor({p0});
getActionDefinitionsBuilder({G_MEMCPY, G_MEMMOVE, G_MEMSET}).libcall();
getActionDefinitionsBuilder(G_DYN_STACKALLOC).lower();
// FP Operations
getActionDefinitionsBuilder({G_FADD, G_FSUB, G_FMUL, G_FDIV, G_FMA, G_FNEG,
G_FABS, G_FSQRT, G_FMAXNUM, G_FMINNUM})
.legalIf(typeIsScalarFPArith(0, ST));
getActionDefinitionsBuilder(G_FCOPYSIGN)
.legalIf(all(typeIsScalarFPArith(0, ST), typeIsScalarFPArith(1, ST)));
getActionDefinitionsBuilder(G_FPTRUNC).legalIf(
[=, &ST](const LegalityQuery &Query) -> bool {
return (ST.hasStdExtD() && typeIs(0, s32)(Query) &&
typeIs(1, s64)(Query));
});
getActionDefinitionsBuilder(G_FPEXT).legalIf(
[=, &ST](const LegalityQuery &Query) -> bool {
return (ST.hasStdExtD() && typeIs(0, s64)(Query) &&
typeIs(1, s32)(Query));
});
getActionDefinitionsBuilder(G_FCMP)
.legalIf(all(typeIs(0, sXLen), typeIsScalarFPArith(1, ST)))
.clampScalar(0, sXLen, sXLen);
// TODO: Support vector version of G_IS_FPCLASS.
getActionDefinitionsBuilder(G_IS_FPCLASS)
.customIf(all(typeIs(0, s1), typeIsScalarFPArith(1, ST)));
getActionDefinitionsBuilder(G_FCONSTANT)
.legalIf(typeIsScalarFPArith(0, ST))
.lowerFor({s32, s64});
getActionDefinitionsBuilder({G_FPTOSI, G_FPTOUI})
.legalIf(all(typeInSet(0, {s32, sXLen}), typeIsScalarFPArith(1, ST)))
.widenScalarToNextPow2(0)
.clampScalar(0, s32, sXLen);
getActionDefinitionsBuilder({G_SITOFP, G_UITOFP})
.legalIf(all(typeIsScalarFPArith(0, ST), typeInSet(1, {s32, sXLen})))
.widenScalarToNextPow2(1)
.clampScalar(1, s32, sXLen);
// FIXME: We can do custom inline expansion like SelectionDAG.
// FIXME: Legal with Zfa.
getActionDefinitionsBuilder({G_FCEIL, G_FFLOOR})
.libcallFor({s32, s64});
getActionDefinitionsBuilder(G_VASTART).customFor({p0});
// va_list must be a pointer, but most sized types are pretty easy to handle
// as the destination.
getActionDefinitionsBuilder(G_VAARG)
// TODO: Implement narrowScalar and widenScalar for G_VAARG for types
// outside the [s32, sXLen] range.
.clampScalar(0, s32, sXLen)
.lowerForCartesianProduct({s32, sXLen, p0}, {p0});
getLegacyLegalizerInfo().computeTables();
}
static Type *getTypeForLLT(LLT Ty, LLVMContext &C) {
if (Ty.isVector())
return FixedVectorType::get(IntegerType::get(C, Ty.getScalarSizeInBits()),
Ty.getNumElements());
return IntegerType::get(C, Ty.getSizeInBits());
}
bool RISCVLegalizerInfo::legalizeIntrinsic(LegalizerHelper &Helper,
MachineInstr &MI) const {
Intrinsic::ID IntrinsicID = cast<GIntrinsic>(MI).getIntrinsicID();
switch (IntrinsicID) {
default:
return false;
case Intrinsic::vacopy: {
// vacopy arguments must be legal because of the intrinsic signature.
// No need to check here.
MachineIRBuilder &MIRBuilder = Helper.MIRBuilder;
MachineRegisterInfo &MRI = *MIRBuilder.getMRI();
MachineFunction &MF = *MI.getMF();
const DataLayout &DL = MIRBuilder.getDataLayout();
LLVMContext &Ctx = MF.getFunction().getContext();
Register DstLst = MI.getOperand(1).getReg();
LLT PtrTy = MRI.getType(DstLst);
// Load the source va_list
Align Alignment = DL.getABITypeAlign(getTypeForLLT(PtrTy, Ctx));
MachineMemOperand *LoadMMO = MF.getMachineMemOperand(
MachinePointerInfo(), MachineMemOperand::MOLoad, PtrTy, Alignment);
auto Tmp = MIRBuilder.buildLoad(PtrTy, MI.getOperand(2), *LoadMMO);
// Store the result in the destination va_list
MachineMemOperand *StoreMMO = MF.getMachineMemOperand(
MachinePointerInfo(), MachineMemOperand::MOStore, PtrTy, Alignment);
MIRBuilder.buildStore(DstLst, Tmp, *StoreMMO);
MI.eraseFromParent();
return true;
}
}
}
bool RISCVLegalizerInfo::legalizeShlAshrLshr(
MachineInstr &MI, MachineIRBuilder &MIRBuilder,
GISelChangeObserver &Observer) const {
assert(MI.getOpcode() == TargetOpcode::G_ASHR ||
MI.getOpcode() == TargetOpcode::G_LSHR ||
MI.getOpcode() == TargetOpcode::G_SHL);
MachineRegisterInfo &MRI = *MIRBuilder.getMRI();
// If the shift amount is a G_CONSTANT, promote it to a 64 bit type so the
// imported patterns can select it later. Either way, it will be legal.
Register AmtReg = MI.getOperand(2).getReg();
auto VRegAndVal = getIConstantVRegValWithLookThrough(AmtReg, MRI);
if (!VRegAndVal)
return true;
// Check the shift amount is in range for an immediate form.
uint64_t Amount = VRegAndVal->Value.getZExtValue();
if (Amount > 31)
return true; // This will have to remain a register variant.
auto ExtCst = MIRBuilder.buildConstant(LLT::scalar(64), Amount);
Observer.changingInstr(MI);
MI.getOperand(2).setReg(ExtCst.getReg(0));
Observer.changedInstr(MI);
return true;
}
bool RISCVLegalizerInfo::legalizeVAStart(MachineInstr &MI,
MachineIRBuilder &MIRBuilder) const {
// Stores the address of the VarArgsFrameIndex slot into the memory location
assert(MI.getOpcode() == TargetOpcode::G_VASTART);
MachineFunction *MF = MI.getParent()->getParent();
RISCVMachineFunctionInfo *FuncInfo = MF->getInfo<RISCVMachineFunctionInfo>();
int FI = FuncInfo->getVarArgsFrameIndex();
LLT AddrTy = MIRBuilder.getMRI()->getType(MI.getOperand(0).getReg());
auto FINAddr = MIRBuilder.buildFrameIndex(AddrTy, FI);
assert(MI.hasOneMemOperand());
MIRBuilder.buildStore(FINAddr, MI.getOperand(0).getReg(),
*MI.memoperands()[0]);
MI.eraseFromParent();
return true;
}
bool RISCVLegalizerInfo::legalizeCustom(
LegalizerHelper &Helper, MachineInstr &MI,
LostDebugLocObserver &LocObserver) const {
MachineIRBuilder &MIRBuilder = Helper.MIRBuilder;
GISelChangeObserver &Observer = Helper.Observer;
switch (MI.getOpcode()) {
default:
// No idea what to do.
return false;
case TargetOpcode::G_ABS:
return Helper.lowerAbsToMaxNeg(MI);
case TargetOpcode::G_SHL:
case TargetOpcode::G_ASHR:
case TargetOpcode::G_LSHR:
return legalizeShlAshrLshr(MI, MIRBuilder, Observer);
case TargetOpcode::G_SEXT_INREG: {
// Source size of 32 is sext.w.
int64_t SizeInBits = MI.getOperand(2).getImm();
if (SizeInBits == 32)
return true;
return Helper.lower(MI, 0, /* Unused hint type */ LLT()) ==
LegalizerHelper::Legalized;
}
case TargetOpcode::G_IS_FPCLASS: {
Register GISFPCLASS = MI.getOperand(0).getReg();
Register Src = MI.getOperand(1).getReg();
const MachineOperand &ImmOp = MI.getOperand(2);
MachineIRBuilder MIB(MI);
// Turn LLVM IR's floating point classes to that in RISC-V,
// by simply rotating the 10-bit immediate right by two bits.
APInt GFpClassImm(10, static_cast<uint64_t>(ImmOp.getImm()));
auto FClassMask = MIB.buildConstant(sXLen, GFpClassImm.rotr(2).zext(XLen));
auto ConstZero = MIB.buildConstant(sXLen, 0);
auto GFClass = MIB.buildInstr(RISCV::G_FCLASS, {sXLen}, {Src});
auto And = MIB.buildAnd(sXLen, GFClass, FClassMask);
MIB.buildICmp(CmpInst::ICMP_NE, GISFPCLASS, And, ConstZero);
MI.eraseFromParent();
return true;
}
case TargetOpcode::G_VASTART:
return legalizeVAStart(MI, MIRBuilder);
}
llvm_unreachable("expected switch to return");
}
|