1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328
|
//===-- RISCVBaseInfo.cpp - Top level definitions for RISC-V MC -----------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This file contains small standalone enum definitions for the RISC-V target
// useful for the compiler back-end and the MC libraries.
//
//===----------------------------------------------------------------------===//
#include "RISCVBaseInfo.h"
#include "llvm/ADT/ArrayRef.h"
#include "llvm/MC/MCInst.h"
#include "llvm/MC/MCRegisterInfo.h"
#include "llvm/MC/MCSubtargetInfo.h"
#include "llvm/Support/RISCVISAInfo.h"
#include "llvm/Support/raw_ostream.h"
#include "llvm/TargetParser/TargetParser.h"
#include "llvm/TargetParser/Triple.h"
namespace llvm {
extern const SubtargetFeatureKV RISCVFeatureKV[RISCV::NumSubtargetFeatures];
namespace RISCVSysReg {
#define GET_SysRegsList_IMPL
#include "RISCVGenSearchableTables.inc"
} // namespace RISCVSysReg
namespace RISCVInsnOpcode {
#define GET_RISCVOpcodesList_IMPL
#include "RISCVGenSearchableTables.inc"
} // namespace RISCVInsnOpcode
namespace RISCVABI {
ABI computeTargetABI(const Triple &TT, const FeatureBitset &FeatureBits,
StringRef ABIName) {
auto TargetABI = getTargetABI(ABIName);
bool IsRV64 = TT.isArch64Bit();
bool IsRVE = FeatureBits[RISCV::FeatureRVE];
if (!ABIName.empty() && TargetABI == ABI_Unknown) {
errs()
<< "'" << ABIName
<< "' is not a recognized ABI for this target (ignoring target-abi)\n";
} else if (ABIName.starts_with("ilp32") && IsRV64) {
errs() << "32-bit ABIs are not supported for 64-bit targets (ignoring "
"target-abi)\n";
TargetABI = ABI_Unknown;
} else if (ABIName.starts_with("lp64") && !IsRV64) {
errs() << "64-bit ABIs are not supported for 32-bit targets (ignoring "
"target-abi)\n";
TargetABI = ABI_Unknown;
} else if (!IsRV64 && IsRVE && TargetABI != ABI_ILP32E &&
TargetABI != ABI_Unknown) {
// TODO: move this checking to RISCVTargetLowering and RISCVAsmParser
errs()
<< "Only the ilp32e ABI is supported for RV32E (ignoring target-abi)\n";
TargetABI = ABI_Unknown;
} else if (IsRV64 && IsRVE && TargetABI != ABI_LP64E &&
TargetABI != ABI_Unknown) {
// TODO: move this checking to RISCVTargetLowering and RISCVAsmParser
errs()
<< "Only the lp64e ABI is supported for RV64E (ignoring target-abi)\n";
TargetABI = ABI_Unknown;
}
if ((TargetABI == RISCVABI::ABI::ABI_ILP32E ||
(TargetABI == ABI_Unknown && IsRVE && !IsRV64)) &&
FeatureBits[RISCV::FeatureStdExtD])
report_fatal_error("ILP32E cannot be used with the D ISA extension");
if (TargetABI != ABI_Unknown)
return TargetABI;
// If no explicit ABI is given, try to compute the default ABI.
auto ISAInfo = RISCVFeatures::parseFeatureBits(IsRV64, FeatureBits);
if (!ISAInfo)
report_fatal_error(ISAInfo.takeError());
return getTargetABI((*ISAInfo)->computeDefaultABI());
}
ABI getTargetABI(StringRef ABIName) {
auto TargetABI = StringSwitch<ABI>(ABIName)
.Case("ilp32", ABI_ILP32)
.Case("ilp32f", ABI_ILP32F)
.Case("ilp32d", ABI_ILP32D)
.Case("ilp32e", ABI_ILP32E)
.Case("lp64", ABI_LP64)
.Case("lp64f", ABI_LP64F)
.Case("lp64d", ABI_LP64D)
.Case("lp64e", ABI_LP64E)
.Default(ABI_Unknown);
return TargetABI;
}
// To avoid the BP value clobbered by a function call, we need to choose a
// callee saved register to save the value. RV32E only has X8 and X9 as callee
// saved registers and X8 will be used as fp. So we choose X9 as bp.
MCRegister getBPReg() { return RISCV::X9; }
// Returns the register holding shadow call stack pointer.
MCRegister getSCSPReg() { return RISCV::X3; }
} // namespace RISCVABI
namespace RISCVFeatures {
void validate(const Triple &TT, const FeatureBitset &FeatureBits) {
if (TT.isArch64Bit() && !FeatureBits[RISCV::Feature64Bit])
report_fatal_error("RV64 target requires an RV64 CPU");
if (!TT.isArch64Bit() && !FeatureBits[RISCV::Feature32Bit])
report_fatal_error("RV32 target requires an RV32 CPU");
if (FeatureBits[RISCV::Feature32Bit] &&
FeatureBits[RISCV::Feature64Bit])
report_fatal_error("RV32 and RV64 can't be combined");
}
llvm::Expected<std::unique_ptr<RISCVISAInfo>>
parseFeatureBits(bool IsRV64, const FeatureBitset &FeatureBits) {
unsigned XLen = IsRV64 ? 64 : 32;
std::vector<std::string> FeatureVector;
// Convert FeatureBitset to FeatureVector.
for (auto Feature : RISCVFeatureKV) {
if (FeatureBits[Feature.Value] &&
llvm::RISCVISAInfo::isSupportedExtensionFeature(Feature.Key))
FeatureVector.push_back(std::string("+") + Feature.Key);
}
return llvm::RISCVISAInfo::parseFeatures(XLen, FeatureVector);
}
} // namespace RISCVFeatures
// Encode VTYPE into the binary format used by the the VSETVLI instruction which
// is used by our MC layer representation.
//
// Bits | Name | Description
// -----+------------+------------------------------------------------
// 7 | vma | Vector mask agnostic
// 6 | vta | Vector tail agnostic
// 5:3 | vsew[2:0] | Standard element width (SEW) setting
// 2:0 | vlmul[2:0] | Vector register group multiplier (LMUL) setting
unsigned RISCVVType::encodeVTYPE(RISCVII::VLMUL VLMUL, unsigned SEW,
bool TailAgnostic, bool MaskAgnostic) {
assert(isValidSEW(SEW) && "Invalid SEW");
unsigned VLMULBits = static_cast<unsigned>(VLMUL);
unsigned VSEWBits = encodeSEW(SEW);
unsigned VTypeI = (VSEWBits << 3) | (VLMULBits & 0x7);
if (TailAgnostic)
VTypeI |= 0x40;
if (MaskAgnostic)
VTypeI |= 0x80;
return VTypeI;
}
std::pair<unsigned, bool> RISCVVType::decodeVLMUL(RISCVII::VLMUL VLMUL) {
switch (VLMUL) {
default:
llvm_unreachable("Unexpected LMUL value!");
case RISCVII::VLMUL::LMUL_1:
case RISCVII::VLMUL::LMUL_2:
case RISCVII::VLMUL::LMUL_4:
case RISCVII::VLMUL::LMUL_8:
return std::make_pair(1 << static_cast<unsigned>(VLMUL), false);
case RISCVII::VLMUL::LMUL_F2:
case RISCVII::VLMUL::LMUL_F4:
case RISCVII::VLMUL::LMUL_F8:
return std::make_pair(1 << (8 - static_cast<unsigned>(VLMUL)), true);
}
}
void RISCVVType::printVType(unsigned VType, raw_ostream &OS) {
unsigned Sew = getSEW(VType);
OS << "e" << Sew;
unsigned LMul;
bool Fractional;
std::tie(LMul, Fractional) = decodeVLMUL(getVLMUL(VType));
if (Fractional)
OS << ", mf";
else
OS << ", m";
OS << LMul;
if (isTailAgnostic(VType))
OS << ", ta";
else
OS << ", tu";
if (isMaskAgnostic(VType))
OS << ", ma";
else
OS << ", mu";
}
unsigned RISCVVType::getSEWLMULRatio(unsigned SEW, RISCVII::VLMUL VLMul) {
unsigned LMul;
bool Fractional;
std::tie(LMul, Fractional) = decodeVLMUL(VLMul);
// Convert LMul to a fixed point value with 3 fractional bits.
LMul = Fractional ? (8 / LMul) : (LMul * 8);
assert(SEW >= 8 && "Unexpected SEW value");
return (SEW * 8) / LMul;
}
std::optional<RISCVII::VLMUL>
RISCVVType::getSameRatioLMUL(unsigned SEW, RISCVII::VLMUL VLMUL, unsigned EEW) {
unsigned Ratio = RISCVVType::getSEWLMULRatio(SEW, VLMUL);
unsigned EMULFixedPoint = (EEW * 8) / Ratio;
bool Fractional = EMULFixedPoint < 8;
unsigned EMUL = Fractional ? 8 / EMULFixedPoint : EMULFixedPoint / 8;
if (!isValidLMUL(EMUL, Fractional))
return std::nullopt;
return RISCVVType::encodeLMUL(EMUL, Fractional);
}
// Include the auto-generated portion of the compress emitter.
#define GEN_UNCOMPRESS_INSTR
#define GEN_COMPRESS_INSTR
#include "RISCVGenCompressInstEmitter.inc"
bool RISCVRVC::compress(MCInst &OutInst, const MCInst &MI,
const MCSubtargetInfo &STI) {
return compressInst(OutInst, MI, STI);
}
bool RISCVRVC::uncompress(MCInst &OutInst, const MCInst &MI,
const MCSubtargetInfo &STI) {
return uncompressInst(OutInst, MI, STI);
}
// Lookup table for fli.s for entries 2-31.
static constexpr std::pair<uint8_t, uint8_t> LoadFP32ImmArr[] = {
{0b01101111, 0b00}, {0b01110000, 0b00}, {0b01110111, 0b00},
{0b01111000, 0b00}, {0b01111011, 0b00}, {0b01111100, 0b00},
{0b01111101, 0b00}, {0b01111101, 0b01}, {0b01111101, 0b10},
{0b01111101, 0b11}, {0b01111110, 0b00}, {0b01111110, 0b01},
{0b01111110, 0b10}, {0b01111110, 0b11}, {0b01111111, 0b00},
{0b01111111, 0b01}, {0b01111111, 0b10}, {0b01111111, 0b11},
{0b10000000, 0b00}, {0b10000000, 0b01}, {0b10000000, 0b10},
{0b10000001, 0b00}, {0b10000010, 0b00}, {0b10000011, 0b00},
{0b10000110, 0b00}, {0b10000111, 0b00}, {0b10001110, 0b00},
{0b10001111, 0b00}, {0b11111111, 0b00}, {0b11111111, 0b10},
};
int RISCVLoadFPImm::getLoadFPImm(APFloat FPImm) {
assert((&FPImm.getSemantics() == &APFloat::IEEEsingle() ||
&FPImm.getSemantics() == &APFloat::IEEEdouble() ||
&FPImm.getSemantics() == &APFloat::IEEEhalf()) &&
"Unexpected semantics");
// Handle the minimum normalized value which is different for each type.
if (FPImm.isSmallestNormalized() && !FPImm.isNegative())
return 1;
// Convert to single precision to use its lookup table.
bool LosesInfo;
APFloat::opStatus Status = FPImm.convert(
APFloat::IEEEsingle(), APFloat::rmNearestTiesToEven, &LosesInfo);
if (Status != APFloat::opOK || LosesInfo)
return -1;
APInt Imm = FPImm.bitcastToAPInt();
if (Imm.extractBitsAsZExtValue(21, 0) != 0)
return -1;
bool Sign = Imm.extractBitsAsZExtValue(1, 31);
uint8_t Mantissa = Imm.extractBitsAsZExtValue(2, 21);
uint8_t Exp = Imm.extractBitsAsZExtValue(8, 23);
auto EMI = llvm::lower_bound(LoadFP32ImmArr, std::make_pair(Exp, Mantissa));
if (EMI == std::end(LoadFP32ImmArr) || EMI->first != Exp ||
EMI->second != Mantissa)
return -1;
// Table doesn't have entry 0 or 1.
int Entry = std::distance(std::begin(LoadFP32ImmArr), EMI) + 2;
// The only legal negative value is -1.0(entry 0). 1.0 is entry 16.
if (Sign) {
if (Entry == 16)
return 0;
return -1;
}
return Entry;
}
float RISCVLoadFPImm::getFPImm(unsigned Imm) {
assert(Imm != 1 && Imm != 30 && Imm != 31 && "Unsupported immediate");
// Entry 0 is -1.0, the only negative value. Entry 16 is 1.0.
uint32_t Sign = 0;
if (Imm == 0) {
Sign = 0b1;
Imm = 16;
}
uint32_t Exp = LoadFP32ImmArr[Imm - 2].first;
uint32_t Mantissa = LoadFP32ImmArr[Imm - 2].second;
uint32_t I = Sign << 31 | Exp << 23 | Mantissa << 21;
return bit_cast<float>(I);
}
void RISCVZC::printRlist(unsigned SlistEncode, raw_ostream &OS) {
OS << "{ra";
if (SlistEncode > 4) {
OS << ", s0";
if (SlistEncode == 15)
OS << "-s11";
else if (SlistEncode > 5 && SlistEncode <= 14)
OS << "-s" << (SlistEncode - 5);
}
OS << "}";
}
void RISCVZC::printSpimm(int64_t Spimm, raw_ostream &OS) { OS << Spimm; }
} // namespace llvm
|