File: RISCVMatInt.cpp

package info (click to toggle)
llvm-toolchain-18 1%3A18.1.8-18
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 1,908,340 kB
  • sloc: cpp: 6,667,937; ansic: 1,440,452; asm: 883,619; python: 230,549; objc: 76,880; f90: 74,238; lisp: 35,989; pascal: 16,571; sh: 10,229; perl: 7,459; ml: 5,047; awk: 3,523; makefile: 2,987; javascript: 2,149; xml: 892; fortran: 649; cs: 573
file content (517 lines) | stat: -rw-r--r-- 19,109 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
//===- RISCVMatInt.cpp - Immediate materialisation -------------*- C++ -*--===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//

#include "RISCVMatInt.h"
#include "MCTargetDesc/RISCVMCTargetDesc.h"
#include "llvm/ADT/APInt.h"
#include "llvm/Support/MathExtras.h"
using namespace llvm;

static int getInstSeqCost(RISCVMatInt::InstSeq &Res, bool HasRVC) {
  if (!HasRVC)
    return Res.size();

  int Cost = 0;
  for (auto Instr : Res) {
    // Assume instructions that aren't listed aren't compressible.
    bool Compressed = false;
    switch (Instr.getOpcode()) {
    case RISCV::SLLI:
    case RISCV::SRLI:
      Compressed = true;
      break;
    case RISCV::ADDI:
    case RISCV::ADDIW:
    case RISCV::LUI:
      Compressed = isInt<6>(Instr.getImm());
      break;
    }
    // Two RVC instructions take the same space as one RVI instruction, but
    // can take longer to execute than the single RVI instruction. Thus, we
    // consider that two RVC instruction are slightly more costly than one
    // RVI instruction. For longer sequences of RVC instructions the space
    // savings can be worth it, though. The costs below try to model that.
    if (!Compressed)
      Cost += 100; // Baseline cost of one RVI instruction: 100%.
    else
      Cost += 70; // 70% cost of baseline.
  }
  return Cost;
}

// Recursively generate a sequence for materializing an integer.
static void generateInstSeqImpl(int64_t Val, const MCSubtargetInfo &STI,
                                RISCVMatInt::InstSeq &Res) {
  bool IsRV64 = STI.hasFeature(RISCV::Feature64Bit);

  // Use BSETI for a single bit that can't be expressed by a single LUI or ADDI.
  if (STI.hasFeature(RISCV::FeatureStdExtZbs) && isPowerOf2_64(Val) &&
      (!isInt<32>(Val) || Val == 0x800)) {
    Res.emplace_back(RISCV::BSETI, Log2_64(Val));
    return;
  }

  if (isInt<32>(Val)) {
    // Depending on the active bits in the immediate Value v, the following
    // instruction sequences are emitted:
    //
    // v == 0                        : ADDI
    // v[0,12) != 0 && v[12,32) == 0 : ADDI
    // v[0,12) == 0 && v[12,32) != 0 : LUI
    // v[0,32) != 0                  : LUI+ADDI(W)
    int64_t Hi20 = ((Val + 0x800) >> 12) & 0xFFFFF;
    int64_t Lo12 = SignExtend64<12>(Val);

    if (Hi20)
      Res.emplace_back(RISCV::LUI, Hi20);

    if (Lo12 || Hi20 == 0) {
      unsigned AddiOpc = (IsRV64 && Hi20) ? RISCV::ADDIW : RISCV::ADDI;
      Res.emplace_back(AddiOpc, Lo12);
    }
    return;
  }

  assert(IsRV64 && "Can't emit >32-bit imm for non-RV64 target");

  // In the worst case, for a full 64-bit constant, a sequence of 8 instructions
  // (i.e., LUI+ADDIW+SLLI+ADDI+SLLI+ADDI+SLLI+ADDI) has to be emitted. Note
  // that the first two instructions (LUI+ADDIW) can contribute up to 32 bits
  // while the following ADDI instructions contribute up to 12 bits each.
  //
  // On the first glance, implementing this seems to be possible by simply
  // emitting the most significant 32 bits (LUI+ADDIW) followed by as many left
  // shift (SLLI) and immediate additions (ADDI) as needed. However, due to the
  // fact that ADDI performs a sign extended addition, doing it like that would
  // only be possible when at most 11 bits of the ADDI instructions are used.
  // Using all 12 bits of the ADDI instructions, like done by GAS, actually
  // requires that the constant is processed starting with the least significant
  // bit.
  //
  // In the following, constants are processed from LSB to MSB but instruction
  // emission is performed from MSB to LSB by recursively calling
  // generateInstSeq. In each recursion, first the lowest 12 bits are removed
  // from the constant and the optimal shift amount, which can be greater than
  // 12 bits if the constant is sparse, is determined. Then, the shifted
  // remaining constant is processed recursively and gets emitted as soon as it
  // fits into 32 bits. The emission of the shifts and additions is subsequently
  // performed when the recursion returns.

  int64_t Lo12 = SignExtend64<12>(Val);
  Val = (uint64_t)Val - (uint64_t)Lo12;

  int ShiftAmount = 0;
  bool Unsigned = false;

  // Val might now be valid for LUI without needing a shift.
  if (!isInt<32>(Val)) {
    ShiftAmount = llvm::countr_zero((uint64_t)Val);
    Val >>= ShiftAmount;

    // If the remaining bits don't fit in 12 bits, we might be able to reduce the
    // shift amount in order to use LUI which will zero the lower 12 bits.
    if (ShiftAmount > 12 && !isInt<12>(Val)) {
      if (isInt<32>((uint64_t)Val << 12)) {
        // Reduce the shift amount and add zeros to the LSBs so it will match LUI.
        ShiftAmount -= 12;
        Val = (uint64_t)Val << 12;
      } else if (isUInt<32>((uint64_t)Val << 12) &&
                 STI.hasFeature(RISCV::FeatureStdExtZba)) {
        // Reduce the shift amount and add zeros to the LSBs so it will match
        // LUI, then shift left with SLLI.UW to clear the upper 32 set bits.
        ShiftAmount -= 12;
        Val = ((uint64_t)Val << 12) | (0xffffffffull << 32);
        Unsigned = true;
      }
    }

    // Try to use SLLI_UW for Val when it is uint32 but not int32.
    if (isUInt<32>((uint64_t)Val) && !isInt<32>((uint64_t)Val) &&
        STI.hasFeature(RISCV::FeatureStdExtZba)) {
      // Use LUI+ADDI or LUI to compose, then clear the upper 32 bits with
      // SLLI_UW.
      Val = ((uint64_t)Val) | (0xffffffffull << 32);
      Unsigned = true;
    }
  }

  generateInstSeqImpl(Val, STI, Res);

  // Skip shift if we were able to use LUI directly.
  if (ShiftAmount) {
    unsigned Opc = Unsigned ? RISCV::SLLI_UW : RISCV::SLLI;
    Res.emplace_back(Opc, ShiftAmount);
  }

  if (Lo12)
    Res.emplace_back(RISCV::ADDI, Lo12);
}

static unsigned extractRotateInfo(int64_t Val) {
  // for case: 0b111..1..xxxxxx1..1..
  unsigned LeadingOnes = llvm::countl_one((uint64_t)Val);
  unsigned TrailingOnes = llvm::countr_one((uint64_t)Val);
  if (TrailingOnes > 0 && TrailingOnes < 64 &&
      (LeadingOnes + TrailingOnes) > (64 - 12))
    return 64 - TrailingOnes;

  // for case: 0bxxx1..1..1...xxx
  unsigned UpperTrailingOnes = llvm::countr_one(Hi_32(Val));
  unsigned LowerLeadingOnes = llvm::countl_one(Lo_32(Val));
  if (UpperTrailingOnes < 32 &&
      (UpperTrailingOnes + LowerLeadingOnes) > (64 - 12))
    return 32 - UpperTrailingOnes;

  return 0;
}

static void generateInstSeqLeadingZeros(int64_t Val, const MCSubtargetInfo &STI,
                                        RISCVMatInt::InstSeq &Res) {
  assert(Val > 0 && "Expected postive val");

  unsigned LeadingZeros = llvm::countl_zero((uint64_t)Val);
  uint64_t ShiftedVal = (uint64_t)Val << LeadingZeros;
  // Fill in the bits that will be shifted out with 1s. An example where this
  // helps is trailing one masks with 32 or more ones. This will generate
  // ADDI -1 and an SRLI.
  ShiftedVal |= maskTrailingOnes<uint64_t>(LeadingZeros);

  RISCVMatInt::InstSeq TmpSeq;
  generateInstSeqImpl(ShiftedVal, STI, TmpSeq);

  // Keep the new sequence if it is an improvement or the original is empty.
  if ((TmpSeq.size() + 1) < Res.size() ||
      (Res.empty() && TmpSeq.size() < 8)) {
    TmpSeq.emplace_back(RISCV::SRLI, LeadingZeros);
    Res = TmpSeq;
  }

  // Some cases can benefit from filling the lower bits with zeros instead.
  ShiftedVal &= maskTrailingZeros<uint64_t>(LeadingZeros);
  TmpSeq.clear();
  generateInstSeqImpl(ShiftedVal, STI, TmpSeq);

  // Keep the new sequence if it is an improvement or the original is empty.
  if ((TmpSeq.size() + 1) < Res.size() ||
      (Res.empty() && TmpSeq.size() < 8)) {
    TmpSeq.emplace_back(RISCV::SRLI, LeadingZeros);
    Res = TmpSeq;
  }

  // If we have exactly 32 leading zeros and Zba, we can try using zext.w at
  // the end of the sequence.
  if (LeadingZeros == 32 && STI.hasFeature(RISCV::FeatureStdExtZba)) {
    // Try replacing upper bits with 1.
    uint64_t LeadingOnesVal = Val | maskLeadingOnes<uint64_t>(LeadingZeros);
    TmpSeq.clear();
    generateInstSeqImpl(LeadingOnesVal, STI, TmpSeq);

    // Keep the new sequence if it is an improvement.
    if ((TmpSeq.size() + 1) < Res.size() ||
        (Res.empty() && TmpSeq.size() < 8)) {
      TmpSeq.emplace_back(RISCV::ADD_UW, 0);
      Res = TmpSeq;
    }
  }
}

namespace llvm::RISCVMatInt {
InstSeq generateInstSeq(int64_t Val, const MCSubtargetInfo &STI) {
  RISCVMatInt::InstSeq Res;
  generateInstSeqImpl(Val, STI, Res);

  // If the low 12 bits are non-zero, the first expansion may end with an ADDI
  // or ADDIW. If there are trailing zeros, try generating a sign extended
  // constant with no trailing zeros and use a final SLLI to restore them.
  if ((Val & 0xfff) != 0 && (Val & 1) == 0 && Res.size() >= 2) {
    unsigned TrailingZeros = llvm::countr_zero((uint64_t)Val);
    int64_t ShiftedVal = Val >> TrailingZeros;
    // If we can use C.LI+C.SLLI instead of LUI+ADDI(W) prefer that since
    // its more compressible. But only if LUI+ADDI(W) isn't fusable.
    // NOTE: We don't check for C extension to minimize differences in generated
    // code.
    bool IsShiftedCompressible =
        isInt<6>(ShiftedVal) && !STI.hasFeature(RISCV::TuneLUIADDIFusion);
    RISCVMatInt::InstSeq TmpSeq;
    generateInstSeqImpl(ShiftedVal, STI, TmpSeq);

    // Keep the new sequence if it is an improvement.
    if ((TmpSeq.size() + 1) < Res.size() || IsShiftedCompressible) {
      TmpSeq.emplace_back(RISCV::SLLI, TrailingZeros);
      Res = TmpSeq;
    }
  }

  // If we have a 1 or 2 instruction sequence this is the best we can do. This
  // will always be true for RV32 and will often be true for RV64.
  if (Res.size() <= 2)
    return Res;

  assert(STI.hasFeature(RISCV::Feature64Bit) &&
         "Expected RV32 to only need 2 instructions");

  // If the lower 13 bits are something like 0x17ff, try to add 1 to change the
  // lower 13 bits to 0x1800. We can restore this with an ADDI of -1 at the end
  // of the sequence. Call generateInstSeqImpl on the new constant which may
  // subtract 0xfffffffffffff800 to create another ADDI. This will leave a
  // constant with more than 12 trailing zeros for the next recursive step.
  if ((Val & 0xfff) != 0 && (Val & 0x1800) == 0x1000) {
    int64_t Imm12 = -(0x800 - (Val & 0xfff));
    int64_t AdjustedVal = Val - Imm12;
    RISCVMatInt::InstSeq TmpSeq;
    generateInstSeqImpl(AdjustedVal, STI, TmpSeq);

    // Keep the new sequence if it is an improvement.
    if ((TmpSeq.size() + 1) < Res.size()) {
      TmpSeq.emplace_back(RISCV::ADDI, Imm12);
      Res = TmpSeq;
    }
  }

  // If the constant is positive we might be able to generate a shifted constant
  // with no leading zeros and use a final SRLI to restore them.
  if (Val > 0 && Res.size() > 2) {
    generateInstSeqLeadingZeros(Val, STI, Res);
  }

  // If the constant is negative, trying inverting and using our trailing zero
  // optimizations. Use an xori to invert the final value.
  if (Val < 0 && Res.size() > 3) {
    uint64_t InvertedVal = ~(uint64_t)Val;
    RISCVMatInt::InstSeq TmpSeq;
    generateInstSeqLeadingZeros(InvertedVal, STI, TmpSeq);

    // Keep it if we found a sequence that is smaller after inverting.
    if (!TmpSeq.empty() && (TmpSeq.size() + 1) < Res.size()) {
      TmpSeq.emplace_back(RISCV::XORI, -1);
      Res = TmpSeq;
    }
  }

  // If the Low and High halves are the same, use pack. The pack instruction
  // packs the XLEN/2-bit lower halves of rs1 and rs2 into rd, with rs1 in the
  // lower half and rs2 in the upper half.
  if (Res.size() > 2 && STI.hasFeature(RISCV::FeatureStdExtZbkb)) {
    int64_t LoVal = SignExtend64<32>(Val);
    int64_t HiVal = SignExtend64<32>(Val >> 32);
    if (LoVal == HiVal) {
      RISCVMatInt::InstSeq TmpSeq;
      generateInstSeqImpl(LoVal, STI, TmpSeq);
      if ((TmpSeq.size() + 1) < Res.size()) {
        TmpSeq.emplace_back(RISCV::PACK, 0);
        Res = TmpSeq;
      }
    }
  }

  // Perform optimization with BCLRI/BSETI in the Zbs extension.
  if (Res.size() > 2 && STI.hasFeature(RISCV::FeatureStdExtZbs)) {
    // 1. For values in range 0xffffffff 7fffffff ~ 0xffffffff 00000000,
    //    call generateInstSeqImpl with Val|0x80000000 (which is expected be
    //    an int32), then emit (BCLRI r, 31).
    // 2. For values in range 0x80000000 ~ 0xffffffff, call generateInstSeqImpl
    //    with Val&~0x80000000 (which is expected to be an int32), then
    //    emit (BSETI r, 31).
    int64_t NewVal;
    unsigned Opc;
    if (Val < 0) {
      Opc = RISCV::BCLRI;
      NewVal = Val | 0x80000000ll;
    } else {
      Opc = RISCV::BSETI;
      NewVal = Val & ~0x80000000ll;
    }
    if (isInt<32>(NewVal)) {
      RISCVMatInt::InstSeq TmpSeq;
      generateInstSeqImpl(NewVal, STI, TmpSeq);
      if ((TmpSeq.size() + 1) < Res.size()) {
        TmpSeq.emplace_back(Opc, 31);
        Res = TmpSeq;
      }
    }

    // Try to use BCLRI for upper 32 bits if the original lower 32 bits are
    // negative int32, or use BSETI for upper 32 bits if the original lower
    // 32 bits are positive int32.
    int32_t Lo = Lo_32(Val);
    uint32_t Hi = Hi_32(Val);
    Opc = 0;
    RISCVMatInt::InstSeq TmpSeq;
    generateInstSeqImpl(Lo, STI, TmpSeq);
    // Check if it is profitable to use BCLRI/BSETI.
    if (Lo > 0 && TmpSeq.size() + llvm::popcount(Hi) < Res.size()) {
      Opc = RISCV::BSETI;
    } else if (Lo < 0 && TmpSeq.size() + llvm::popcount(~Hi) < Res.size()) {
      Opc = RISCV::BCLRI;
      Hi = ~Hi;
    }
    // Search for each bit and build corresponding BCLRI/BSETI.
    if (Opc > 0) {
      while (Hi != 0) {
        unsigned Bit = llvm::countr_zero(Hi);
        TmpSeq.emplace_back(Opc, Bit + 32);
        Hi &= (Hi - 1); // Clear lowest set bit.
      }
      if (TmpSeq.size() < Res.size())
        Res = TmpSeq;
    }
  }

  // Perform optimization with SH*ADD in the Zba extension.
  if (Res.size() > 2 && STI.hasFeature(RISCV::FeatureStdExtZba)) {
    int64_t Div = 0;
    unsigned Opc = 0;
    RISCVMatInt::InstSeq TmpSeq;
    // Select the opcode and divisor.
    if ((Val % 3) == 0 && isInt<32>(Val / 3)) {
      Div = 3;
      Opc = RISCV::SH1ADD;
    } else if ((Val % 5) == 0 && isInt<32>(Val / 5)) {
      Div = 5;
      Opc = RISCV::SH2ADD;
    } else if ((Val % 9) == 0 && isInt<32>(Val / 9)) {
      Div = 9;
      Opc = RISCV::SH3ADD;
    }
    // Build the new instruction sequence.
    if (Div > 0) {
      generateInstSeqImpl(Val / Div, STI, TmpSeq);
      if ((TmpSeq.size() + 1) < Res.size()) {
        TmpSeq.emplace_back(Opc, 0);
        Res = TmpSeq;
      }
    } else {
      // Try to use LUI+SH*ADD+ADDI.
      int64_t Hi52 = ((uint64_t)Val + 0x800ull) & ~0xfffull;
      int64_t Lo12 = SignExtend64<12>(Val);
      Div = 0;
      if (isInt<32>(Hi52 / 3) && (Hi52 % 3) == 0) {
        Div = 3;
        Opc = RISCV::SH1ADD;
      } else if (isInt<32>(Hi52 / 5) && (Hi52 % 5) == 0) {
        Div = 5;
        Opc = RISCV::SH2ADD;
      } else if (isInt<32>(Hi52 / 9) && (Hi52 % 9) == 0) {
        Div = 9;
        Opc = RISCV::SH3ADD;
      }
      // Build the new instruction sequence.
      if (Div > 0) {
        // For Val that has zero Lo12 (implies Val equals to Hi52) should has
        // already been processed to LUI+SH*ADD by previous optimization.
        assert(Lo12 != 0 &&
               "unexpected instruction sequence for immediate materialisation");
        assert(TmpSeq.empty() && "Expected empty TmpSeq");
        generateInstSeqImpl(Hi52 / Div, STI, TmpSeq);
        if ((TmpSeq.size() + 2) < Res.size()) {
          TmpSeq.emplace_back(Opc, 0);
          TmpSeq.emplace_back(RISCV::ADDI, Lo12);
          Res = TmpSeq;
        }
      }
    }
  }

  // Perform optimization with rori in the Zbb and th.srri in the XTheadBb
  // extension.
  if (Res.size() > 2 && (STI.hasFeature(RISCV::FeatureStdExtZbb) ||
                         STI.hasFeature(RISCV::FeatureVendorXTHeadBb))) {
    if (unsigned Rotate = extractRotateInfo(Val)) {
      RISCVMatInt::InstSeq TmpSeq;
      uint64_t NegImm12 = llvm::rotl<uint64_t>(Val, Rotate);
      assert(isInt<12>(NegImm12));
      TmpSeq.emplace_back(RISCV::ADDI, NegImm12);
      TmpSeq.emplace_back(STI.hasFeature(RISCV::FeatureStdExtZbb)
                              ? RISCV::RORI
                              : RISCV::TH_SRRI,
                          Rotate);
      Res = TmpSeq;
    }
  }
  return Res;
}

InstSeq generateTwoRegInstSeq(int64_t Val, const MCSubtargetInfo &STI,
                              unsigned &ShiftAmt, unsigned &AddOpc) {
  int64_t LoVal = SignExtend64<32>(Val);
  if (LoVal == 0)
    return RISCVMatInt::InstSeq();

  // Subtract the LoVal to emulate the effect of the final ADD.
  uint64_t Tmp = (uint64_t)Val - (uint64_t)LoVal;
  assert(Tmp != 0);

  // Use trailing zero counts to figure how far we need to shift LoVal to line
  // up with the remaining constant.
  // TODO: This algorithm assumes all non-zero bits in the low 32 bits of the
  // final constant come from LoVal.
  unsigned TzLo = llvm::countr_zero((uint64_t)LoVal);
  unsigned TzHi = llvm::countr_zero(Tmp);
  assert(TzLo < 32 && TzHi >= 32);
  ShiftAmt = TzHi - TzLo;
  AddOpc = RISCV::ADD;

  if (Tmp == ((uint64_t)LoVal << ShiftAmt))
    return RISCVMatInt::generateInstSeq(LoVal, STI);

  // If we have Zba, we can use (ADD_UW X, (SLLI X, 32)).
  if (STI.hasFeature(RISCV::FeatureStdExtZba) && Lo_32(Val) == Hi_32(Val)) {
    ShiftAmt = 32;
    AddOpc = RISCV::ADD_UW;
    return RISCVMatInt::generateInstSeq(LoVal, STI);
  }

  return RISCVMatInt::InstSeq();
}

int getIntMatCost(const APInt &Val, unsigned Size, const MCSubtargetInfo &STI,
                  bool CompressionCost) {
  bool IsRV64 = STI.hasFeature(RISCV::Feature64Bit);
  bool HasRVC = CompressionCost && (STI.hasFeature(RISCV::FeatureStdExtC) ||
                                    STI.hasFeature(RISCV::FeatureStdExtZca));
  int PlatRegSize = IsRV64 ? 64 : 32;

  // Split the constant into platform register sized chunks, and calculate cost
  // of each chunk.
  int Cost = 0;
  for (unsigned ShiftVal = 0; ShiftVal < Size; ShiftVal += PlatRegSize) {
    APInt Chunk = Val.ashr(ShiftVal).sextOrTrunc(PlatRegSize);
    InstSeq MatSeq = generateInstSeq(Chunk.getSExtValue(), STI);
    Cost += getInstSeqCost(MatSeq, HasRVC);
  }
  return std::max(1, Cost);
}

OpndKind Inst::getOpndKind() const {
  switch (Opc) {
  default:
    llvm_unreachable("Unexpected opcode!");
  case RISCV::LUI:
    return RISCVMatInt::Imm;
  case RISCV::ADD_UW:
    return RISCVMatInt::RegX0;
  case RISCV::SH1ADD:
  case RISCV::SH2ADD:
  case RISCV::SH3ADD:
  case RISCV::PACK:
    return RISCVMatInt::RegReg;
  case RISCV::ADDI:
  case RISCV::ADDIW:
  case RISCV::XORI:
  case RISCV::SLLI:
  case RISCV::SRLI:
  case RISCV::SLLI_UW:
  case RISCV::RORI:
  case RISCV::BSETI:
  case RISCV::BCLRI:
  case RISCV::TH_SRRI:
    return RISCVMatInt::RegImm;
  }
}

} // namespace llvm::RISCVMatInt