1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684
|
//===- RISCVInsertVSETVLI.cpp - Insert VSETVLI instructions ---------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This file implements a function pass that inserts VSETVLI instructions where
// needed and expands the vl outputs of VLEFF/VLSEGFF to PseudoReadVL
// instructions.
//
// This pass consists of 3 phases:
//
// Phase 1 collects how each basic block affects VL/VTYPE.
//
// Phase 2 uses the information from phase 1 to do a data flow analysis to
// propagate the VL/VTYPE changes through the function. This gives us the
// VL/VTYPE at the start of each basic block.
//
// Phase 3 inserts VSETVLI instructions in each basic block. Information from
// phase 2 is used to prevent inserting a VSETVLI before the first vector
// instruction in the block if possible.
//
//===----------------------------------------------------------------------===//
#include "RISCV.h"
#include "RISCVSubtarget.h"
#include "llvm/ADT/Statistic.h"
#include "llvm/CodeGen/LiveIntervals.h"
#include "llvm/CodeGen/MachineFunctionPass.h"
#include <queue>
using namespace llvm;
#define DEBUG_TYPE "riscv-insert-vsetvli"
#define RISCV_INSERT_VSETVLI_NAME "RISC-V Insert VSETVLI pass"
STATISTIC(NumInsertedVSETVL, "Number of VSETVL inst inserted");
STATISTIC(NumRemovedVSETVL, "Number of VSETVL inst removed");
static cl::opt<bool> DisableInsertVSETVLPHIOpt(
"riscv-disable-insert-vsetvl-phi-opt", cl::init(false), cl::Hidden,
cl::desc("Disable looking through phis when inserting vsetvlis."));
static cl::opt<bool> UseStrictAsserts(
"riscv-insert-vsetvl-strict-asserts", cl::init(true), cl::Hidden,
cl::desc("Enable strict assertion checking for the dataflow algorithm"));
namespace {
static unsigned getVLOpNum(const MachineInstr &MI) {
return RISCVII::getVLOpNum(MI.getDesc());
}
static unsigned getSEWOpNum(const MachineInstr &MI) {
return RISCVII::getSEWOpNum(MI.getDesc());
}
static bool isVectorConfigInstr(const MachineInstr &MI) {
return MI.getOpcode() == RISCV::PseudoVSETVLI ||
MI.getOpcode() == RISCV::PseudoVSETVLIX0 ||
MI.getOpcode() == RISCV::PseudoVSETIVLI;
}
/// Return true if this is 'vsetvli x0, x0, vtype' which preserves
/// VL and only sets VTYPE.
static bool isVLPreservingConfig(const MachineInstr &MI) {
if (MI.getOpcode() != RISCV::PseudoVSETVLIX0)
return false;
assert(RISCV::X0 == MI.getOperand(1).getReg());
return RISCV::X0 == MI.getOperand(0).getReg();
}
static bool isFloatScalarMoveOrScalarSplatInstr(const MachineInstr &MI) {
switch (RISCV::getRVVMCOpcode(MI.getOpcode())) {
default:
return false;
case RISCV::VFMV_S_F:
case RISCV::VFMV_V_F:
return true;
}
}
static bool isScalarExtractInstr(const MachineInstr &MI) {
switch (RISCV::getRVVMCOpcode(MI.getOpcode())) {
default:
return false;
case RISCV::VMV_X_S:
case RISCV::VFMV_F_S:
return true;
}
}
static bool isScalarInsertInstr(const MachineInstr &MI) {
switch (RISCV::getRVVMCOpcode(MI.getOpcode())) {
default:
return false;
case RISCV::VMV_S_X:
case RISCV::VFMV_S_F:
return true;
}
}
static bool isScalarSplatInstr(const MachineInstr &MI) {
switch (RISCV::getRVVMCOpcode(MI.getOpcode())) {
default:
return false;
case RISCV::VMV_V_I:
case RISCV::VMV_V_X:
case RISCV::VFMV_V_F:
return true;
}
}
static bool isVSlideInstr(const MachineInstr &MI) {
switch (RISCV::getRVVMCOpcode(MI.getOpcode())) {
default:
return false;
case RISCV::VSLIDEDOWN_VX:
case RISCV::VSLIDEDOWN_VI:
case RISCV::VSLIDEUP_VX:
case RISCV::VSLIDEUP_VI:
return true;
}
}
/// Get the EEW for a load or store instruction. Return std::nullopt if MI is
/// not a load or store which ignores SEW.
static std::optional<unsigned> getEEWForLoadStore(const MachineInstr &MI) {
switch (RISCV::getRVVMCOpcode(MI.getOpcode())) {
default:
return std::nullopt;
case RISCV::VLE8_V:
case RISCV::VLSE8_V:
case RISCV::VSE8_V:
case RISCV::VSSE8_V:
return 8;
case RISCV::VLE16_V:
case RISCV::VLSE16_V:
case RISCV::VSE16_V:
case RISCV::VSSE16_V:
return 16;
case RISCV::VLE32_V:
case RISCV::VLSE32_V:
case RISCV::VSE32_V:
case RISCV::VSSE32_V:
return 32;
case RISCV::VLE64_V:
case RISCV::VLSE64_V:
case RISCV::VSE64_V:
case RISCV::VSSE64_V:
return 64;
}
}
static bool isNonZeroLoadImmediate(MachineInstr &MI) {
return MI.getOpcode() == RISCV::ADDI &&
MI.getOperand(1).isReg() && MI.getOperand(2).isImm() &&
MI.getOperand(1).getReg() == RISCV::X0 &&
MI.getOperand(2).getImm() != 0;
}
/// Return true if this is an operation on mask registers. Note that
/// this includes both arithmetic/logical ops and load/store (vlm/vsm).
static bool isMaskRegOp(const MachineInstr &MI) {
if (!RISCVII::hasSEWOp(MI.getDesc().TSFlags))
return false;
const unsigned Log2SEW = MI.getOperand(getSEWOpNum(MI)).getImm();
// A Log2SEW of 0 is an operation on mask registers only.
return Log2SEW == 0;
}
/// Return true if the inactive elements in the result are entirely undefined.
/// Note that this is different from "agnostic" as defined by the vector
/// specification. Agnostic requires each lane to either be undisturbed, or
/// take the value -1; no other value is allowed.
static bool hasUndefinedMergeOp(const MachineInstr &MI,
const MachineRegisterInfo &MRI) {
unsigned UseOpIdx;
if (!MI.isRegTiedToUseOperand(0, &UseOpIdx))
// If there is no passthrough operand, then the pass through
// lanes are undefined.
return true;
// If the tied operand is NoReg, an IMPLICIT_DEF, or a REG_SEQEUENCE whose
// operands are solely IMPLICIT_DEFS, then the pass through lanes are
// undefined.
const MachineOperand &UseMO = MI.getOperand(UseOpIdx);
if (UseMO.getReg() == RISCV::NoRegister)
return true;
if (MachineInstr *UseMI = MRI.getVRegDef(UseMO.getReg())) {
if (UseMI->isImplicitDef())
return true;
if (UseMI->isRegSequence()) {
for (unsigned i = 1, e = UseMI->getNumOperands(); i < e; i += 2) {
MachineInstr *SourceMI = MRI.getVRegDef(UseMI->getOperand(i).getReg());
if (!SourceMI || !SourceMI->isImplicitDef())
return false;
}
return true;
}
}
return false;
}
/// Which subfields of VL or VTYPE have values we need to preserve?
struct DemandedFields {
// Some unknown property of VL is used. If demanded, must preserve entire
// value.
bool VLAny = false;
// Only zero vs non-zero is used. If demanded, can change non-zero values.
bool VLZeroness = false;
// What properties of SEW we need to preserve.
enum : uint8_t {
SEWEqual = 3, // The exact value of SEW needs to be preserved.
SEWGreaterThanOrEqual = 2, // SEW can be changed as long as it's greater
// than or equal to the original value.
SEWGreaterThanOrEqualAndLessThan64 =
1, // SEW can be changed as long as it's greater
// than or equal to the original value, but must be less
// than 64.
SEWNone = 0 // We don't need to preserve SEW at all.
} SEW = SEWNone;
bool LMUL = false;
bool SEWLMULRatio = false;
bool TailPolicy = false;
bool MaskPolicy = false;
// Return true if any part of VTYPE was used
bool usedVTYPE() const {
return SEW || LMUL || SEWLMULRatio || TailPolicy || MaskPolicy;
}
// Return true if any property of VL was used
bool usedVL() {
return VLAny || VLZeroness;
}
// Mark all VTYPE subfields and properties as demanded
void demandVTYPE() {
SEW = SEWEqual;
LMUL = true;
SEWLMULRatio = true;
TailPolicy = true;
MaskPolicy = true;
}
// Mark all VL properties as demanded
void demandVL() {
VLAny = true;
VLZeroness = true;
}
#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
/// Support for debugging, callable in GDB: V->dump()
LLVM_DUMP_METHOD void dump() const {
print(dbgs());
dbgs() << "\n";
}
/// Implement operator<<.
void print(raw_ostream &OS) const {
OS << "{";
OS << "VLAny=" << VLAny << ", ";
OS << "VLZeroness=" << VLZeroness << ", ";
OS << "SEW=";
switch (SEW) {
case SEWEqual:
OS << "SEWEqual";
break;
case SEWGreaterThanOrEqual:
OS << "SEWGreaterThanOrEqual";
break;
case SEWGreaterThanOrEqualAndLessThan64:
OS << "SEWGreaterThanOrEqualAndLessThan64";
break;
case SEWNone:
OS << "SEWNone";
break;
};
OS << ", ";
OS << "LMUL=" << LMUL << ", ";
OS << "SEWLMULRatio=" << SEWLMULRatio << ", ";
OS << "TailPolicy=" << TailPolicy << ", ";
OS << "MaskPolicy=" << MaskPolicy;
OS << "}";
}
#endif
};
#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
LLVM_ATTRIBUTE_USED
inline raw_ostream &operator<<(raw_ostream &OS, const DemandedFields &DF) {
DF.print(OS);
return OS;
}
#endif
/// Return true if moving from CurVType to NewVType is
/// indistinguishable from the perspective of an instruction (or set
/// of instructions) which use only the Used subfields and properties.
static bool areCompatibleVTYPEs(uint64_t CurVType, uint64_t NewVType,
const DemandedFields &Used) {
switch (Used.SEW) {
case DemandedFields::SEWNone:
break;
case DemandedFields::SEWEqual:
if (RISCVVType::getSEW(CurVType) != RISCVVType::getSEW(NewVType))
return false;
break;
case DemandedFields::SEWGreaterThanOrEqual:
if (RISCVVType::getSEW(NewVType) < RISCVVType::getSEW(CurVType))
return false;
break;
case DemandedFields::SEWGreaterThanOrEqualAndLessThan64:
if (RISCVVType::getSEW(NewVType) < RISCVVType::getSEW(CurVType) ||
RISCVVType::getSEW(NewVType) >= 64)
return false;
break;
}
if (Used.LMUL &&
RISCVVType::getVLMUL(CurVType) != RISCVVType::getVLMUL(NewVType))
return false;
if (Used.SEWLMULRatio) {
auto Ratio1 = RISCVVType::getSEWLMULRatio(RISCVVType::getSEW(CurVType),
RISCVVType::getVLMUL(CurVType));
auto Ratio2 = RISCVVType::getSEWLMULRatio(RISCVVType::getSEW(NewVType),
RISCVVType::getVLMUL(NewVType));
if (Ratio1 != Ratio2)
return false;
}
if (Used.TailPolicy && RISCVVType::isTailAgnostic(CurVType) !=
RISCVVType::isTailAgnostic(NewVType))
return false;
if (Used.MaskPolicy && RISCVVType::isMaskAgnostic(CurVType) !=
RISCVVType::isMaskAgnostic(NewVType))
return false;
return true;
}
/// Return the fields and properties demanded by the provided instruction.
DemandedFields getDemanded(const MachineInstr &MI,
const MachineRegisterInfo *MRI,
const RISCVSubtarget *ST) {
// Warning: This function has to work on both the lowered (i.e. post
// emitVSETVLIs) and pre-lowering forms. The main implication of this is
// that it can't use the value of a SEW, VL, or Policy operand as they might
// be stale after lowering.
// Most instructions don't use any of these subfeilds.
DemandedFields Res;
// Start conservative if registers are used
if (MI.isCall() || MI.isInlineAsm() || MI.readsRegister(RISCV::VL))
Res.demandVL();
if (MI.isCall() || MI.isInlineAsm() || MI.readsRegister(RISCV::VTYPE))
Res.demandVTYPE();
// Start conservative on the unlowered form too
uint64_t TSFlags = MI.getDesc().TSFlags;
if (RISCVII::hasSEWOp(TSFlags)) {
Res.demandVTYPE();
if (RISCVII::hasVLOp(TSFlags))
Res.demandVL();
// Behavior is independent of mask policy.
if (!RISCVII::usesMaskPolicy(TSFlags))
Res.MaskPolicy = false;
}
// Loads and stores with implicit EEW do not demand SEW or LMUL directly.
// They instead demand the ratio of the two which is used in computing
// EMUL, but which allows us the flexibility to change SEW and LMUL
// provided we don't change the ratio.
// Note: We assume that the instructions initial SEW is the EEW encoded
// in the opcode. This is asserted when constructing the VSETVLIInfo.
if (getEEWForLoadStore(MI)) {
Res.SEW = DemandedFields::SEWNone;
Res.LMUL = false;
}
// Store instructions don't use the policy fields.
if (RISCVII::hasSEWOp(TSFlags) && MI.getNumExplicitDefs() == 0) {
Res.TailPolicy = false;
Res.MaskPolicy = false;
}
// If this is a mask reg operation, it only cares about VLMAX.
// TODO: Possible extensions to this logic
// * Probably ok if available VLMax is larger than demanded
// * The policy bits can probably be ignored..
if (isMaskRegOp(MI)) {
Res.SEW = DemandedFields::SEWNone;
Res.LMUL = false;
}
// For vmv.s.x and vfmv.s.f, there are only two behaviors, VL = 0 and VL > 0.
if (isScalarInsertInstr(MI)) {
Res.LMUL = false;
Res.SEWLMULRatio = false;
Res.VLAny = false;
// For vmv.s.x and vfmv.s.f, if the merge operand is *undefined*, we don't
// need to preserve any other bits and are thus compatible with any larger,
// etype and can disregard policy bits. Warning: It's tempting to try doing
// this for any tail agnostic operation, but we can't as TA requires
// tail lanes to either be the original value or -1. We are writing
// unknown bits to the lanes here.
if (hasUndefinedMergeOp(MI, *MRI)) {
if (isFloatScalarMoveOrScalarSplatInstr(MI) && !ST->hasVInstructionsF64())
Res.SEW = DemandedFields::SEWGreaterThanOrEqualAndLessThan64;
else
Res.SEW = DemandedFields::SEWGreaterThanOrEqual;
Res.TailPolicy = false;
}
}
// vmv.x.s, and vmv.f.s are unconditional and ignore everything except SEW.
if (isScalarExtractInstr(MI)) {
assert(!RISCVII::hasVLOp(TSFlags));
Res.LMUL = false;
Res.SEWLMULRatio = false;
Res.TailPolicy = false;
Res.MaskPolicy = false;
}
return Res;
}
/// Defines the abstract state with which the forward dataflow models the
/// values of the VL and VTYPE registers after insertion.
class VSETVLIInfo {
union {
Register AVLReg;
unsigned AVLImm;
};
enum : uint8_t {
Uninitialized,
AVLIsReg,
AVLIsImm,
Unknown,
} State = Uninitialized;
// Fields from VTYPE.
RISCVII::VLMUL VLMul = RISCVII::LMUL_1;
uint8_t SEW = 0;
uint8_t TailAgnostic : 1;
uint8_t MaskAgnostic : 1;
uint8_t SEWLMULRatioOnly : 1;
public:
VSETVLIInfo()
: AVLImm(0), TailAgnostic(false), MaskAgnostic(false),
SEWLMULRatioOnly(false) {}
static VSETVLIInfo getUnknown() {
VSETVLIInfo Info;
Info.setUnknown();
return Info;
}
bool isValid() const { return State != Uninitialized; }
void setUnknown() { State = Unknown; }
bool isUnknown() const { return State == Unknown; }
void setAVLReg(Register Reg) {
AVLReg = Reg;
State = AVLIsReg;
}
void setAVLImm(unsigned Imm) {
AVLImm = Imm;
State = AVLIsImm;
}
bool hasAVLImm() const { return State == AVLIsImm; }
bool hasAVLReg() const { return State == AVLIsReg; }
Register getAVLReg() const {
assert(hasAVLReg());
return AVLReg;
}
unsigned getAVLImm() const {
assert(hasAVLImm());
return AVLImm;
}
void setAVL(VSETVLIInfo Info) {
assert(Info.isValid());
if (Info.isUnknown())
setUnknown();
else if (Info.hasAVLReg())
setAVLReg(Info.getAVLReg());
else {
assert(Info.hasAVLImm());
setAVLImm(Info.getAVLImm());
}
}
unsigned getSEW() const { return SEW; }
RISCVII::VLMUL getVLMUL() const { return VLMul; }
bool getTailAgnostic() const { return TailAgnostic; }
bool getMaskAgnostic() const { return MaskAgnostic; }
bool hasNonZeroAVL(const MachineRegisterInfo &MRI) const {
if (hasAVLImm())
return getAVLImm() > 0;
if (hasAVLReg()) {
if (getAVLReg() == RISCV::X0)
return true;
if (MachineInstr *MI = MRI.getVRegDef(getAVLReg());
MI && isNonZeroLoadImmediate(*MI))
return true;
return false;
}
return false;
}
bool hasEquallyZeroAVL(const VSETVLIInfo &Other,
const MachineRegisterInfo &MRI) const {
if (hasSameAVL(Other))
return true;
return (hasNonZeroAVL(MRI) && Other.hasNonZeroAVL(MRI));
}
bool hasSameAVL(const VSETVLIInfo &Other) const {
if (hasAVLReg() && Other.hasAVLReg())
return getAVLReg() == Other.getAVLReg();
if (hasAVLImm() && Other.hasAVLImm())
return getAVLImm() == Other.getAVLImm();
return false;
}
void setVTYPE(unsigned VType) {
assert(isValid() && !isUnknown() &&
"Can't set VTYPE for uninitialized or unknown");
VLMul = RISCVVType::getVLMUL(VType);
SEW = RISCVVType::getSEW(VType);
TailAgnostic = RISCVVType::isTailAgnostic(VType);
MaskAgnostic = RISCVVType::isMaskAgnostic(VType);
}
void setVTYPE(RISCVII::VLMUL L, unsigned S, bool TA, bool MA) {
assert(isValid() && !isUnknown() &&
"Can't set VTYPE for uninitialized or unknown");
VLMul = L;
SEW = S;
TailAgnostic = TA;
MaskAgnostic = MA;
}
void setVLMul(RISCVII::VLMUL VLMul) { this->VLMul = VLMul; }
unsigned encodeVTYPE() const {
assert(isValid() && !isUnknown() && !SEWLMULRatioOnly &&
"Can't encode VTYPE for uninitialized or unknown");
return RISCVVType::encodeVTYPE(VLMul, SEW, TailAgnostic, MaskAgnostic);
}
bool hasSEWLMULRatioOnly() const { return SEWLMULRatioOnly; }
bool hasSameVTYPE(const VSETVLIInfo &Other) const {
assert(isValid() && Other.isValid() &&
"Can't compare invalid VSETVLIInfos");
assert(!isUnknown() && !Other.isUnknown() &&
"Can't compare VTYPE in unknown state");
assert(!SEWLMULRatioOnly && !Other.SEWLMULRatioOnly &&
"Can't compare when only LMUL/SEW ratio is valid.");
return std::tie(VLMul, SEW, TailAgnostic, MaskAgnostic) ==
std::tie(Other.VLMul, Other.SEW, Other.TailAgnostic,
Other.MaskAgnostic);
}
unsigned getSEWLMULRatio() const {
assert(isValid() && !isUnknown() &&
"Can't use VTYPE for uninitialized or unknown");
return RISCVVType::getSEWLMULRatio(SEW, VLMul);
}
// Check if the VTYPE for these two VSETVLIInfos produce the same VLMAX.
// Note that having the same VLMAX ensures that both share the same
// function from AVL to VL; that is, they must produce the same VL value
// for any given AVL value.
bool hasSameVLMAX(const VSETVLIInfo &Other) const {
assert(isValid() && Other.isValid() &&
"Can't compare invalid VSETVLIInfos");
assert(!isUnknown() && !Other.isUnknown() &&
"Can't compare VTYPE in unknown state");
return getSEWLMULRatio() == Other.getSEWLMULRatio();
}
bool hasCompatibleVTYPE(const DemandedFields &Used,
const VSETVLIInfo &Require) const {
return areCompatibleVTYPEs(Require.encodeVTYPE(), encodeVTYPE(), Used);
}
// Determine whether the vector instructions requirements represented by
// Require are compatible with the previous vsetvli instruction represented
// by this. MI is the instruction whose requirements we're considering.
bool isCompatible(const DemandedFields &Used, const VSETVLIInfo &Require,
const MachineRegisterInfo &MRI) const {
assert(isValid() && Require.isValid() &&
"Can't compare invalid VSETVLIInfos");
assert(!Require.SEWLMULRatioOnly &&
"Expected a valid VTYPE for instruction!");
// Nothing is compatible with Unknown.
if (isUnknown() || Require.isUnknown())
return false;
// If only our VLMAX ratio is valid, then this isn't compatible.
if (SEWLMULRatioOnly)
return false;
if (Used.VLAny && !hasSameAVL(Require))
return false;
if (Used.VLZeroness && !hasEquallyZeroAVL(Require, MRI))
return false;
return hasCompatibleVTYPE(Used, Require);
}
bool operator==(const VSETVLIInfo &Other) const {
// Uninitialized is only equal to another Uninitialized.
if (!isValid())
return !Other.isValid();
if (!Other.isValid())
return !isValid();
// Unknown is only equal to another Unknown.
if (isUnknown())
return Other.isUnknown();
if (Other.isUnknown())
return isUnknown();
if (!hasSameAVL(Other))
return false;
// If the SEWLMULRatioOnly bits are different, then they aren't equal.
if (SEWLMULRatioOnly != Other.SEWLMULRatioOnly)
return false;
// If only the VLMAX is valid, check that it is the same.
if (SEWLMULRatioOnly)
return hasSameVLMAX(Other);
// If the full VTYPE is valid, check that it is the same.
return hasSameVTYPE(Other);
}
bool operator!=(const VSETVLIInfo &Other) const {
return !(*this == Other);
}
// Calculate the VSETVLIInfo visible to a block assuming this and Other are
// both predecessors.
VSETVLIInfo intersect(const VSETVLIInfo &Other) const {
// If the new value isn't valid, ignore it.
if (!Other.isValid())
return *this;
// If this value isn't valid, this must be the first predecessor, use it.
if (!isValid())
return Other;
// If either is unknown, the result is unknown.
if (isUnknown() || Other.isUnknown())
return VSETVLIInfo::getUnknown();
// If we have an exact, match return this.
if (*this == Other)
return *this;
// Not an exact match, but maybe the AVL and VLMAX are the same. If so,
// return an SEW/LMUL ratio only value.
if (hasSameAVL(Other) && hasSameVLMAX(Other)) {
VSETVLIInfo MergeInfo = *this;
MergeInfo.SEWLMULRatioOnly = true;
return MergeInfo;
}
// Otherwise the result is unknown.
return VSETVLIInfo::getUnknown();
}
#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
/// Support for debugging, callable in GDB: V->dump()
LLVM_DUMP_METHOD void dump() const {
print(dbgs());
dbgs() << "\n";
}
/// Implement operator<<.
/// @{
void print(raw_ostream &OS) const {
OS << "{";
if (!isValid())
OS << "Uninitialized";
if (isUnknown())
OS << "unknown";
if (hasAVLReg())
OS << "AVLReg=" << (unsigned)AVLReg;
if (hasAVLImm())
OS << "AVLImm=" << (unsigned)AVLImm;
OS << ", "
<< "VLMul=" << (unsigned)VLMul << ", "
<< "SEW=" << (unsigned)SEW << ", "
<< "TailAgnostic=" << (bool)TailAgnostic << ", "
<< "MaskAgnostic=" << (bool)MaskAgnostic << ", "
<< "SEWLMULRatioOnly=" << (bool)SEWLMULRatioOnly << "}";
}
#endif
};
#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
LLVM_ATTRIBUTE_USED
inline raw_ostream &operator<<(raw_ostream &OS, const VSETVLIInfo &V) {
V.print(OS);
return OS;
}
#endif
struct BlockData {
// The VSETVLIInfo that represents the VL/VTYPE settings on exit from this
// block. Calculated in Phase 2.
VSETVLIInfo Exit;
// The VSETVLIInfo that represents the VL/VTYPE settings from all predecessor
// blocks. Calculated in Phase 2, and used by Phase 3.
VSETVLIInfo Pred;
// Keeps track of whether the block is already in the queue.
bool InQueue = false;
BlockData() = default;
};
class RISCVInsertVSETVLI : public MachineFunctionPass {
const RISCVSubtarget *ST;
const TargetInstrInfo *TII;
MachineRegisterInfo *MRI;
std::vector<BlockData> BlockInfo;
std::queue<const MachineBasicBlock *> WorkList;
public:
static char ID;
RISCVInsertVSETVLI() : MachineFunctionPass(ID) {}
bool runOnMachineFunction(MachineFunction &MF) override;
void getAnalysisUsage(AnalysisUsage &AU) const override {
AU.setPreservesCFG();
MachineFunctionPass::getAnalysisUsage(AU);
}
StringRef getPassName() const override { return RISCV_INSERT_VSETVLI_NAME; }
private:
bool needVSETVLI(const MachineInstr &MI, const VSETVLIInfo &Require,
const VSETVLIInfo &CurInfo) const;
bool needVSETVLIPHI(const VSETVLIInfo &Require,
const MachineBasicBlock &MBB) const;
void insertVSETVLI(MachineBasicBlock &MBB, MachineInstr &MI,
const VSETVLIInfo &Info, const VSETVLIInfo &PrevInfo);
void insertVSETVLI(MachineBasicBlock &MBB,
MachineBasicBlock::iterator InsertPt, DebugLoc DL,
const VSETVLIInfo &Info, const VSETVLIInfo &PrevInfo);
void transferBefore(VSETVLIInfo &Info, const MachineInstr &MI) const;
void transferAfter(VSETVLIInfo &Info, const MachineInstr &MI) const;
bool computeVLVTYPEChanges(const MachineBasicBlock &MBB,
VSETVLIInfo &Info) const;
void computeIncomingVLVTYPE(const MachineBasicBlock &MBB);
void emitVSETVLIs(MachineBasicBlock &MBB);
void doLocalPostpass(MachineBasicBlock &MBB);
void doPRE(MachineBasicBlock &MBB);
void insertReadVL(MachineBasicBlock &MBB);
};
} // end anonymous namespace
char RISCVInsertVSETVLI::ID = 0;
INITIALIZE_PASS(RISCVInsertVSETVLI, DEBUG_TYPE, RISCV_INSERT_VSETVLI_NAME,
false, false)
// Return a VSETVLIInfo representing the changes made by this VSETVLI or
// VSETIVLI instruction.
static VSETVLIInfo getInfoForVSETVLI(const MachineInstr &MI) {
VSETVLIInfo NewInfo;
if (MI.getOpcode() == RISCV::PseudoVSETIVLI) {
NewInfo.setAVLImm(MI.getOperand(1).getImm());
} else {
assert(MI.getOpcode() == RISCV::PseudoVSETVLI ||
MI.getOpcode() == RISCV::PseudoVSETVLIX0);
Register AVLReg = MI.getOperand(1).getReg();
assert((AVLReg != RISCV::X0 || MI.getOperand(0).getReg() != RISCV::X0) &&
"Can't handle X0, X0 vsetvli yet");
NewInfo.setAVLReg(AVLReg);
}
NewInfo.setVTYPE(MI.getOperand(2).getImm());
return NewInfo;
}
static unsigned computeVLMAX(unsigned VLEN, unsigned SEW,
RISCVII::VLMUL VLMul) {
auto [LMul, Fractional] = RISCVVType::decodeVLMUL(VLMul);
if (Fractional)
VLEN = VLEN / LMul;
else
VLEN = VLEN * LMul;
return VLEN/SEW;
}
static VSETVLIInfo computeInfoForInstr(const MachineInstr &MI, uint64_t TSFlags,
const RISCVSubtarget &ST,
const MachineRegisterInfo *MRI) {
VSETVLIInfo InstrInfo;
bool TailAgnostic = true;
bool MaskAgnostic = true;
if (!hasUndefinedMergeOp(MI, *MRI)) {
// Start with undisturbed.
TailAgnostic = false;
MaskAgnostic = false;
// If there is a policy operand, use it.
if (RISCVII::hasVecPolicyOp(TSFlags)) {
const MachineOperand &Op = MI.getOperand(MI.getNumExplicitOperands() - 1);
uint64_t Policy = Op.getImm();
assert(Policy <= (RISCVII::TAIL_AGNOSTIC | RISCVII::MASK_AGNOSTIC) &&
"Invalid Policy Value");
TailAgnostic = Policy & RISCVII::TAIL_AGNOSTIC;
MaskAgnostic = Policy & RISCVII::MASK_AGNOSTIC;
}
// Some pseudo instructions force a tail agnostic policy despite having a
// tied def.
if (RISCVII::doesForceTailAgnostic(TSFlags))
TailAgnostic = true;
if (!RISCVII::usesMaskPolicy(TSFlags))
MaskAgnostic = true;
}
RISCVII::VLMUL VLMul = RISCVII::getLMul(TSFlags);
unsigned Log2SEW = MI.getOperand(getSEWOpNum(MI)).getImm();
// A Log2SEW of 0 is an operation on mask registers only.
unsigned SEW = Log2SEW ? 1 << Log2SEW : 8;
assert(RISCVVType::isValidSEW(SEW) && "Unexpected SEW");
if (RISCVII::hasVLOp(TSFlags)) {
const MachineOperand &VLOp = MI.getOperand(getVLOpNum(MI));
if (VLOp.isImm()) {
int64_t Imm = VLOp.getImm();
// Conver the VLMax sentintel to X0 register.
if (Imm == RISCV::VLMaxSentinel) {
// If we know the exact VLEN, see if we can use the constant encoding
// for the VLMAX instead. This reduces register pressure slightly.
const unsigned VLMAX = computeVLMAX(ST.getRealMaxVLen(), SEW, VLMul);
if (ST.getRealMinVLen() == ST.getRealMaxVLen() && VLMAX <= 31)
InstrInfo.setAVLImm(VLMAX);
else
InstrInfo.setAVLReg(RISCV::X0);
}
else
InstrInfo.setAVLImm(Imm);
} else {
InstrInfo.setAVLReg(VLOp.getReg());
}
} else {
assert(isScalarExtractInstr(MI));
InstrInfo.setAVLReg(RISCV::NoRegister);
}
#ifndef NDEBUG
if (std::optional<unsigned> EEW = getEEWForLoadStore(MI)) {
assert(SEW == EEW && "Initial SEW doesn't match expected EEW");
}
#endif
InstrInfo.setVTYPE(VLMul, SEW, TailAgnostic, MaskAgnostic);
// If AVL is defined by a vsetvli with the same VLMAX, we can replace the
// AVL operand with the AVL of the defining vsetvli. We avoid general
// register AVLs to avoid extending live ranges without being sure we can
// kill the original source reg entirely.
if (InstrInfo.hasAVLReg() && InstrInfo.getAVLReg().isVirtual()) {
MachineInstr *DefMI = MRI->getVRegDef(InstrInfo.getAVLReg());
if (DefMI && isVectorConfigInstr(*DefMI)) {
VSETVLIInfo DefInstrInfo = getInfoForVSETVLI(*DefMI);
if (DefInstrInfo.hasSameVLMAX(InstrInfo) &&
(DefInstrInfo.hasAVLImm() || DefInstrInfo.getAVLReg() == RISCV::X0)) {
InstrInfo.setAVL(DefInstrInfo);
}
}
}
return InstrInfo;
}
void RISCVInsertVSETVLI::insertVSETVLI(MachineBasicBlock &MBB, MachineInstr &MI,
const VSETVLIInfo &Info,
const VSETVLIInfo &PrevInfo) {
DebugLoc DL = MI.getDebugLoc();
insertVSETVLI(MBB, MachineBasicBlock::iterator(&MI), DL, Info, PrevInfo);
}
void RISCVInsertVSETVLI::insertVSETVLI(MachineBasicBlock &MBB,
MachineBasicBlock::iterator InsertPt, DebugLoc DL,
const VSETVLIInfo &Info, const VSETVLIInfo &PrevInfo) {
++NumInsertedVSETVL;
if (PrevInfo.isValid() && !PrevInfo.isUnknown()) {
// Use X0, X0 form if the AVL is the same and the SEW+LMUL gives the same
// VLMAX.
if (Info.hasSameAVL(PrevInfo) && Info.hasSameVLMAX(PrevInfo)) {
BuildMI(MBB, InsertPt, DL, TII->get(RISCV::PseudoVSETVLIX0))
.addReg(RISCV::X0, RegState::Define | RegState::Dead)
.addReg(RISCV::X0, RegState::Kill)
.addImm(Info.encodeVTYPE())
.addReg(RISCV::VL, RegState::Implicit);
return;
}
// If our AVL is a virtual register, it might be defined by a VSET(I)VLI. If
// it has the same VLMAX we want and the last VL/VTYPE we observed is the
// same, we can use the X0, X0 form.
if (Info.hasSameVLMAX(PrevInfo) && Info.hasAVLReg() &&
Info.getAVLReg().isVirtual()) {
if (MachineInstr *DefMI = MRI->getVRegDef(Info.getAVLReg())) {
if (isVectorConfigInstr(*DefMI)) {
VSETVLIInfo DefInfo = getInfoForVSETVLI(*DefMI);
if (DefInfo.hasSameAVL(PrevInfo) && DefInfo.hasSameVLMAX(PrevInfo)) {
BuildMI(MBB, InsertPt, DL, TII->get(RISCV::PseudoVSETVLIX0))
.addReg(RISCV::X0, RegState::Define | RegState::Dead)
.addReg(RISCV::X0, RegState::Kill)
.addImm(Info.encodeVTYPE())
.addReg(RISCV::VL, RegState::Implicit);
return;
}
}
}
}
}
if (Info.hasAVLImm()) {
BuildMI(MBB, InsertPt, DL, TII->get(RISCV::PseudoVSETIVLI))
.addReg(RISCV::X0, RegState::Define | RegState::Dead)
.addImm(Info.getAVLImm())
.addImm(Info.encodeVTYPE());
return;
}
Register AVLReg = Info.getAVLReg();
if (AVLReg == RISCV::NoRegister) {
// We can only use x0, x0 if there's no chance of the vtype change causing
// the previous vl to become invalid.
if (PrevInfo.isValid() && !PrevInfo.isUnknown() &&
Info.hasSameVLMAX(PrevInfo)) {
BuildMI(MBB, InsertPt, DL, TII->get(RISCV::PseudoVSETVLIX0))
.addReg(RISCV::X0, RegState::Define | RegState::Dead)
.addReg(RISCV::X0, RegState::Kill)
.addImm(Info.encodeVTYPE())
.addReg(RISCV::VL, RegState::Implicit);
return;
}
// Otherwise use an AVL of 1 to avoid depending on previous vl.
BuildMI(MBB, InsertPt, DL, TII->get(RISCV::PseudoVSETIVLI))
.addReg(RISCV::X0, RegState::Define | RegState::Dead)
.addImm(1)
.addImm(Info.encodeVTYPE());
return;
}
if (AVLReg.isVirtual())
MRI->constrainRegClass(AVLReg, &RISCV::GPRNoX0RegClass);
// Use X0 as the DestReg unless AVLReg is X0. We also need to change the
// opcode if the AVLReg is X0 as they have different register classes for
// the AVL operand.
Register DestReg = RISCV::X0;
unsigned Opcode = RISCV::PseudoVSETVLI;
if (AVLReg == RISCV::X0) {
DestReg = MRI->createVirtualRegister(&RISCV::GPRRegClass);
Opcode = RISCV::PseudoVSETVLIX0;
}
BuildMI(MBB, InsertPt, DL, TII->get(Opcode))
.addReg(DestReg, RegState::Define | RegState::Dead)
.addReg(AVLReg)
.addImm(Info.encodeVTYPE());
}
static bool isLMUL1OrSmaller(RISCVII::VLMUL LMUL) {
auto [LMul, Fractional] = RISCVVType::decodeVLMUL(LMUL);
return Fractional || LMul == 1;
}
/// Return true if a VSETVLI is required to transition from CurInfo to Require
/// before MI.
bool RISCVInsertVSETVLI::needVSETVLI(const MachineInstr &MI,
const VSETVLIInfo &Require,
const VSETVLIInfo &CurInfo) const {
assert(Require == computeInfoForInstr(MI, MI.getDesc().TSFlags, *ST, MRI));
if (!CurInfo.isValid() || CurInfo.isUnknown() || CurInfo.hasSEWLMULRatioOnly())
return true;
DemandedFields Used = getDemanded(MI, MRI, ST);
// A slidedown/slideup with an *undefined* merge op can freely clobber
// elements not copied from the source vector (e.g. masked off, tail, or
// slideup's prefix). Notes:
// * We can't modify SEW here since the slide amount is in units of SEW.
// * VL=1 is special only because we have existing support for zero vs
// non-zero VL. We could generalize this if we had a VL > C predicate.
// * The LMUL1 restriction is for machines whose latency may depend on VL.
// * As above, this is only legal for tail "undefined" not "agnostic".
if (isVSlideInstr(MI) && Require.hasAVLImm() && Require.getAVLImm() == 1 &&
isLMUL1OrSmaller(CurInfo.getVLMUL()) && hasUndefinedMergeOp(MI, *MRI)) {
Used.VLAny = false;
Used.VLZeroness = true;
Used.LMUL = false;
Used.TailPolicy = false;
}
// A tail undefined vmv.v.i/x or vfmv.v.f with VL=1 can be treated in the same
// semantically as vmv.s.x. This is particularly useful since we don't have an
// immediate form of vmv.s.x, and thus frequently use vmv.v.i in it's place.
// Since a splat is non-constant time in LMUL, we do need to be careful to not
// increase the number of active vector registers (unlike for vmv.s.x.)
if (isScalarSplatInstr(MI) && Require.hasAVLImm() && Require.getAVLImm() == 1 &&
isLMUL1OrSmaller(CurInfo.getVLMUL()) && hasUndefinedMergeOp(MI, *MRI)) {
Used.LMUL = false;
Used.SEWLMULRatio = false;
Used.VLAny = false;
if (isFloatScalarMoveOrScalarSplatInstr(MI) && !ST->hasVInstructionsF64())
Used.SEW = DemandedFields::SEWGreaterThanOrEqualAndLessThan64;
else
Used.SEW = DemandedFields::SEWGreaterThanOrEqual;
Used.TailPolicy = false;
}
if (CurInfo.isCompatible(Used, Require, *MRI))
return false;
// We didn't find a compatible value. If our AVL is a virtual register,
// it might be defined by a VSET(I)VLI. If it has the same VLMAX we need
// and the last VL/VTYPE we observed is the same, we don't need a
// VSETVLI here.
if (Require.hasAVLReg() && Require.getAVLReg().isVirtual() &&
CurInfo.hasCompatibleVTYPE(Used, Require)) {
if (MachineInstr *DefMI = MRI->getVRegDef(Require.getAVLReg())) {
if (isVectorConfigInstr(*DefMI)) {
VSETVLIInfo DefInfo = getInfoForVSETVLI(*DefMI);
if (DefInfo.hasSameAVL(CurInfo) && DefInfo.hasSameVLMAX(CurInfo))
return false;
}
}
}
return true;
}
// If we don't use LMUL or the SEW/LMUL ratio, then adjust LMUL so that we
// maintain the SEW/LMUL ratio. This allows us to eliminate VL toggles in more
// places.
static VSETVLIInfo adjustIncoming(VSETVLIInfo PrevInfo, VSETVLIInfo NewInfo,
DemandedFields &Demanded) {
VSETVLIInfo Info = NewInfo;
if (!Demanded.LMUL && !Demanded.SEWLMULRatio && PrevInfo.isValid() &&
!PrevInfo.isUnknown()) {
if (auto NewVLMul = RISCVVType::getSameRatioLMUL(
PrevInfo.getSEW(), PrevInfo.getVLMUL(), Info.getSEW()))
Info.setVLMul(*NewVLMul);
Demanded.LMUL = true;
}
return Info;
}
// Given an incoming state reaching MI, minimally modifies that state so that it
// is compatible with MI. The resulting state is guaranteed to be semantically
// legal for MI, but may not be the state requested by MI.
void RISCVInsertVSETVLI::transferBefore(VSETVLIInfo &Info,
const MachineInstr &MI) const {
uint64_t TSFlags = MI.getDesc().TSFlags;
if (!RISCVII::hasSEWOp(TSFlags))
return;
const VSETVLIInfo NewInfo = computeInfoForInstr(MI, TSFlags, *ST, MRI);
assert(NewInfo.isValid() && !NewInfo.isUnknown());
if (Info.isValid() && !needVSETVLI(MI, NewInfo, Info))
return;
const VSETVLIInfo PrevInfo = Info;
if (!Info.isValid() || Info.isUnknown())
Info = NewInfo;
DemandedFields Demanded = getDemanded(MI, MRI, ST);
const VSETVLIInfo IncomingInfo = adjustIncoming(PrevInfo, NewInfo, Demanded);
// If MI only demands that VL has the same zeroness, we only need to set the
// AVL if the zeroness differs. This removes a vsetvli entirely if the types
// match or allows use of cheaper avl preserving variant if VLMAX doesn't
// change. If VLMAX might change, we couldn't use the 'vsetvli x0, x0, vtype"
// variant, so we avoid the transform to prevent extending live range of an
// avl register operand.
// TODO: We can probably relax this for immediates.
bool EquallyZero = IncomingInfo.hasEquallyZeroAVL(PrevInfo, *MRI) &&
IncomingInfo.hasSameVLMAX(PrevInfo);
if (Demanded.VLAny || (Demanded.VLZeroness && !EquallyZero))
Info.setAVL(IncomingInfo);
Info.setVTYPE(
((Demanded.LMUL || Demanded.SEWLMULRatio) ? IncomingInfo : Info)
.getVLMUL(),
((Demanded.SEW || Demanded.SEWLMULRatio) ? IncomingInfo : Info).getSEW(),
// Prefer tail/mask agnostic since it can be relaxed to undisturbed later
// if needed.
(Demanded.TailPolicy ? IncomingInfo : Info).getTailAgnostic() ||
IncomingInfo.getTailAgnostic(),
(Demanded.MaskPolicy ? IncomingInfo : Info).getMaskAgnostic() ||
IncomingInfo.getMaskAgnostic());
// If we only knew the sew/lmul ratio previously, replace the VTYPE but keep
// the AVL.
if (Info.hasSEWLMULRatioOnly()) {
VSETVLIInfo RatiolessInfo = IncomingInfo;
RatiolessInfo.setAVL(Info);
Info = RatiolessInfo;
}
}
// Given a state with which we evaluated MI (see transferBefore above for why
// this might be different that the state MI requested), modify the state to
// reflect the changes MI might make.
void RISCVInsertVSETVLI::transferAfter(VSETVLIInfo &Info,
const MachineInstr &MI) const {
if (isVectorConfigInstr(MI)) {
Info = getInfoForVSETVLI(MI);
return;
}
if (RISCV::isFaultFirstLoad(MI)) {
// Update AVL to vl-output of the fault first load.
Info.setAVLReg(MI.getOperand(1).getReg());
return;
}
// If this is something that updates VL/VTYPE that we don't know about, set
// the state to unknown.
if (MI.isCall() || MI.isInlineAsm() || MI.modifiesRegister(RISCV::VL) ||
MI.modifiesRegister(RISCV::VTYPE))
Info = VSETVLIInfo::getUnknown();
}
bool RISCVInsertVSETVLI::computeVLVTYPEChanges(const MachineBasicBlock &MBB,
VSETVLIInfo &Info) const {
bool HadVectorOp = false;
Info = BlockInfo[MBB.getNumber()].Pred;
for (const MachineInstr &MI : MBB) {
transferBefore(Info, MI);
if (isVectorConfigInstr(MI) || RISCVII::hasSEWOp(MI.getDesc().TSFlags))
HadVectorOp = true;
transferAfter(Info, MI);
}
return HadVectorOp;
}
void RISCVInsertVSETVLI::computeIncomingVLVTYPE(const MachineBasicBlock &MBB) {
BlockData &BBInfo = BlockInfo[MBB.getNumber()];
BBInfo.InQueue = false;
// Start with the previous entry so that we keep the most conservative state
// we have ever found.
VSETVLIInfo InInfo = BBInfo.Pred;
if (MBB.pred_empty()) {
// There are no predecessors, so use the default starting status.
InInfo.setUnknown();
} else {
for (MachineBasicBlock *P : MBB.predecessors())
InInfo = InInfo.intersect(BlockInfo[P->getNumber()].Exit);
}
// If we don't have any valid predecessor value, wait until we do.
if (!InInfo.isValid())
return;
// If no change, no need to rerun block
if (InInfo == BBInfo.Pred)
return;
BBInfo.Pred = InInfo;
LLVM_DEBUG(dbgs() << "Entry state of " << printMBBReference(MBB)
<< " changed to " << BBInfo.Pred << "\n");
// Note: It's tempting to cache the state changes here, but due to the
// compatibility checks performed a blocks output state can change based on
// the input state. To cache, we'd have to add logic for finding
// never-compatible state changes.
VSETVLIInfo TmpStatus;
computeVLVTYPEChanges(MBB, TmpStatus);
// If the new exit value matches the old exit value, we don't need to revisit
// any blocks.
if (BBInfo.Exit == TmpStatus)
return;
BBInfo.Exit = TmpStatus;
LLVM_DEBUG(dbgs() << "Exit state of " << printMBBReference(MBB)
<< " changed to " << BBInfo.Exit << "\n");
// Add the successors to the work list so we can propagate the changed exit
// status.
for (MachineBasicBlock *S : MBB.successors())
if (!BlockInfo[S->getNumber()].InQueue) {
BlockInfo[S->getNumber()].InQueue = true;
WorkList.push(S);
}
}
// If we weren't able to prove a vsetvli was directly unneeded, it might still
// be unneeded if the AVL is a phi node where all incoming values are VL
// outputs from the last VSETVLI in their respective basic blocks.
bool RISCVInsertVSETVLI::needVSETVLIPHI(const VSETVLIInfo &Require,
const MachineBasicBlock &MBB) const {
if (DisableInsertVSETVLPHIOpt)
return true;
if (!Require.hasAVLReg())
return true;
Register AVLReg = Require.getAVLReg();
if (!AVLReg.isVirtual())
return true;
// We need the AVL to be produce by a PHI node in this basic block.
MachineInstr *PHI = MRI->getVRegDef(AVLReg);
if (!PHI || PHI->getOpcode() != RISCV::PHI || PHI->getParent() != &MBB)
return true;
for (unsigned PHIOp = 1, NumOps = PHI->getNumOperands(); PHIOp != NumOps;
PHIOp += 2) {
Register InReg = PHI->getOperand(PHIOp).getReg();
MachineBasicBlock *PBB = PHI->getOperand(PHIOp + 1).getMBB();
const BlockData &PBBInfo = BlockInfo[PBB->getNumber()];
// If the exit from the predecessor has the VTYPE we are looking for
// we might be able to avoid a VSETVLI.
if (PBBInfo.Exit.isUnknown() || !PBBInfo.Exit.hasSameVTYPE(Require))
return true;
// We need the PHI input to the be the output of a VSET(I)VLI.
MachineInstr *DefMI = MRI->getVRegDef(InReg);
if (!DefMI || !isVectorConfigInstr(*DefMI))
return true;
// We found a VSET(I)VLI make sure it matches the output of the
// predecessor block.
VSETVLIInfo DefInfo = getInfoForVSETVLI(*DefMI);
if (!DefInfo.hasSameAVL(PBBInfo.Exit) ||
!DefInfo.hasSameVTYPE(PBBInfo.Exit))
return true;
}
// If all the incoming values to the PHI checked out, we don't need
// to insert a VSETVLI.
return false;
}
void RISCVInsertVSETVLI::emitVSETVLIs(MachineBasicBlock &MBB) {
VSETVLIInfo CurInfo = BlockInfo[MBB.getNumber()].Pred;
// Track whether the prefix of the block we've scanned is transparent
// (meaning has not yet changed the abstract state).
bool PrefixTransparent = true;
for (MachineInstr &MI : MBB) {
const VSETVLIInfo PrevInfo = CurInfo;
transferBefore(CurInfo, MI);
// If this is an explicit VSETVLI or VSETIVLI, update our state.
if (isVectorConfigInstr(MI)) {
// Conservatively, mark the VL and VTYPE as live.
assert(MI.getOperand(3).getReg() == RISCV::VL &&
MI.getOperand(4).getReg() == RISCV::VTYPE &&
"Unexpected operands where VL and VTYPE should be");
MI.getOperand(3).setIsDead(false);
MI.getOperand(4).setIsDead(false);
PrefixTransparent = false;
}
uint64_t TSFlags = MI.getDesc().TSFlags;
if (RISCVII::hasSEWOp(TSFlags)) {
if (PrevInfo != CurInfo) {
// If this is the first implicit state change, and the state change
// requested can be proven to produce the same register contents, we
// can skip emitting the actual state change and continue as if we
// had since we know the GPR result of the implicit state change
// wouldn't be used and VL/VTYPE registers are correct. Note that
// we *do* need to model the state as if it changed as while the
// register contents are unchanged, the abstract model can change.
if (!PrefixTransparent || needVSETVLIPHI(CurInfo, MBB))
insertVSETVLI(MBB, MI, CurInfo, PrevInfo);
PrefixTransparent = false;
}
if (RISCVII::hasVLOp(TSFlags)) {
MachineOperand &VLOp = MI.getOperand(getVLOpNum(MI));
if (VLOp.isReg()) {
Register Reg = VLOp.getReg();
MachineInstr *VLOpDef = MRI->getVRegDef(Reg);
// Erase the AVL operand from the instruction.
VLOp.setReg(RISCV::NoRegister);
VLOp.setIsKill(false);
// If the AVL was an immediate > 31, then it would have been emitted
// as an ADDI. However, the ADDI might not have been used in the
// vsetvli, or a vsetvli might not have been emitted, so it may be
// dead now.
if (VLOpDef && TII->isAddImmediate(*VLOpDef, Reg) &&
MRI->use_nodbg_empty(Reg))
VLOpDef->eraseFromParent();
}
MI.addOperand(MachineOperand::CreateReg(RISCV::VL, /*isDef*/ false,
/*isImp*/ true));
}
MI.addOperand(MachineOperand::CreateReg(RISCV::VTYPE, /*isDef*/ false,
/*isImp*/ true));
}
if (MI.isCall() || MI.isInlineAsm() || MI.modifiesRegister(RISCV::VL) ||
MI.modifiesRegister(RISCV::VTYPE))
PrefixTransparent = false;
transferAfter(CurInfo, MI);
}
// If we reach the end of the block and our current info doesn't match the
// expected info, insert a vsetvli to correct.
if (!UseStrictAsserts) {
const VSETVLIInfo &ExitInfo = BlockInfo[MBB.getNumber()].Exit;
if (CurInfo.isValid() && ExitInfo.isValid() && !ExitInfo.isUnknown() &&
CurInfo != ExitInfo) {
// Note there's an implicit assumption here that terminators never use
// or modify VL or VTYPE. Also, fallthrough will return end().
auto InsertPt = MBB.getFirstInstrTerminator();
insertVSETVLI(MBB, InsertPt, MBB.findDebugLoc(InsertPt), ExitInfo,
CurInfo);
CurInfo = ExitInfo;
}
}
if (UseStrictAsserts && CurInfo.isValid()) {
const auto &Info = BlockInfo[MBB.getNumber()];
if (CurInfo != Info.Exit) {
LLVM_DEBUG(dbgs() << "in block " << printMBBReference(MBB) << "\n");
LLVM_DEBUG(dbgs() << " begin state: " << Info.Pred << "\n");
LLVM_DEBUG(dbgs() << " expected end state: " << Info.Exit << "\n");
LLVM_DEBUG(dbgs() << " actual end state: " << CurInfo << "\n");
}
assert(CurInfo == Info.Exit &&
"InsertVSETVLI dataflow invariant violated");
}
}
/// Perform simple partial redundancy elimination of the VSETVLI instructions
/// we're about to insert by looking for cases where we can PRE from the
/// beginning of one block to the end of one of its predecessors. Specifically,
/// this is geared to catch the common case of a fixed length vsetvl in a single
/// block loop when it could execute once in the preheader instead.
void RISCVInsertVSETVLI::doPRE(MachineBasicBlock &MBB) {
if (!BlockInfo[MBB.getNumber()].Pred.isUnknown())
return;
MachineBasicBlock *UnavailablePred = nullptr;
VSETVLIInfo AvailableInfo;
for (MachineBasicBlock *P : MBB.predecessors()) {
const VSETVLIInfo &PredInfo = BlockInfo[P->getNumber()].Exit;
if (PredInfo.isUnknown()) {
if (UnavailablePred)
return;
UnavailablePred = P;
} else if (!AvailableInfo.isValid()) {
AvailableInfo = PredInfo;
} else if (AvailableInfo != PredInfo) {
return;
}
}
// Unreachable, single pred, or full redundancy. Note that FRE is handled by
// phase 3.
if (!UnavailablePred || !AvailableInfo.isValid())
return;
// If we don't know the exact VTYPE, we can't copy the vsetvli to the exit of
// the unavailable pred.
if (AvailableInfo.hasSEWLMULRatioOnly())
return;
// Critical edge - TODO: consider splitting?
if (UnavailablePred->succ_size() != 1)
return;
// If the AVL value is a register (other than our VLMAX sentinel),
// we need to prove the value is available at the point we're going
// to insert the vsetvli at.
if (AvailableInfo.hasAVLReg() && RISCV::X0 != AvailableInfo.getAVLReg()) {
MachineInstr *AVLDefMI = MRI->getVRegDef(AvailableInfo.getAVLReg());
if (!AVLDefMI)
return;
// This is an inline dominance check which covers the case of
// UnavailablePred being the preheader of a loop.
if (AVLDefMI->getParent() != UnavailablePred)
return;
for (auto &TermMI : UnavailablePred->terminators())
if (&TermMI == AVLDefMI)
return;
}
// Model the effect of changing the input state of the block MBB to
// AvailableInfo. We're looking for two issues here; one legality,
// one profitability.
// 1) If the block doesn't use some of the fields from VL or VTYPE, we
// may hit the end of the block with a different end state. We can
// not make this change without reflowing later blocks as well.
// 2) If we don't actually remove a transition, inserting a vsetvli
// into the predecessor block would be correct, but unprofitable.
VSETVLIInfo OldInfo = BlockInfo[MBB.getNumber()].Pred;
VSETVLIInfo CurInfo = AvailableInfo;
int TransitionsRemoved = 0;
for (const MachineInstr &MI : MBB) {
const VSETVLIInfo LastInfo = CurInfo;
const VSETVLIInfo LastOldInfo = OldInfo;
transferBefore(CurInfo, MI);
transferBefore(OldInfo, MI);
if (CurInfo == LastInfo)
TransitionsRemoved++;
if (LastOldInfo == OldInfo)
TransitionsRemoved--;
transferAfter(CurInfo, MI);
transferAfter(OldInfo, MI);
if (CurInfo == OldInfo)
// Convergence. All transitions after this must match by construction.
break;
}
if (CurInfo != OldInfo || TransitionsRemoved <= 0)
// Issues 1 and 2 above
return;
// Finally, update both data flow state and insert the actual vsetvli.
// Doing both keeps the code in sync with the dataflow results, which
// is critical for correctness of phase 3.
auto OldExit = BlockInfo[UnavailablePred->getNumber()].Exit;
LLVM_DEBUG(dbgs() << "PRE VSETVLI from " << MBB.getName() << " to "
<< UnavailablePred->getName() << " with state "
<< AvailableInfo << "\n");
BlockInfo[UnavailablePred->getNumber()].Exit = AvailableInfo;
BlockInfo[MBB.getNumber()].Pred = AvailableInfo;
// Note there's an implicit assumption here that terminators never use
// or modify VL or VTYPE. Also, fallthrough will return end().
auto InsertPt = UnavailablePred->getFirstInstrTerminator();
insertVSETVLI(*UnavailablePred, InsertPt,
UnavailablePred->findDebugLoc(InsertPt),
AvailableInfo, OldExit);
}
static void doUnion(DemandedFields &A, DemandedFields B) {
A.VLAny |= B.VLAny;
A.VLZeroness |= B.VLZeroness;
A.SEW = std::max(A.SEW, B.SEW);
A.LMUL |= B.LMUL;
A.SEWLMULRatio |= B.SEWLMULRatio;
A.TailPolicy |= B.TailPolicy;
A.MaskPolicy |= B.MaskPolicy;
}
// Return true if we can mutate PrevMI to match MI without changing any the
// fields which would be observed.
static bool canMutatePriorConfig(const MachineInstr &PrevMI,
const MachineInstr &MI,
const DemandedFields &Used,
const MachineRegisterInfo &MRI) {
// If the VL values aren't equal, return false if either a) the former is
// demanded, or b) we can't rewrite the former to be the later for
// implementation reasons.
if (!isVLPreservingConfig(MI)) {
if (Used.VLAny)
return false;
if (Used.VLZeroness) {
if (isVLPreservingConfig(PrevMI))
return false;
if (!getInfoForVSETVLI(PrevMI).hasEquallyZeroAVL(getInfoForVSETVLI(MI),
MRI))
return false;
}
auto &AVL = MI.getOperand(1);
auto &PrevAVL = PrevMI.getOperand(1);
assert(MRI.isSSA());
// If the AVL is a register, we need to make sure MI's AVL dominates PrevMI.
// For now just check that PrevMI uses the same virtual register.
if (AVL.isReg() && AVL.getReg() != RISCV::X0) {
if (AVL.getReg().isPhysical())
return false;
if (!PrevAVL.isReg() || PrevAVL.getReg() != AVL.getReg())
return false;
}
}
if (!PrevMI.getOperand(2).isImm() || !MI.getOperand(2).isImm())
return false;
auto PriorVType = PrevMI.getOperand(2).getImm();
auto VType = MI.getOperand(2).getImm();
return areCompatibleVTYPEs(PriorVType, VType, Used);
}
void RISCVInsertVSETVLI::doLocalPostpass(MachineBasicBlock &MBB) {
MachineInstr *NextMI = nullptr;
// We can have arbitrary code in successors, so VL and VTYPE
// must be considered demanded.
DemandedFields Used;
Used.demandVL();
Used.demandVTYPE();
SmallVector<MachineInstr*> ToDelete;
for (MachineInstr &MI : make_range(MBB.rbegin(), MBB.rend())) {
if (!isVectorConfigInstr(MI)) {
doUnion(Used, getDemanded(MI, MRI, ST));
continue;
}
Register VRegDef = MI.getOperand(0).getReg();
if (VRegDef != RISCV::X0 &&
!(VRegDef.isVirtual() && MRI->use_nodbg_empty(VRegDef)))
Used.demandVL();
if (NextMI) {
if (!Used.usedVL() && !Used.usedVTYPE()) {
ToDelete.push_back(&MI);
// Leave NextMI unchanged
continue;
} else if (canMutatePriorConfig(MI, *NextMI, Used, *MRI)) {
if (!isVLPreservingConfig(*NextMI)) {
MI.getOperand(0).setReg(NextMI->getOperand(0).getReg());
MI.getOperand(0).setIsDead(false);
Register OldVLReg;
if (MI.getOperand(1).isReg())
OldVLReg = MI.getOperand(1).getReg();
if (NextMI->getOperand(1).isImm())
MI.getOperand(1).ChangeToImmediate(NextMI->getOperand(1).getImm());
else
MI.getOperand(1).ChangeToRegister(NextMI->getOperand(1).getReg(), false);
if (OldVLReg) {
MachineInstr *VLOpDef = MRI->getUniqueVRegDef(OldVLReg);
if (VLOpDef && TII->isAddImmediate(*VLOpDef, OldVLReg) &&
MRI->use_nodbg_empty(OldVLReg))
VLOpDef->eraseFromParent();
}
MI.setDesc(NextMI->getDesc());
}
MI.getOperand(2).setImm(NextMI->getOperand(2).getImm());
ToDelete.push_back(NextMI);
// fallthrough
}
}
NextMI = &MI;
Used = getDemanded(MI, MRI, ST);
}
NumRemovedVSETVL += ToDelete.size();
for (auto *MI : ToDelete)
MI->eraseFromParent();
}
void RISCVInsertVSETVLI::insertReadVL(MachineBasicBlock &MBB) {
for (auto I = MBB.begin(), E = MBB.end(); I != E;) {
MachineInstr &MI = *I++;
if (RISCV::isFaultFirstLoad(MI)) {
Register VLOutput = MI.getOperand(1).getReg();
if (!MRI->use_nodbg_empty(VLOutput))
BuildMI(MBB, I, MI.getDebugLoc(), TII->get(RISCV::PseudoReadVL),
VLOutput);
// We don't use the vl output of the VLEFF/VLSEGFF anymore.
MI.getOperand(1).setReg(RISCV::X0);
}
}
}
bool RISCVInsertVSETVLI::runOnMachineFunction(MachineFunction &MF) {
// Skip if the vector extension is not enabled.
ST = &MF.getSubtarget<RISCVSubtarget>();
if (!ST->hasVInstructions())
return false;
LLVM_DEBUG(dbgs() << "Entering InsertVSETVLI for " << MF.getName() << "\n");
TII = ST->getInstrInfo();
MRI = &MF.getRegInfo();
assert(BlockInfo.empty() && "Expect empty block infos");
BlockInfo.resize(MF.getNumBlockIDs());
bool HaveVectorOp = false;
// Phase 1 - determine how VL/VTYPE are affected by the each block.
for (const MachineBasicBlock &MBB : MF) {
VSETVLIInfo TmpStatus;
HaveVectorOp |= computeVLVTYPEChanges(MBB, TmpStatus);
// Initial exit state is whatever change we found in the block.
BlockData &BBInfo = BlockInfo[MBB.getNumber()];
BBInfo.Exit = TmpStatus;
LLVM_DEBUG(dbgs() << "Initial exit state of " << printMBBReference(MBB)
<< " is " << BBInfo.Exit << "\n");
}
// If we didn't find any instructions that need VSETVLI, we're done.
if (!HaveVectorOp) {
BlockInfo.clear();
return false;
}
// Phase 2 - determine the exit VL/VTYPE from each block. We add all
// blocks to the list here, but will also add any that need to be revisited
// during Phase 2 processing.
for (const MachineBasicBlock &MBB : MF) {
WorkList.push(&MBB);
BlockInfo[MBB.getNumber()].InQueue = true;
}
while (!WorkList.empty()) {
const MachineBasicBlock &MBB = *WorkList.front();
WorkList.pop();
computeIncomingVLVTYPE(MBB);
}
// Perform partial redundancy elimination of vsetvli transitions.
for (MachineBasicBlock &MBB : MF)
doPRE(MBB);
// Phase 3 - add any vsetvli instructions needed in the block. Use the
// Phase 2 information to avoid adding vsetvlis before the first vector
// instruction in the block if the VL/VTYPE is satisfied by its
// predecessors.
for (MachineBasicBlock &MBB : MF)
emitVSETVLIs(MBB);
// Now that all vsetvlis are explicit, go through and do block local
// DSE and peephole based demanded fields based transforms. Note that
// this *must* be done outside the main dataflow so long as we allow
// any cross block analysis within the dataflow. We can't have both
// demanded fields based mutation and non-local analysis in the
// dataflow at the same time without introducing inconsistencies.
for (MachineBasicBlock &MBB : MF)
doLocalPostpass(MBB);
// Insert PseudoReadVL after VLEFF/VLSEGFF and replace it with the vl output
// of VLEFF/VLSEGFF.
for (MachineBasicBlock &MBB : MF)
insertReadVL(MBB);
BlockInfo.clear();
return HaveVectorOp;
}
/// Returns an instance of the Insert VSETVLI pass.
FunctionPass *llvm::createRISCVInsertVSETVLIPass() {
return new RISCVInsertVSETVLI();
}
|