1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383
|
//===-- RISCVMakeCompressible.cpp - Make more instructions compressible ---===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This pass searches for instructions that are prevented from being compressed
// by one of the following:
//
// 1. The use of a single uncompressed register.
// 2. A base register + offset where the offset is too large to be compressed
// and the base register may or may not be compressed.
//
//
// For case 1, if a compressed register is available, then the uncompressed
// register is copied to the compressed register and its uses are replaced.
//
// For example, storing zero uses the uncompressible zero register:
// sw zero, 0(a0) # if zero
// sw zero, 8(a0) # if zero
// sw zero, 4(a0) # if zero
// sw zero, 24(a0) # if zero
//
// If a compressed register (e.g. a1) is available, the above can be transformed
// to the following to improve code size:
// li a1, 0
// c.sw a1, 0(a0)
// c.sw a1, 8(a0)
// c.sw a1, 4(a0)
// c.sw a1, 24(a0)
//
//
// For case 2, if a compressed register is available, then the original base
// is copied and adjusted such that:
//
// new_base_register = base_register + adjustment
// base_register + large_offset = new_base_register + small_offset
//
// For example, the following offsets are too large for c.sw:
// lui a2, 983065
// sw a1, -236(a2)
// sw a1, -240(a2)
// sw a1, -244(a2)
// sw a1, -248(a2)
// sw a1, -252(a2)
// sw a0, -256(a2)
//
// If a compressed register is available (e.g. a3), a new base could be created
// such that the addresses can accessed with a compressible offset, thus
// improving code size:
// lui a2, 983065
// addi a3, a2, -256
// c.sw a1, 20(a3)
// c.sw a1, 16(a3)
// c.sw a1, 12(a3)
// c.sw a1, 8(a3)
// c.sw a1, 4(a3)
// c.sw a0, 0(a3)
//
//
// This optimization is only applied if there are enough uses of the copied
// register for code size to be reduced.
//
//===----------------------------------------------------------------------===//
#include "RISCV.h"
#include "RISCVSubtarget.h"
#include "llvm/CodeGen/Passes.h"
#include "llvm/CodeGen/RegisterScavenging.h"
#include "llvm/MC/TargetRegistry.h"
#include "llvm/Support/Debug.h"
using namespace llvm;
#define DEBUG_TYPE "riscv-make-compressible"
#define RISCV_COMPRESS_INSTRS_NAME "RISC-V Make Compressible"
namespace {
struct RISCVMakeCompressibleOpt : public MachineFunctionPass {
static char ID;
bool runOnMachineFunction(MachineFunction &Fn) override;
RISCVMakeCompressibleOpt() : MachineFunctionPass(ID) {}
StringRef getPassName() const override { return RISCV_COMPRESS_INSTRS_NAME; }
};
} // namespace
char RISCVMakeCompressibleOpt::ID = 0;
INITIALIZE_PASS(RISCVMakeCompressibleOpt, "riscv-make-compressible",
RISCV_COMPRESS_INSTRS_NAME, false, false)
// Return log2(widthInBytes) of load/store done by Opcode.
static unsigned log2LdstWidth(unsigned Opcode) {
switch (Opcode) {
default:
llvm_unreachable("Unexpected opcode");
case RISCV::LW:
case RISCV::SW:
case RISCV::FLW:
case RISCV::FSW:
return 2;
case RISCV::LD:
case RISCV::SD:
case RISCV::FLD:
case RISCV::FSD:
return 3;
}
}
// Return a mask for the offset bits of a non-stack-pointer based compressed
// load/store.
static uint8_t compressedLDSTOffsetMask(unsigned Opcode) {
return 0x1f << log2LdstWidth(Opcode);
}
// Return true if Offset fits within a compressed stack-pointer based
// load/store.
static bool compressibleSPOffset(int64_t Offset, unsigned Opcode) {
return log2LdstWidth(Opcode) == 2 ? isShiftedUInt<6, 2>(Offset)
: isShiftedUInt<6, 3>(Offset);
}
// Given an offset for a load/store, return the adjustment required to the base
// register such that the address can be accessed with a compressible offset.
// This will return 0 if the offset is already compressible.
static int64_t getBaseAdjustForCompression(int64_t Offset, unsigned Opcode) {
// Return the excess bits that do not fit in a compressible offset.
return Offset & ~compressedLDSTOffsetMask(Opcode);
}
// Return true if Reg is in a compressed register class.
static bool isCompressedReg(Register Reg) {
return RISCV::GPRCRegClass.contains(Reg) ||
RISCV::FPR32CRegClass.contains(Reg) ||
RISCV::FPR64CRegClass.contains(Reg);
}
// Return true if MI is a load for which there exists a compressed version.
static bool isCompressibleLoad(const MachineInstr &MI) {
const RISCVSubtarget &STI = MI.getMF()->getSubtarget<RISCVSubtarget>();
const unsigned Opcode = MI.getOpcode();
return Opcode == RISCV::LW || (!STI.is64Bit() && Opcode == RISCV::FLW) ||
Opcode == RISCV::LD || Opcode == RISCV::FLD;
}
// Return true if MI is a store for which there exists a compressed version.
static bool isCompressibleStore(const MachineInstr &MI) {
const RISCVSubtarget &STI = MI.getMF()->getSubtarget<RISCVSubtarget>();
const unsigned Opcode = MI.getOpcode();
return Opcode == RISCV::SW || (!STI.is64Bit() && Opcode == RISCV::FSW) ||
Opcode == RISCV::SD || Opcode == RISCV::FSD;
}
// Find a single register and/or large offset which, if compressible, would
// allow the given instruction to be compressed.
//
// Possible return values:
//
// {Reg, 0} - Uncompressed Reg needs replacing with a compressed
// register.
// {Reg, N} - Reg needs replacing with a compressed register and
// N needs adding to the new register. (Reg may be
// compressed or uncompressed).
// {RISCV::NoRegister, 0} - No suitable optimization found for this
// instruction.
static RegImmPair getRegImmPairPreventingCompression(const MachineInstr &MI) {
const unsigned Opcode = MI.getOpcode();
if (isCompressibleLoad(MI) || isCompressibleStore(MI)) {
const MachineOperand &MOImm = MI.getOperand(2);
if (!MOImm.isImm())
return RegImmPair(RISCV::NoRegister, 0);
int64_t Offset = MOImm.getImm();
int64_t NewBaseAdjust = getBaseAdjustForCompression(Offset, Opcode);
Register Base = MI.getOperand(1).getReg();
// Memory accesses via the stack pointer do not have a requirement for
// either of the registers to be compressible and can take a larger offset.
if (RISCV::SPRegClass.contains(Base)) {
if (!compressibleSPOffset(Offset, Opcode) && NewBaseAdjust)
return RegImmPair(Base, NewBaseAdjust);
} else {
Register SrcDest = MI.getOperand(0).getReg();
bool SrcDestCompressed = isCompressedReg(SrcDest);
bool BaseCompressed = isCompressedReg(Base);
// If only Base and/or offset prevent compression, then return Base and
// any adjustment required to make the offset compressible.
if ((!BaseCompressed || NewBaseAdjust) && SrcDestCompressed)
return RegImmPair(Base, NewBaseAdjust);
// For loads, we can only change the base register since dest is defined
// rather than used.
//
// For stores, we can change SrcDest (and Base if SrcDest == Base) but
// cannot resolve an uncompressible offset in this case.
if (isCompressibleStore(MI)) {
if (!SrcDestCompressed && (BaseCompressed || SrcDest == Base) &&
!NewBaseAdjust)
return RegImmPair(SrcDest, NewBaseAdjust);
}
}
}
return RegImmPair(RISCV::NoRegister, 0);
}
// Check all uses after FirstMI of the given register, keeping a vector of
// instructions that would be compressible if the given register (and offset if
// applicable) were compressible.
//
// If there are enough uses for this optimization to improve code size and a
// compressed register is available, return that compressed register.
static Register analyzeCompressibleUses(MachineInstr &FirstMI,
RegImmPair RegImm,
SmallVectorImpl<MachineInstr *> &MIs) {
MachineBasicBlock &MBB = *FirstMI.getParent();
const TargetRegisterInfo *TRI =
MBB.getParent()->getSubtarget().getRegisterInfo();
for (MachineBasicBlock::instr_iterator I = FirstMI.getIterator(),
E = MBB.instr_end();
I != E; ++I) {
MachineInstr &MI = *I;
// Determine if this is an instruction which would benefit from using the
// new register.
RegImmPair CandidateRegImm = getRegImmPairPreventingCompression(MI);
if (CandidateRegImm.Reg == RegImm.Reg && CandidateRegImm.Imm == RegImm.Imm)
MIs.push_back(&MI);
// If RegImm.Reg is modified by this instruction, then we cannot optimize
// past this instruction. If the register is already compressed, then it may
// possible to optimize a large offset in the current instruction - this
// will have been detected by the preceeding call to
// getRegImmPairPreventingCompression.
if (MI.modifiesRegister(RegImm.Reg, TRI))
break;
}
// Adjusting the base costs one new uncompressed addi and therefore three uses
// are required for a code size reduction. If no base adjustment is required,
// then copying the register costs one new c.mv (or c.li Rd, 0 for "copying"
// the zero register) and therefore two uses are required for a code size
// reduction.
if (MIs.size() < 2 || (RegImm.Imm != 0 && MIs.size() < 3))
return RISCV::NoRegister;
// Find a compressible register which will be available from the first
// instruction we care about to the last.
const TargetRegisterClass *RCToScavenge;
// Work out the compressed register class from which to scavenge.
if (RISCV::GPRRegClass.contains(RegImm.Reg))
RCToScavenge = &RISCV::GPRCRegClass;
else if (RISCV::FPR32RegClass.contains(RegImm.Reg))
RCToScavenge = &RISCV::FPR32CRegClass;
else if (RISCV::FPR64RegClass.contains(RegImm.Reg))
RCToScavenge = &RISCV::FPR64CRegClass;
else
return RISCV::NoRegister;
RegScavenger RS;
RS.enterBasicBlockEnd(MBB);
RS.backward(std::next(MIs.back()->getIterator()));
return RS.scavengeRegisterBackwards(*RCToScavenge, FirstMI.getIterator(),
/*RestoreAfter=*/false, /*SPAdj=*/0,
/*AllowSpill=*/false);
}
// Update uses of the old register in the given instruction to the new register.
static void updateOperands(MachineInstr &MI, RegImmPair OldRegImm,
Register NewReg) {
unsigned Opcode = MI.getOpcode();
// If this pass is extended to support more instructions, the check for
// definedness may need to be strengthened.
assert((isCompressibleLoad(MI) || isCompressibleStore(MI)) &&
"Unsupported instruction for this optimization.");
int SkipN = 0;
// Skip the first (value) operand to a store instruction (except if the store
// offset is zero) in order to avoid an incorrect transformation.
// e.g. sd a0, 808(a0) to addi a2, a0, 768; sd a2, 40(a2)
if (isCompressibleStore(MI) && OldRegImm.Imm != 0)
SkipN = 1;
// Update registers
for (MachineOperand &MO : drop_begin(MI.operands(), SkipN))
if (MO.isReg() && MO.getReg() == OldRegImm.Reg) {
// Do not update operands that define the old register.
//
// The new register was scavenged for the range of instructions that are
// being updated, therefore it should not be defined within this range
// except possibly in the final instruction.
if (MO.isDef()) {
assert(isCompressibleLoad(MI));
continue;
}
// Update reg
MO.setReg(NewReg);
}
// Update offset
MachineOperand &MOImm = MI.getOperand(2);
int64_t NewOffset = MOImm.getImm() & compressedLDSTOffsetMask(Opcode);
MOImm.setImm(NewOffset);
}
bool RISCVMakeCompressibleOpt::runOnMachineFunction(MachineFunction &Fn) {
// This is a size optimization.
if (skipFunction(Fn.getFunction()) || !Fn.getFunction().hasMinSize())
return false;
const RISCVSubtarget &STI = Fn.getSubtarget<RISCVSubtarget>();
const RISCVInstrInfo &TII = *STI.getInstrInfo();
// This optimization only makes sense if compressed instructions are emitted.
// FIXME: Support Zca, Zcf, Zcd granularity.
if (!STI.hasStdExtC())
return false;
for (MachineBasicBlock &MBB : Fn) {
LLVM_DEBUG(dbgs() << "MBB: " << MBB.getName() << "\n");
for (MachineInstr &MI : MBB) {
// Determine if this instruction would otherwise be compressed if not for
// an uncompressible register or offset.
RegImmPair RegImm = getRegImmPairPreventingCompression(MI);
if (!RegImm.Reg && RegImm.Imm == 0)
continue;
// Determine if there is a set of instructions for which replacing this
// register with a compressed register (and compressible offset if
// applicable) is possible and will allow compression.
SmallVector<MachineInstr *, 8> MIs;
Register NewReg = analyzeCompressibleUses(MI, RegImm, MIs);
if (!NewReg)
continue;
// Create the appropriate copy and/or offset.
if (RISCV::GPRRegClass.contains(RegImm.Reg)) {
assert(isInt<12>(RegImm.Imm));
BuildMI(MBB, MI, MI.getDebugLoc(), TII.get(RISCV::ADDI), NewReg)
.addReg(RegImm.Reg)
.addImm(RegImm.Imm);
} else {
// If we are looking at replacing an FPR register we don't expect to
// have any offset. The only compressible FP instructions with an offset
// are loads and stores, for which the offset applies to the GPR operand
// not the FPR operand.
assert(RegImm.Imm == 0);
unsigned Opcode = RISCV::FPR32RegClass.contains(RegImm.Reg)
? RISCV::FSGNJ_S
: RISCV::FSGNJ_D;
BuildMI(MBB, MI, MI.getDebugLoc(), TII.get(Opcode), NewReg)
.addReg(RegImm.Reg)
.addReg(RegImm.Reg);
}
// Update the set of instructions to use the compressed register and
// compressible offset instead. These instructions should now be
// compressible.
// TODO: Update all uses if RegImm.Imm == 0? Not just those that are
// expected to become compressible.
for (MachineInstr *UpdateMI : MIs)
updateOperands(*UpdateMI, RegImm, NewReg);
}
}
return true;
}
/// Returns an instance of the Make Compressible Optimization pass.
FunctionPass *llvm::createRISCVMakeCompressibleOptPass() {
return new RISCVMakeCompressibleOpt();
}
|