1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262
|
//===- ArithToAMDGPU.cpp - Arith to AMDGPU dialect conversion ---------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
#include "mlir/Conversion/ArithToAMDGPU/ArithToAMDGPU.h"
#include "mlir/Dialect/AMDGPU/IR/AMDGPUDialect.h"
#include "mlir/Dialect/Arith/IR/Arith.h"
#include "mlir/Dialect/Arith/Utils/Utils.h"
#include "mlir/Dialect/Vector/IR/VectorOps.h"
#include "mlir/IR/BuiltinTypes.h"
#include "mlir/IR/PatternMatch.h"
#include "mlir/IR/TypeUtilities.h"
#include "mlir/Pass/Pass.h"
#include "mlir/Support/LogicalResult.h"
#include "mlir/Transforms/GreedyPatternRewriteDriver.h"
namespace mlir {
#define GEN_PASS_DEF_ARITHTOAMDGPUCONVERSIONPASS
#include "mlir/Conversion/Passes.h.inc"
} // namespace mlir
using namespace mlir;
namespace {
struct ArithToAMDGPUConversionPass final
: impl::ArithToAMDGPUConversionPassBase<ArithToAMDGPUConversionPass> {
using impl::ArithToAMDGPUConversionPassBase<
ArithToAMDGPUConversionPass>::ArithToAMDGPUConversionPassBase;
void runOnOperation() override;
};
struct ExtFOnFloat8RewritePattern final : OpRewritePattern<arith::ExtFOp> {
using OpRewritePattern::OpRewritePattern;
LogicalResult match(arith::ExtFOp op) const override;
void rewrite(arith::ExtFOp op, PatternRewriter &rewriter) const override;
};
struct TruncFToFloat8RewritePattern final : OpRewritePattern<arith::TruncFOp> {
bool saturateFP8 = false;
TruncFToFloat8RewritePattern(MLIRContext *ctx, bool saturateFP8)
: OpRewritePattern::OpRewritePattern(ctx), saturateFP8(saturateFP8) {}
LogicalResult match(arith::TruncFOp op) const override;
void rewrite(arith::TruncFOp op, PatternRewriter &rewriter) const override;
};
} // end namespace
static Value castF32To(Type elementType, Value f32, Location loc,
PatternRewriter &rewriter) {
if (elementType.isF32())
return f32;
if (elementType.getIntOrFloatBitWidth() < 32)
return rewriter.create<arith::TruncFOp>(loc, elementType, f32);
if (elementType.getIntOrFloatBitWidth() > 32)
return rewriter.create<arith::ExtFOp>(loc, elementType, f32);
llvm_unreachable("The only 32-bit float type is f32");
}
LogicalResult ExtFOnFloat8RewritePattern::match(arith::ExtFOp op) const {
Type inType = op.getIn().getType();
if (auto inVecType = inType.dyn_cast<VectorType>()) {
if (inVecType.isScalable())
return failure();
if (inVecType.getShape().size() > 1)
// Multi-dimensional vectors are currently unsupported.
return failure();
inType = inVecType.getElementType();
}
return success(inType.isFloat8E5M2FNUZ() || inType.isFloat8E4M3FNUZ());
}
void ExtFOnFloat8RewritePattern::rewrite(arith::ExtFOp op,
PatternRewriter &rewriter) const {
Location loc = op.getLoc();
Value in = op.getIn();
Type outElemType = getElementTypeOrSelf(op.getOut().getType());
if (!in.getType().isa<VectorType>()) {
Value asFloat = rewriter.create<amdgpu::ExtPackedFp8Op>(
loc, rewriter.getF32Type(), in, 0);
Value result = castF32To(outElemType, asFloat, loc, rewriter);
return rewriter.replaceOp(op, result);
}
VectorType inType = in.getType().cast<VectorType>();
int64_t numElements = inType.getNumElements();
Value zero = rewriter.createOrFold<arith::ConstantOp>(
loc, outElemType, rewriter.getFloatAttr(outElemType, 0.0));
Value result =
rewriter.createOrFold<vector::SplatOp>(loc, op.getOut().getType(), zero);
if (inType.getShape().empty()) {
Value scalarIn =
rewriter.create<vector::ExtractOp>(loc, in, ArrayRef<int64_t>{});
// Recurse to send the 0-D vector case to the 1-D vector case
Value scalarExt =
rewriter.create<arith::ExtFOp>(loc, outElemType, scalarIn);
result = rewriter.create<vector::InsertOp>(loc, scalarExt, zero,
ArrayRef<int64_t>{});
return rewriter.replaceOp(op, result);
}
for (int64_t i = 0; i < numElements; i += 4) {
int64_t elemsThisOp = std::min(numElements, i + 4) - i;
Value inSlice = rewriter.create<vector::ExtractStridedSliceOp>(
loc, in, i, elemsThisOp, 1);
for (int64_t j = 0; j < elemsThisOp; ++j) {
Value asFloat = rewriter.create<amdgpu::ExtPackedFp8Op>(
loc, rewriter.getF32Type(), inSlice, j);
Value asType = castF32To(outElemType, asFloat, loc, rewriter);
result = rewriter.create<vector::InsertOp>(loc, asType, result, i + j);
}
}
rewriter.replaceOp(op, result);
}
static Value castToF32(Value value, Location loc, PatternRewriter &rewriter) {
Type type = value.getType();
if (type.isF32())
return value;
if (type.getIntOrFloatBitWidth() < 32)
return rewriter.create<arith::ExtFOp>(loc, rewriter.getF32Type(), value);
if (type.getIntOrFloatBitWidth() > 32)
return rewriter.create<arith::TruncFOp>(loc, rewriter.getF32Type(), value);
llvm_unreachable("The only 32-bit float type is f32");
}
// If `in` is a finite value, clamp it between the maximum and minimum values
// of `outElemType` so that subsequent conversion instructions don't
// overflow those out-of-range values to NaN. These semantics are commonly
// used in machine-learning contexts where failure to clamp would lead to
// excessive NaN production.
static Value clampInput(PatternRewriter &rewriter, Location loc,
Type outElemType, Value source) {
Type sourceType = source.getType();
const llvm::fltSemantics &sourceSem =
cast<FloatType>(getElementTypeOrSelf(sourceType)).getFloatSemantics();
const llvm::fltSemantics &targetSem =
cast<FloatType>(outElemType).getFloatSemantics();
APFloat min = APFloat::getLargest(targetSem, /*Negative=*/true);
APFloat max = APFloat::getLargest(targetSem, /*Negative=*/false);
bool ignoredLosesInfo = false;
// We can ignore conversion failures here because this conversion promotes
// from a smaller type to a larger one - ex. there can be no loss of precision
// when casting fp8 to f16.
(void)min.convert(sourceSem, APFloat::rmNearestTiesToEven, &ignoredLosesInfo);
(void)max.convert(sourceSem, APFloat::rmNearestTiesToEven, &ignoredLosesInfo);
Value minCst = createScalarOrSplatConstant(rewriter, loc, sourceType, min);
Value maxCst = createScalarOrSplatConstant(rewriter, loc, sourceType, max);
Value inf = createScalarOrSplatConstant(
rewriter, loc, sourceType,
APFloat::getInf(sourceSem, /*Negative=*/false));
Value negInf = createScalarOrSplatConstant(
rewriter, loc, sourceType, APFloat::getInf(sourceSem, /*Negative=*/true));
Value isInf = rewriter.createOrFold<arith::CmpFOp>(
loc, arith::CmpFPredicate::OEQ, source, inf);
Value isNegInf = rewriter.createOrFold<arith::CmpFOp>(
loc, arith::CmpFPredicate::OEQ, source, negInf);
Value isNan = rewriter.createOrFold<arith::CmpFOp>(
loc, arith::CmpFPredicate::UNO, source, source);
Value isNonFinite = rewriter.create<arith::OrIOp>(
loc, rewriter.create<arith::OrIOp>(loc, isInf, isNegInf), isNan);
Value clampedBelow = rewriter.create<arith::MaximumFOp>(loc, source, minCst);
Value clamped = rewriter.create<arith::MinimumFOp>(loc, clampedBelow, maxCst);
Value res =
rewriter.create<arith::SelectOp>(loc, isNonFinite, source, clamped);
return res;
}
LogicalResult TruncFToFloat8RewritePattern::match(arith::TruncFOp op) const {
Type outType = op.getOut().getType();
if (auto outVecType = outType.dyn_cast<VectorType>()) {
if (outVecType.isScalable())
return failure();
if (outVecType.getShape().size() > 1)
// Multi-dimensional vectors are currently unsupported.
return failure();
outType = outVecType.getElementType();
}
auto inType = dyn_cast<FloatType>(getElementTypeOrSelf(op.getIn().getType()));
if (inType && inType.getWidth() <= 8 && saturateFP8)
// Conversion between 8-bit floats is not supported with truncation enabled.
return failure();
return success(outType.isFloat8E5M2FNUZ() || outType.isFloat8E4M3FNUZ());
}
void TruncFToFloat8RewritePattern::rewrite(arith::TruncFOp op,
PatternRewriter &rewriter) const {
Location loc = op.getLoc();
Value in = op.getIn();
Type outElemType = getElementTypeOrSelf(op.getOut().getType());
if (saturateFP8)
in = clampInput(rewriter, loc, outElemType, in);
VectorType truncResType = VectorType::get(4, outElemType);
if (!in.getType().isa<VectorType>()) {
Value asFloat = castToF32(in, loc, rewriter);
Value asF8s = rewriter.create<amdgpu::PackedTrunc2xFp8Op>(
loc, truncResType, asFloat, /*sourceB=*/nullptr, 0,
/*existing=*/nullptr);
Value result = rewriter.create<vector::ExtractOp>(loc, asF8s, 0);
return rewriter.replaceOp(op, result);
}
VectorType outType = op.getOut().getType().cast<VectorType>();
int64_t numElements = outType.getNumElements();
Value zero = rewriter.createOrFold<arith::ConstantOp>(
loc, outElemType, rewriter.getFloatAttr(outElemType, 0.0));
Value result = rewriter.createOrFold<vector::SplatOp>(loc, outType, zero);
if (outType.getShape().empty()) {
Value scalarIn =
rewriter.create<vector::ExtractOp>(loc, in, ArrayRef<int64_t>{});
// Recurse to send the 0-D vector case to the 1-D vector case
Value scalarTrunc =
rewriter.create<arith::TruncFOp>(loc, outElemType, scalarIn);
result = rewriter.create<vector::InsertOp>(loc, scalarTrunc, zero,
ArrayRef<int64_t>{});
return rewriter.replaceOp(op, result);
}
for (int64_t i = 0; i < numElements; i += 4) {
int64_t elemsThisOp = std::min(numElements, i + 4) - i;
Value thisResult = nullptr;
for (int64_t j = 0; j < elemsThisOp; j += 2) {
Value elemA = rewriter.create<vector::ExtractOp>(loc, in, i + j);
Value asFloatA = castToF32(elemA, loc, rewriter);
Value asFloatB = nullptr;
if (j + 1 < elemsThisOp) {
Value elemB = rewriter.create<vector::ExtractOp>(loc, in, i + j + 1);
asFloatB = castToF32(elemB, loc, rewriter);
}
thisResult = rewriter.create<amdgpu::PackedTrunc2xFp8Op>(
loc, truncResType, asFloatA, asFloatB, j / 2, thisResult);
}
if (elemsThisOp < 4)
thisResult = rewriter.create<vector::ExtractStridedSliceOp>(
loc, thisResult, 0, elemsThisOp, 1);
result = rewriter.create<vector::InsertStridedSliceOp>(loc, thisResult,
result, i, 1);
}
rewriter.replaceOp(op, result);
}
void mlir::arith::populateArithToAMDGPUConversionPatterns(
RewritePatternSet &patterns, bool saturateFP8TruncF) {
patterns.add<ExtFOnFloat8RewritePattern>(patterns.getContext());
patterns.add<TruncFToFloat8RewritePattern>(patterns.getContext(),
saturateFP8TruncF);
}
void ArithToAMDGPUConversionPass::runOnOperation() {
Operation *op = getOperation();
RewritePatternSet patterns(op->getContext());
arith::populateArithToAMDGPUConversionPatterns(patterns, saturateFP8Truncf);
if (failed(applyPatternsAndFoldGreedily(op, std::move(patterns))))
return signalPassFailure();
}
|