File: VectorToSPIRV.cpp

package info (click to toggle)
llvm-toolchain-18 1%3A18.1.8-18
  • links: PTS, VCS
  • area: main
  • in suites: forky, trixie
  • size: 1,908,340 kB
  • sloc: cpp: 6,667,937; ansic: 1,440,452; asm: 883,619; python: 230,549; objc: 76,880; f90: 74,238; lisp: 35,989; pascal: 16,571; sh: 10,229; perl: 7,459; ml: 5,047; awk: 3,523; makefile: 2,987; javascript: 2,149; xml: 892; fortran: 649; cs: 573
file content (836 lines) | stat: -rw-r--r-- 31,746 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
//===- VectorToSPIRV.cpp - Vector to SPIR-V Patterns ----------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This file implements patterns to convert Vector dialect to SPIRV dialect.
//
//===----------------------------------------------------------------------===//

#include "mlir/Conversion/VectorToSPIRV/VectorToSPIRV.h"

#include "mlir/Dialect/Arith/IR/Arith.h"
#include "mlir/Dialect/SPIRV/IR/SPIRVDialect.h"
#include "mlir/Dialect/SPIRV/IR/SPIRVOps.h"
#include "mlir/Dialect/SPIRV/IR/SPIRVTypes.h"
#include "mlir/Dialect/SPIRV/Transforms/SPIRVConversion.h"
#include "mlir/Dialect/Vector/IR/VectorOps.h"
#include "mlir/IR/Attributes.h"
#include "mlir/IR/BuiltinAttributes.h"
#include "mlir/IR/BuiltinTypes.h"
#include "mlir/IR/Location.h"
#include "mlir/IR/Matchers.h"
#include "mlir/IR/PatternMatch.h"
#include "mlir/IR/TypeUtilities.h"
#include "mlir/Support/LogicalResult.h"
#include "mlir/Transforms/DialectConversion.h"
#include "llvm/ADT/ArrayRef.h"
#include "llvm/ADT/STLExtras.h"
#include "llvm/ADT/SmallVector.h"
#include "llvm/ADT/SmallVectorExtras.h"
#include "llvm/Support/FormatVariadic.h"
#include <cassert>
#include <cstdint>
#include <numeric>

using namespace mlir;

/// Returns the integer value from the first valid input element, assuming Value
/// inputs are defined by a constant index ops and Attribute inputs are integer
/// attributes.
static uint64_t getFirstIntValue(ValueRange values) {
  return values[0].getDefiningOp<arith::ConstantIndexOp>().value();
}
static uint64_t getFirstIntValue(ArrayRef<Attribute> attr) {
  return cast<IntegerAttr>(attr[0]).getInt();
}
static uint64_t getFirstIntValue(ArrayAttr attr) {
  return (*attr.getAsValueRange<IntegerAttr>().begin()).getZExtValue();
}
static uint64_t getFirstIntValue(ArrayRef<OpFoldResult> foldResults) {
  auto attr = foldResults[0].dyn_cast<Attribute>();
  if (attr)
    return getFirstIntValue(attr);

  return getFirstIntValue(ValueRange{foldResults[0].get<Value>()});
}

/// Returns the number of bits for the given scalar/vector type.
static int getNumBits(Type type) {
  // TODO: This does not take into account any memory layout or widening
  // constraints. E.g., a vector<3xi57> may report to occupy 3x57=171 bit, even
  // though in practice it will likely be stored as in a 4xi64 vector register.
  if (auto vectorType = dyn_cast<VectorType>(type))
    return vectorType.getNumElements() * vectorType.getElementTypeBitWidth();
  return type.getIntOrFloatBitWidth();
}

namespace {

struct VectorShapeCast final : public OpConversionPattern<vector::ShapeCastOp> {
  using OpConversionPattern::OpConversionPattern;

  LogicalResult
  matchAndRewrite(vector::ShapeCastOp shapeCastOp, OpAdaptor adaptor,
                  ConversionPatternRewriter &rewriter) const override {
    Type dstType = getTypeConverter()->convertType(shapeCastOp.getType());
    if (!dstType)
      return failure();

    // If dstType is same as the source type or the vector size is 1, it can be
    // directly replaced by the source.
    if (dstType == adaptor.getSource().getType() ||
        shapeCastOp.getResultVectorType().getNumElements() == 1) {
      rewriter.replaceOp(shapeCastOp, adaptor.getSource());
      return success();
    }

    // Lowering for size-n vectors when n > 1 hasn't been implemented.
    return failure();
  }
};

struct VectorBitcastConvert final
    : public OpConversionPattern<vector::BitCastOp> {
  using OpConversionPattern::OpConversionPattern;

  LogicalResult
  matchAndRewrite(vector::BitCastOp bitcastOp, OpAdaptor adaptor,
                  ConversionPatternRewriter &rewriter) const override {
    Type dstType = getTypeConverter()->convertType(bitcastOp.getType());
    if (!dstType)
      return failure();

    if (dstType == adaptor.getSource().getType()) {
      rewriter.replaceOp(bitcastOp, adaptor.getSource());
      return success();
    }

    // Check that the source and destination type have the same bitwidth.
    // Depending on the target environment, we may need to emulate certain
    // types, which can cause issue with bitcast.
    Type srcType = adaptor.getSource().getType();
    if (getNumBits(dstType) != getNumBits(srcType)) {
      return rewriter.notifyMatchFailure(
          bitcastOp,
          llvm::formatv("different source ({0}) and target ({1}) bitwidth",
                        srcType, dstType));
    }

    rewriter.replaceOpWithNewOp<spirv::BitcastOp>(bitcastOp, dstType,
                                                  adaptor.getSource());
    return success();
  }
};

struct VectorBroadcastConvert final
    : public OpConversionPattern<vector::BroadcastOp> {
  using OpConversionPattern::OpConversionPattern;

  LogicalResult
  matchAndRewrite(vector::BroadcastOp castOp, OpAdaptor adaptor,
                  ConversionPatternRewriter &rewriter) const override {
    Type resultType =
        getTypeConverter()->convertType(castOp.getResultVectorType());
    if (!resultType)
      return failure();

    if (isa<spirv::ScalarType>(resultType)) {
      rewriter.replaceOp(castOp, adaptor.getSource());
      return success();
    }

    SmallVector<Value, 4> source(castOp.getResultVectorType().getNumElements(),
                                 adaptor.getSource());
    rewriter.replaceOpWithNewOp<spirv::CompositeConstructOp>(
        castOp, castOp.getResultVectorType(), source);
    return success();
  }
};

struct VectorExtractOpConvert final
    : public OpConversionPattern<vector::ExtractOp> {
  using OpConversionPattern::OpConversionPattern;

  LogicalResult
  matchAndRewrite(vector::ExtractOp extractOp, OpAdaptor adaptor,
                  ConversionPatternRewriter &rewriter) const override {
    if (extractOp.hasDynamicPosition())
      return failure();

    Type dstType = getTypeConverter()->convertType(extractOp.getType());
    if (!dstType)
      return failure();

    if (isa<spirv::ScalarType>(adaptor.getVector().getType())) {
      rewriter.replaceOp(extractOp, adaptor.getVector());
      return success();
    }

    int32_t id = getFirstIntValue(extractOp.getMixedPosition());
    rewriter.replaceOpWithNewOp<spirv::CompositeExtractOp>(
        extractOp, adaptor.getVector(), id);
    return success();
  }
};

struct VectorExtractStridedSliceOpConvert final
    : public OpConversionPattern<vector::ExtractStridedSliceOp> {
  using OpConversionPattern::OpConversionPattern;

  LogicalResult
  matchAndRewrite(vector::ExtractStridedSliceOp extractOp, OpAdaptor adaptor,
                  ConversionPatternRewriter &rewriter) const override {
    Type dstType = getTypeConverter()->convertType(extractOp.getType());
    if (!dstType)
      return failure();

    uint64_t offset = getFirstIntValue(extractOp.getOffsets());
    uint64_t size = getFirstIntValue(extractOp.getSizes());
    uint64_t stride = getFirstIntValue(extractOp.getStrides());
    if (stride != 1)
      return failure();

    Value srcVector = adaptor.getOperands().front();

    // Extract vector<1xT> case.
    if (isa<spirv::ScalarType>(dstType)) {
      rewriter.replaceOpWithNewOp<spirv::CompositeExtractOp>(extractOp,
                                                             srcVector, offset);
      return success();
    }

    SmallVector<int32_t, 2> indices(size);
    std::iota(indices.begin(), indices.end(), offset);

    rewriter.replaceOpWithNewOp<spirv::VectorShuffleOp>(
        extractOp, dstType, srcVector, srcVector,
        rewriter.getI32ArrayAttr(indices));

    return success();
  }
};

template <class SPIRVFMAOp>
struct VectorFmaOpConvert final : public OpConversionPattern<vector::FMAOp> {
  using OpConversionPattern::OpConversionPattern;

  LogicalResult
  matchAndRewrite(vector::FMAOp fmaOp, OpAdaptor adaptor,
                  ConversionPatternRewriter &rewriter) const override {
    Type dstType = getTypeConverter()->convertType(fmaOp.getType());
    if (!dstType)
      return failure();
    rewriter.replaceOpWithNewOp<SPIRVFMAOp>(fmaOp, dstType, adaptor.getLhs(),
                                            adaptor.getRhs(), adaptor.getAcc());
    return success();
  }
};

struct VectorInsertOpConvert final
    : public OpConversionPattern<vector::InsertOp> {
  using OpConversionPattern::OpConversionPattern;

  LogicalResult
  matchAndRewrite(vector::InsertOp insertOp, OpAdaptor adaptor,
                  ConversionPatternRewriter &rewriter) const override {
    if (isa<VectorType>(insertOp.getSourceType()))
      return rewriter.notifyMatchFailure(insertOp, "unsupported vector source");
    if (!getTypeConverter()->convertType(insertOp.getDestVectorType()))
      return rewriter.notifyMatchFailure(insertOp,
                                         "unsupported dest vector type");

    // Special case for inserting scalar values into size-1 vectors.
    if (insertOp.getSourceType().isIntOrFloat() &&
        insertOp.getDestVectorType().getNumElements() == 1) {
      rewriter.replaceOp(insertOp, adaptor.getSource());
      return success();
    }

    int32_t id = getFirstIntValue(insertOp.getMixedPosition());
    rewriter.replaceOpWithNewOp<spirv::CompositeInsertOp>(
        insertOp, adaptor.getSource(), adaptor.getDest(), id);
    return success();
  }
};

struct VectorExtractElementOpConvert final
    : public OpConversionPattern<vector::ExtractElementOp> {
  using OpConversionPattern::OpConversionPattern;

  LogicalResult
  matchAndRewrite(vector::ExtractElementOp extractOp, OpAdaptor adaptor,
                  ConversionPatternRewriter &rewriter) const override {
    Type resultType = getTypeConverter()->convertType(extractOp.getType());
    if (!resultType)
      return failure();

    if (isa<spirv::ScalarType>(adaptor.getVector().getType())) {
      rewriter.replaceOp(extractOp, adaptor.getVector());
      return success();
    }

    APInt cstPos;
    if (matchPattern(adaptor.getPosition(), m_ConstantInt(&cstPos)))
      rewriter.replaceOpWithNewOp<spirv::CompositeExtractOp>(
          extractOp, resultType, adaptor.getVector(),
          rewriter.getI32ArrayAttr({static_cast<int>(cstPos.getSExtValue())}));
    else
      rewriter.replaceOpWithNewOp<spirv::VectorExtractDynamicOp>(
          extractOp, resultType, adaptor.getVector(), adaptor.getPosition());
    return success();
  }
};

struct VectorInsertElementOpConvert final
    : public OpConversionPattern<vector::InsertElementOp> {
  using OpConversionPattern::OpConversionPattern;

  LogicalResult
  matchAndRewrite(vector::InsertElementOp insertOp, OpAdaptor adaptor,
                  ConversionPatternRewriter &rewriter) const override {
    Type vectorType = getTypeConverter()->convertType(insertOp.getType());
    if (!vectorType)
      return failure();

    if (isa<spirv::ScalarType>(vectorType)) {
      rewriter.replaceOp(insertOp, adaptor.getSource());
      return success();
    }

    APInt cstPos;
    if (matchPattern(adaptor.getPosition(), m_ConstantInt(&cstPos)))
      rewriter.replaceOpWithNewOp<spirv::CompositeInsertOp>(
          insertOp, adaptor.getSource(), adaptor.getDest(),
          cstPos.getSExtValue());
    else
      rewriter.replaceOpWithNewOp<spirv::VectorInsertDynamicOp>(
          insertOp, vectorType, insertOp.getDest(), adaptor.getSource(),
          adaptor.getPosition());
    return success();
  }
};

struct VectorInsertStridedSliceOpConvert final
    : public OpConversionPattern<vector::InsertStridedSliceOp> {
  using OpConversionPattern::OpConversionPattern;

  LogicalResult
  matchAndRewrite(vector::InsertStridedSliceOp insertOp, OpAdaptor adaptor,
                  ConversionPatternRewriter &rewriter) const override {
    Value srcVector = adaptor.getOperands().front();
    Value dstVector = adaptor.getOperands().back();

    uint64_t stride = getFirstIntValue(insertOp.getStrides());
    if (stride != 1)
      return failure();
    uint64_t offset = getFirstIntValue(insertOp.getOffsets());

    if (isa<spirv::ScalarType>(srcVector.getType())) {
      assert(!isa<spirv::ScalarType>(dstVector.getType()));
      rewriter.replaceOpWithNewOp<spirv::CompositeInsertOp>(
          insertOp, dstVector.getType(), srcVector, dstVector,
          rewriter.getI32ArrayAttr(offset));
      return success();
    }

    uint64_t totalSize = cast<VectorType>(dstVector.getType()).getNumElements();
    uint64_t insertSize =
        cast<VectorType>(srcVector.getType()).getNumElements();

    SmallVector<int32_t, 2> indices(totalSize);
    std::iota(indices.begin(), indices.end(), 0);
    std::iota(indices.begin() + offset, indices.begin() + offset + insertSize,
              totalSize);

    rewriter.replaceOpWithNewOp<spirv::VectorShuffleOp>(
        insertOp, dstVector.getType(), dstVector, srcVector,
        rewriter.getI32ArrayAttr(indices));

    return success();
  }
};

static SmallVector<Value> extractAllElements(
    vector::ReductionOp reduceOp, vector::ReductionOp::Adaptor adaptor,
    VectorType srcVectorType, ConversionPatternRewriter &rewriter) {
  int numElements = static_cast<int>(srcVectorType.getDimSize(0));
  SmallVector<Value> values;
  values.reserve(numElements + (adaptor.getAcc() ? 1 : 0));
  Location loc = reduceOp.getLoc();

  for (int i = 0; i < numElements; ++i) {
    values.push_back(rewriter.create<spirv::CompositeExtractOp>(
        loc, srcVectorType.getElementType(), adaptor.getVector(),
        rewriter.getI32ArrayAttr({i})));
  }
  if (Value acc = adaptor.getAcc())
    values.push_back(acc);

  return values;
}

struct ReductionRewriteInfo {
  Type resultType;
  SmallVector<Value> extractedElements;
};

FailureOr<ReductionRewriteInfo> static getReductionInfo(
    vector::ReductionOp op, vector::ReductionOp::Adaptor adaptor,
    ConversionPatternRewriter &rewriter, const TypeConverter &typeConverter) {
  Type resultType = typeConverter.convertType(op.getType());
  if (!resultType)
    return failure();

  auto srcVectorType = dyn_cast<VectorType>(adaptor.getVector().getType());
  if (!srcVectorType || srcVectorType.getRank() != 1)
    return rewriter.notifyMatchFailure(op, "not a 1-D vector source");

  SmallVector<Value> extractedElements =
      extractAllElements(op, adaptor, srcVectorType, rewriter);

  return ReductionRewriteInfo{resultType, std::move(extractedElements)};
}

template <typename SPIRVUMaxOp, typename SPIRVUMinOp, typename SPIRVSMaxOp,
          typename SPIRVSMinOp>
struct VectorReductionPattern final : OpConversionPattern<vector::ReductionOp> {
  using OpConversionPattern::OpConversionPattern;

  LogicalResult
  matchAndRewrite(vector::ReductionOp reduceOp, OpAdaptor adaptor,
                  ConversionPatternRewriter &rewriter) const override {
    auto reductionInfo =
        getReductionInfo(reduceOp, adaptor, rewriter, *getTypeConverter());
    if (failed(reductionInfo))
      return failure();

    auto [resultType, extractedElements] = *reductionInfo;
    Location loc = reduceOp->getLoc();
    Value result = extractedElements.front();
    for (Value next : llvm::drop_begin(extractedElements)) {
      switch (reduceOp.getKind()) {

#define INT_AND_FLOAT_CASE(kind, iop, fop)                                     \
  case vector::CombiningKind::kind:                                            \
    if (llvm::isa<IntegerType>(resultType)) {                                  \
      result = rewriter.create<spirv::iop>(loc, resultType, result, next);     \
    } else {                                                                   \
      assert(llvm::isa<FloatType>(resultType));                                \
      result = rewriter.create<spirv::fop>(loc, resultType, result, next);     \
    }                                                                          \
    break

#define INT_OR_FLOAT_CASE(kind, fop)                                           \
  case vector::CombiningKind::kind:                                            \
    result = rewriter.create<fop>(loc, resultType, result, next);              \
    break

        INT_AND_FLOAT_CASE(ADD, IAddOp, FAddOp);
        INT_AND_FLOAT_CASE(MUL, IMulOp, FMulOp);
        INT_OR_FLOAT_CASE(MINUI, SPIRVUMinOp);
        INT_OR_FLOAT_CASE(MINSI, SPIRVSMinOp);
        INT_OR_FLOAT_CASE(MAXUI, SPIRVUMaxOp);
        INT_OR_FLOAT_CASE(MAXSI, SPIRVSMaxOp);

      case vector::CombiningKind::AND:
      case vector::CombiningKind::OR:
      case vector::CombiningKind::XOR:
        return rewriter.notifyMatchFailure(reduceOp, "unimplemented");
      default:
        return rewriter.notifyMatchFailure(reduceOp, "not handled here");
      }
#undef INT_AND_FLOAT_CASE
#undef INT_OR_FLOAT_CASE
    }

    rewriter.replaceOp(reduceOp, result);
    return success();
  }
};

template <typename SPIRVFMaxOp, typename SPIRVFMinOp>
struct VectorReductionFloatMinMax final
    : OpConversionPattern<vector::ReductionOp> {
  using OpConversionPattern::OpConversionPattern;

  LogicalResult
  matchAndRewrite(vector::ReductionOp reduceOp, OpAdaptor adaptor,
                  ConversionPatternRewriter &rewriter) const override {
    auto reductionInfo =
        getReductionInfo(reduceOp, adaptor, rewriter, *getTypeConverter());
    if (failed(reductionInfo))
      return failure();

    auto [resultType, extractedElements] = *reductionInfo;
    Location loc = reduceOp->getLoc();
    Value result = extractedElements.front();
    for (Value next : llvm::drop_begin(extractedElements)) {
      switch (reduceOp.getKind()) {

#define INT_OR_FLOAT_CASE(kind, fop)                                           \
  case vector::CombiningKind::kind:                                            \
    result = rewriter.create<fop>(loc, resultType, result, next);              \
    break

        INT_OR_FLOAT_CASE(MAXIMUMF, SPIRVFMaxOp);
        INT_OR_FLOAT_CASE(MINIMUMF, SPIRVFMinOp);
        INT_OR_FLOAT_CASE(MAXNUMF, SPIRVFMaxOp);
        INT_OR_FLOAT_CASE(MINNUMF, SPIRVFMinOp);

      default:
        return rewriter.notifyMatchFailure(reduceOp, "not handled here");
      }
#undef INT_OR_FLOAT_CASE
    }

    rewriter.replaceOp(reduceOp, result);
    return success();
  }
};

class VectorSplatPattern final : public OpConversionPattern<vector::SplatOp> {
public:
  using OpConversionPattern<vector::SplatOp>::OpConversionPattern;

  LogicalResult
  matchAndRewrite(vector::SplatOp op, OpAdaptor adaptor,
                  ConversionPatternRewriter &rewriter) const override {
    Type dstType = getTypeConverter()->convertType(op.getType());
    if (!dstType)
      return failure();
    if (isa<spirv::ScalarType>(dstType)) {
      rewriter.replaceOp(op, adaptor.getInput());
    } else {
      auto dstVecType = cast<VectorType>(dstType);
      SmallVector<Value, 4> source(dstVecType.getNumElements(),
                                   adaptor.getInput());
      rewriter.replaceOpWithNewOp<spirv::CompositeConstructOp>(op, dstType,
                                                               source);
    }
    return success();
  }
};

struct VectorShuffleOpConvert final
    : public OpConversionPattern<vector::ShuffleOp> {
  using OpConversionPattern::OpConversionPattern;

  LogicalResult
  matchAndRewrite(vector::ShuffleOp shuffleOp, OpAdaptor adaptor,
                  ConversionPatternRewriter &rewriter) const override {
    auto oldResultType = shuffleOp.getResultVectorType();
    Type newResultType = getTypeConverter()->convertType(oldResultType);
    if (!newResultType)
      return rewriter.notifyMatchFailure(shuffleOp,
                                         "unsupported result vector type");

    SmallVector<int32_t, 4> mask = llvm::map_to_vector<4>(
        shuffleOp.getMask(), [](Attribute attr) -> int32_t {
          return cast<IntegerAttr>(attr).getValue().getZExtValue();
        });

    auto oldV1Type = shuffleOp.getV1VectorType();
    auto oldV2Type = shuffleOp.getV2VectorType();

    // When both operands are SPIR-V vectors, emit a SPIR-V shuffle.
    if (oldV1Type.getNumElements() > 1 && oldV2Type.getNumElements() > 1) {
      rewriter.replaceOpWithNewOp<spirv::VectorShuffleOp>(
          shuffleOp, newResultType, adaptor.getV1(), adaptor.getV2(),
          rewriter.getI32ArrayAttr(mask));
      return success();
    }

    // When at least one of the operands becomes a scalar after type conversion
    // for SPIR-V, extract all the required elements and construct the result
    // vector.
    auto getElementAtIdx = [&rewriter, loc = shuffleOp.getLoc()](
                               Value scalarOrVec, int32_t idx) -> Value {
      if (auto vecTy = dyn_cast<VectorType>(scalarOrVec.getType()))
        return rewriter.create<spirv::CompositeExtractOp>(loc, scalarOrVec,
                                                          idx);

      assert(idx == 0 && "Invalid scalar element index");
      return scalarOrVec;
    };

    int32_t numV1Elems = oldV1Type.getNumElements();
    SmallVector<Value> newOperands(mask.size());
    for (auto [shuffleIdx, newOperand] : llvm::zip_equal(mask, newOperands)) {
      Value vec = adaptor.getV1();
      int32_t elementIdx = shuffleIdx;
      if (elementIdx >= numV1Elems) {
        vec = adaptor.getV2();
        elementIdx -= numV1Elems;
      }

      newOperand = getElementAtIdx(vec, elementIdx);
    }

    rewriter.replaceOpWithNewOp<spirv::CompositeConstructOp>(
        shuffleOp, newResultType, newOperands);

    return success();
  }
};

struct VectorLoadOpConverter final
    : public OpConversionPattern<vector::LoadOp> {
  using OpConversionPattern::OpConversionPattern;

  LogicalResult
  matchAndRewrite(vector::LoadOp loadOp, OpAdaptor adaptor,
                  ConversionPatternRewriter &rewriter) const override {
    auto memrefType = loadOp.getMemRefType();
    auto attr =
        dyn_cast_or_null<spirv::StorageClassAttr>(memrefType.getMemorySpace());
    if (!attr)
      return rewriter.notifyMatchFailure(
          loadOp, "expected spirv.storage_class memory space");

    const auto &typeConverter = *getTypeConverter<SPIRVTypeConverter>();
    auto loc = loadOp.getLoc();
    Value accessChain =
        spirv::getElementPtr(typeConverter, memrefType, adaptor.getBase(),
                             adaptor.getIndices(), loc, rewriter);
    if (!accessChain)
      return rewriter.notifyMatchFailure(
          loadOp, "failed to get memref element pointer");

    spirv::StorageClass storageClass = attr.getValue();
    auto vectorType = loadOp.getVectorType();
    auto vectorPtrType = spirv::PointerType::get(vectorType, storageClass);
    Value castedAccessChain =
        rewriter.create<spirv::BitcastOp>(loc, vectorPtrType, accessChain);
    rewriter.replaceOpWithNewOp<spirv::LoadOp>(loadOp, vectorType,
                                               castedAccessChain);

    return success();
  }
};

struct VectorStoreOpConverter final
    : public OpConversionPattern<vector::StoreOp> {
  using OpConversionPattern::OpConversionPattern;

  LogicalResult
  matchAndRewrite(vector::StoreOp storeOp, OpAdaptor adaptor,
                  ConversionPatternRewriter &rewriter) const override {
    auto memrefType = storeOp.getMemRefType();
    auto attr =
        dyn_cast_or_null<spirv::StorageClassAttr>(memrefType.getMemorySpace());
    if (!attr)
      return rewriter.notifyMatchFailure(
          storeOp, "expected spirv.storage_class memory space");

    const auto &typeConverter = *getTypeConverter<SPIRVTypeConverter>();
    auto loc = storeOp.getLoc();
    Value accessChain =
        spirv::getElementPtr(typeConverter, memrefType, adaptor.getBase(),
                             adaptor.getIndices(), loc, rewriter);
    if (!accessChain)
      return rewriter.notifyMatchFailure(
          storeOp, "failed to get memref element pointer");

    spirv::StorageClass storageClass = attr.getValue();
    auto vectorType = storeOp.getVectorType();
    auto vectorPtrType = spirv::PointerType::get(vectorType, storageClass);
    Value castedAccessChain =
        rewriter.create<spirv::BitcastOp>(loc, vectorPtrType, accessChain);
    rewriter.replaceOpWithNewOp<spirv::StoreOp>(storeOp, castedAccessChain,
                                                adaptor.getValueToStore());

    return success();
  }
};

struct VectorReductionToIntDotProd final
    : OpRewritePattern<vector::ReductionOp> {
  using OpRewritePattern::OpRewritePattern;

  LogicalResult matchAndRewrite(vector::ReductionOp op,
                                PatternRewriter &rewriter) const override {
    if (op.getKind() != vector::CombiningKind::ADD)
      return rewriter.notifyMatchFailure(op, "combining kind is not 'add'");

    auto resultType = dyn_cast<IntegerType>(op.getType());
    if (!resultType)
      return rewriter.notifyMatchFailure(op, "result is not an integer");

    int64_t resultBitwidth = resultType.getIntOrFloatBitWidth();
    if (!llvm::is_contained({32, 64}, resultBitwidth))
      return rewriter.notifyMatchFailure(op, "unsupported integer bitwidth");

    VectorType inVecTy = op.getSourceVectorType();
    if (!llvm::is_contained({4, 3}, inVecTy.getNumElements()) ||
        inVecTy.getShape().size() != 1 || inVecTy.isScalable())
      return rewriter.notifyMatchFailure(op, "unsupported vector shape");

    auto mul = op.getVector().getDefiningOp<arith::MulIOp>();
    if (!mul)
      return rewriter.notifyMatchFailure(
          op, "reduction operand is not 'arith.muli'");

    if (succeeded(handleCase<arith::ExtSIOp, arith::ExtSIOp, spirv::SDotOp,
                             spirv::SDotAccSatOp, false>(op, mul, rewriter)))
      return success();

    if (succeeded(handleCase<arith::ExtUIOp, arith::ExtUIOp, spirv::UDotOp,
                             spirv::UDotAccSatOp, false>(op, mul, rewriter)))
      return success();

    if (succeeded(handleCase<arith::ExtSIOp, arith::ExtUIOp, spirv::SUDotOp,
                             spirv::SUDotAccSatOp, false>(op, mul, rewriter)))
      return success();

    if (succeeded(handleCase<arith::ExtUIOp, arith::ExtSIOp, spirv::SUDotOp,
                             spirv::SUDotAccSatOp, true>(op, mul, rewriter)))
      return success();

    return failure();
  }

private:
  template <typename LhsExtensionOp, typename RhsExtensionOp, typename DotOp,
            typename DotAccOp, bool SwapOperands>
  static LogicalResult handleCase(vector::ReductionOp op, arith::MulIOp mul,
                                  PatternRewriter &rewriter) {
    auto lhs = mul.getLhs().getDefiningOp<LhsExtensionOp>();
    if (!lhs)
      return failure();
    Value lhsIn = lhs.getIn();
    auto lhsInType = cast<VectorType>(lhsIn.getType());
    if (!lhsInType.getElementType().isInteger(8))
      return failure();

    auto rhs = mul.getRhs().getDefiningOp<RhsExtensionOp>();
    if (!rhs)
      return failure();
    Value rhsIn = rhs.getIn();
    auto rhsInType = cast<VectorType>(rhsIn.getType());
    if (!rhsInType.getElementType().isInteger(8))
      return failure();

    if (op.getSourceVectorType().getNumElements() == 3) {
      IntegerType i8Type = rewriter.getI8Type();
      auto v4i8Type = VectorType::get({4}, i8Type);
      Location loc = op.getLoc();
      Value zero = spirv::ConstantOp::getZero(i8Type, loc, rewriter);
      lhsIn = rewriter.create<spirv::CompositeConstructOp>(
          loc, v4i8Type, ValueRange{lhsIn, zero});
      rhsIn = rewriter.create<spirv::CompositeConstructOp>(
          loc, v4i8Type, ValueRange{rhsIn, zero});
    }

    // There's no variant of dot prod ops for unsigned LHS and signed RHS, so
    // we have to swap operands instead in that case.
    if (SwapOperands)
      std::swap(lhsIn, rhsIn);

    if (Value acc = op.getAcc()) {
      rewriter.replaceOpWithNewOp<DotAccOp>(op, op.getType(), lhsIn, rhsIn, acc,
                                            nullptr);
    } else {
      rewriter.replaceOpWithNewOp<DotOp>(op, op.getType(), lhsIn, rhsIn,
                                         nullptr);
    }

    return success();
  }
};

struct VectorReductionToFPDotProd final
    : OpConversionPattern<vector::ReductionOp> {
  using OpConversionPattern::OpConversionPattern;

  LogicalResult
  matchAndRewrite(vector::ReductionOp op, OpAdaptor adaptor,
                  ConversionPatternRewriter &rewriter) const override {
    if (op.getKind() != vector::CombiningKind::ADD)
      return rewriter.notifyMatchFailure(op, "combining kind is not 'add'");

    auto resultType = getTypeConverter()->convertType<FloatType>(op.getType());
    if (!resultType)
      return rewriter.notifyMatchFailure(op, "result is not a float");

    Value vec = adaptor.getVector();
    Value acc = adaptor.getAcc();

    auto vectorType = dyn_cast<VectorType>(vec.getType());
    if (!vectorType) {
      assert(isa<FloatType>(vec.getType()) &&
             "Expected the vector to be scalarized");
      if (acc) {
        rewriter.replaceOpWithNewOp<spirv::FAddOp>(op, acc, vec);
        return success();
      }

      rewriter.replaceOp(op, vec);
      return success();
    }

    Location loc = op.getLoc();
    Value lhs;
    Value rhs;
    if (auto mul = vec.getDefiningOp<arith::MulFOp>()) {
      lhs = mul.getLhs();
      rhs = mul.getRhs();
    } else {
      // If the operand is not a mul, use a vector of ones for the dot operand
      // to just sum up all values.
      lhs = vec;
      Attribute oneAttr =
          rewriter.getFloatAttr(vectorType.getElementType(), 1.0);
      oneAttr = SplatElementsAttr::get(vectorType, oneAttr);
      rhs = rewriter.create<spirv::ConstantOp>(loc, vectorType, oneAttr);
    }
    assert(lhs);
    assert(rhs);

    Value res = rewriter.create<spirv::DotOp>(loc, resultType, lhs, rhs);
    if (acc)
      res = rewriter.create<spirv::FAddOp>(loc, acc, res);

    rewriter.replaceOp(op, res);
    return success();
  }
};

} // namespace
#define CL_INT_MAX_MIN_OPS                                                     \
  spirv::CLUMaxOp, spirv::CLUMinOp, spirv::CLSMaxOp, spirv::CLSMinOp

#define GL_INT_MAX_MIN_OPS                                                     \
  spirv::GLUMaxOp, spirv::GLUMinOp, spirv::GLSMaxOp, spirv::GLSMinOp

#define CL_FLOAT_MAX_MIN_OPS spirv::CLFMaxOp, spirv::CLFMinOp
#define GL_FLOAT_MAX_MIN_OPS spirv::GLFMaxOp, spirv::GLFMinOp

void mlir::populateVectorToSPIRVPatterns(SPIRVTypeConverter &typeConverter,
                                         RewritePatternSet &patterns) {
  patterns.add<
      VectorBitcastConvert, VectorBroadcastConvert,
      VectorExtractElementOpConvert, VectorExtractOpConvert,
      VectorExtractStridedSliceOpConvert, VectorFmaOpConvert<spirv::GLFmaOp>,
      VectorFmaOpConvert<spirv::CLFmaOp>, VectorInsertElementOpConvert,
      VectorInsertOpConvert, VectorReductionPattern<GL_INT_MAX_MIN_OPS>,
      VectorReductionPattern<CL_INT_MAX_MIN_OPS>,
      VectorReductionFloatMinMax<CL_FLOAT_MAX_MIN_OPS>,
      VectorReductionFloatMinMax<GL_FLOAT_MAX_MIN_OPS>, VectorShapeCast,
      VectorInsertStridedSliceOpConvert, VectorShuffleOpConvert,
      VectorSplatPattern, VectorLoadOpConverter, VectorStoreOpConverter>(
      typeConverter, patterns.getContext(), PatternBenefit(1));

  // Make sure that the more specialized dot product pattern has higher benefit
  // than the generic one that extracts all elements.
  patterns.add<VectorReductionToFPDotProd>(typeConverter, patterns.getContext(),
                                           PatternBenefit(2));
}

void mlir::populateVectorReductionToSPIRVDotProductPatterns(
    RewritePatternSet &patterns) {
  patterns.add<VectorReductionToIntDotProd>(patterns.getContext());
}