1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264
|
//===- LowerVectorGather.cpp - Lower 'vector.gather' operation ------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This file implements target-independent rewrites and utilities to lower the
// 'vector.gather' operation.
//
//===----------------------------------------------------------------------===//
#include "mlir/Dialect/Affine/IR/AffineOps.h"
#include "mlir/Dialect/Arith/IR/Arith.h"
#include "mlir/Dialect/Arith/Utils/Utils.h"
#include "mlir/Dialect/Linalg/IR/Linalg.h"
#include "mlir/Dialect/MemRef/IR/MemRef.h"
#include "mlir/Dialect/SCF/IR/SCF.h"
#include "mlir/Dialect/Tensor/IR/Tensor.h"
#include "mlir/Dialect/Utils/IndexingUtils.h"
#include "mlir/Dialect/Utils/StructuredOpsUtils.h"
#include "mlir/Dialect/Vector/IR/VectorOps.h"
#include "mlir/Dialect/Vector/Transforms/LoweringPatterns.h"
#include "mlir/Dialect/Vector/Utils/VectorUtils.h"
#include "mlir/IR/BuiltinAttributeInterfaces.h"
#include "mlir/IR/BuiltinTypes.h"
#include "mlir/IR/ImplicitLocOpBuilder.h"
#include "mlir/IR/Location.h"
#include "mlir/IR/Matchers.h"
#include "mlir/IR/PatternMatch.h"
#include "mlir/IR/TypeUtilities.h"
#include "mlir/Interfaces/VectorInterfaces.h"
#include "mlir/Support/LogicalResult.h"
#define DEBUG_TYPE "vector-broadcast-lowering"
using namespace mlir;
using namespace mlir::vector;
namespace {
/// Flattens 2 or more dimensional `vector.gather` ops by unrolling the
/// outermost dimension. For example:
/// ```
/// %g = vector.gather %base[%c0][%v], %mask, %pass_thru :
/// ... into vector<2x3xf32>
///
/// ==>
///
/// %0 = arith.constant dense<0.0> : vector<2x3xf32>
/// %g0 = vector.gather %base[%c0][%v0], %mask0, %pass_thru0 : ...
/// %1 = vector.insert %g0, %0 [0] : vector<3xf32> into vector<2x3xf32>
/// %g1 = vector.gather %base[%c0][%v1], %mask1, %pass_thru1 : ...
/// %g = vector.insert %g1, %1 [1] : vector<3xf32> into vector<2x3xf32>
/// ```
///
/// When applied exhaustively, this will produce a sequence of 1-d gather ops.
struct FlattenGather : OpRewritePattern<vector::GatherOp> {
using OpRewritePattern::OpRewritePattern;
LogicalResult matchAndRewrite(vector::GatherOp op,
PatternRewriter &rewriter) const override {
VectorType resultTy = op.getType();
if (resultTy.getRank() < 2)
return rewriter.notifyMatchFailure(op, "already flat");
Location loc = op.getLoc();
Value indexVec = op.getIndexVec();
Value maskVec = op.getMask();
Value passThruVec = op.getPassThru();
Value result = rewriter.create<arith::ConstantOp>(
loc, resultTy, rewriter.getZeroAttr(resultTy));
Type subTy = VectorType::get(resultTy.getShape().drop_front(),
resultTy.getElementType());
for (int64_t i = 0, e = resultTy.getShape().front(); i < e; ++i) {
int64_t thisIdx[1] = {i};
Value indexSubVec =
rewriter.create<vector::ExtractOp>(loc, indexVec, thisIdx);
Value maskSubVec =
rewriter.create<vector::ExtractOp>(loc, maskVec, thisIdx);
Value passThruSubVec =
rewriter.create<vector::ExtractOp>(loc, passThruVec, thisIdx);
Value subGather = rewriter.create<vector::GatherOp>(
loc, subTy, op.getBase(), op.getIndices(), indexSubVec, maskSubVec,
passThruSubVec);
result =
rewriter.create<vector::InsertOp>(loc, subGather, result, thisIdx);
}
rewriter.replaceOp(op, result);
return success();
}
};
/// Rewrites a vector.gather of a strided MemRef as a gather of a non-strided
/// MemRef with updated indices that model the strided access.
///
/// ```mlir
/// %subview = memref.subview %M (...)
/// : memref<100x3xf32> to memref<100xf32, strided<[3]>>
/// %gather = vector.gather %subview[%idxs] (...) : memref<100xf32, strided<[3]>>
/// ```
/// ==>
/// ```mlir
/// %collapse_shape = memref.collapse_shape %M (...)
/// : memref<100x3xf32> into memref<300xf32>
/// %new_idxs = arith.muli %idxs, %c3 : vector<4xindex>
/// %gather = vector.gather %collapse_shape[%new_idxs] (...)
/// : memref<300xf32> (...)
/// ```
///
/// ATM this is effectively limited to reading a 1D Vector from a 2D MemRef,
/// but should be fairly straightforward to extend beyond that.
struct RemoveStrideFromGatherSource : OpRewritePattern<vector::GatherOp> {
using OpRewritePattern::OpRewritePattern;
LogicalResult matchAndRewrite(vector::GatherOp op,
PatternRewriter &rewriter) const override {
Value base = op.getBase();
// TODO: Strided accesses might be coming from other ops as well
auto subview = base.getDefiningOp<memref::SubViewOp>();
if (!subview)
return failure();
auto sourceType = subview.getSource().getType();
// TODO: Allow ranks > 2.
if (sourceType.getRank() != 2)
return failure();
// Get strides
auto layout = subview.getResult().getType().getLayout();
auto stridedLayoutAttr = llvm::dyn_cast<StridedLayoutAttr>(layout);
if (!stridedLayoutAttr)
return failure();
// TODO: Allow the access to be strided in multiple dimensions.
if (stridedLayoutAttr.getStrides().size() != 1)
return failure();
int64_t srcTrailingDim = sourceType.getShape().back();
// Assume that the stride matches the trailing dimension of the source
// memref.
// TODO: Relax this assumption.
if (stridedLayoutAttr.getStrides()[0] != srcTrailingDim)
return failure();
// 1. Collapse the input memref so that it's "flat".
SmallVector<ReassociationIndices> reassoc = {{0, 1}};
Value collapsed = rewriter.create<memref::CollapseShapeOp>(
op.getLoc(), subview.getSource(), reassoc);
// 2. Generate new gather indices that will model the
// strided access.
IntegerAttr stride = rewriter.getIndexAttr(srcTrailingDim);
VectorType vType = op.getIndexVec().getType();
Value mulCst = rewriter.create<arith::ConstantOp>(
op.getLoc(), vType, DenseElementsAttr::get(vType, stride));
Value newIdxs =
rewriter.create<arith::MulIOp>(op.getLoc(), op.getIndexVec(), mulCst);
// 3. Create an updated gather op with the collapsed input memref and the
// updated indices.
Value newGather = rewriter.create<vector::GatherOp>(
op.getLoc(), op.getResult().getType(), collapsed, op.getIndices(),
newIdxs, op.getMask(), op.getPassThru());
rewriter.replaceOp(op, newGather);
return success();
}
};
/// Turns 1-d `vector.gather` into a scalarized sequence of `vector.loads` or
/// `tensor.extract`s. To avoid out-of-bounds memory accesses, these
/// loads/extracts are made conditional using `scf.if` ops.
struct Gather1DToConditionalLoads : OpRewritePattern<vector::GatherOp> {
using OpRewritePattern::OpRewritePattern;
LogicalResult matchAndRewrite(vector::GatherOp op,
PatternRewriter &rewriter) const override {
VectorType resultTy = op.getType();
if (resultTy.getRank() != 1)
return rewriter.notifyMatchFailure(op, "unsupported rank");
Location loc = op.getLoc();
Type elemTy = resultTy.getElementType();
// Vector type with a single element. Used to generate `vector.loads`.
VectorType elemVecTy = VectorType::get({1}, elemTy);
Value condMask = op.getMask();
Value base = op.getBase();
// vector.load requires the most minor memref dim to have unit stride
if (auto memType = dyn_cast<MemRefType>(base.getType())) {
if (auto stridesAttr =
dyn_cast_if_present<StridedLayoutAttr>(memType.getLayout())) {
if (stridesAttr.getStrides().back() != 1)
return failure();
}
}
Value indexVec = rewriter.createOrFold<arith::IndexCastOp>(
loc, op.getIndexVectorType().clone(rewriter.getIndexType()),
op.getIndexVec());
auto baseOffsets = llvm::to_vector(op.getIndices());
Value lastBaseOffset = baseOffsets.back();
Value result = op.getPassThru();
// Emit a conditional access for each vector element.
for (int64_t i = 0, e = resultTy.getNumElements(); i < e; ++i) {
int64_t thisIdx[1] = {i};
Value condition =
rewriter.create<vector::ExtractOp>(loc, condMask, thisIdx);
Value index = rewriter.create<vector::ExtractOp>(loc, indexVec, thisIdx);
baseOffsets.back() =
rewriter.createOrFold<arith::AddIOp>(loc, lastBaseOffset, index);
auto loadBuilder = [&](OpBuilder &b, Location loc) {
Value extracted;
if (isa<MemRefType>(base.getType())) {
// `vector.load` does not support scalar result; emit a vector load
// and extract the single result instead.
Value load =
b.create<vector::LoadOp>(loc, elemVecTy, base, baseOffsets);
int64_t zeroIdx[1] = {0};
extracted = b.create<vector::ExtractOp>(loc, load, zeroIdx);
} else {
extracted = b.create<tensor::ExtractOp>(loc, base, baseOffsets);
}
Value newResult =
b.create<vector::InsertOp>(loc, extracted, result, thisIdx);
b.create<scf::YieldOp>(loc, newResult);
};
auto passThruBuilder = [result](OpBuilder &b, Location loc) {
b.create<scf::YieldOp>(loc, result);
};
result =
rewriter
.create<scf::IfOp>(loc, condition, /*thenBuilder=*/loadBuilder,
/*elseBuilder=*/passThruBuilder)
.getResult(0);
}
rewriter.replaceOp(op, result);
return success();
}
};
} // namespace
void mlir::vector::populateVectorGatherLoweringPatterns(
RewritePatternSet &patterns, PatternBenefit benefit) {
patterns.add<FlattenGather, RemoveStrideFromGatherSource,
Gather1DToConditionalLoads>(patterns.getContext(), benefit);
}
|