1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360
|
//===- LowerVectorShapeCast.cpp - Lower 'vector.shape_cast' operation -----===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This file implements target-independent rewrites and utilities to lower the
// 'vector.shape_cast' operation.
//
//===----------------------------------------------------------------------===//
#include "mlir/Dialect/Affine/IR/AffineOps.h"
#include "mlir/Dialect/Arith/IR/Arith.h"
#include "mlir/Dialect/Arith/Utils/Utils.h"
#include "mlir/Dialect/Linalg/IR/Linalg.h"
#include "mlir/Dialect/MemRef/IR/MemRef.h"
#include "mlir/Dialect/SCF/IR/SCF.h"
#include "mlir/Dialect/Tensor/IR/Tensor.h"
#include "mlir/Dialect/Utils/IndexingUtils.h"
#include "mlir/Dialect/Utils/StructuredOpsUtils.h"
#include "mlir/Dialect/Vector/IR/VectorOps.h"
#include "mlir/Dialect/Vector/Transforms/LoweringPatterns.h"
#include "mlir/Dialect/Vector/Transforms/VectorRewritePatterns.h"
#include "mlir/Dialect/Vector/Utils/VectorUtils.h"
#include "mlir/IR/BuiltinAttributeInterfaces.h"
#include "mlir/IR/BuiltinTypes.h"
#include "mlir/IR/ImplicitLocOpBuilder.h"
#include "mlir/IR/Location.h"
#include "mlir/IR/Matchers.h"
#include "mlir/IR/PatternMatch.h"
#include "mlir/IR/TypeUtilities.h"
#include "mlir/Interfaces/VectorInterfaces.h"
#include "mlir/Support/LogicalResult.h"
#define DEBUG_TYPE "vector-shape-cast-lowering"
using namespace mlir;
using namespace mlir::vector;
namespace {
/// ShapeOp 2D -> 1D downcast serves the purpose of flattening 2-D to 1-D
/// vectors progressively on the way to target llvm.matrix intrinsics.
/// This iterates over the most major dimension of the 2-D vector and performs
/// rewrites into:
/// vector.extract from 2-D + vector.insert_strided_slice offset into 1-D
class ShapeCastOp2DDownCastRewritePattern
: public OpRewritePattern<vector::ShapeCastOp> {
public:
using OpRewritePattern::OpRewritePattern;
LogicalResult matchAndRewrite(vector::ShapeCastOp op,
PatternRewriter &rewriter) const override {
auto sourceVectorType = op.getSourceVectorType();
auto resultVectorType = op.getResultVectorType();
if (sourceVectorType.isScalable() || resultVectorType.isScalable())
return failure();
if (sourceVectorType.getRank() != 2 || resultVectorType.getRank() != 1)
return failure();
auto loc = op.getLoc();
Value desc = rewriter.create<arith::ConstantOp>(
loc, resultVectorType, rewriter.getZeroAttr(resultVectorType));
unsigned mostMinorVectorSize = sourceVectorType.getShape()[1];
for (int64_t i = 0, e = sourceVectorType.getShape().front(); i != e; ++i) {
Value vec = rewriter.create<vector::ExtractOp>(loc, op.getSource(), i);
desc = rewriter.create<vector::InsertStridedSliceOp>(
loc, vec, desc,
/*offsets=*/i * mostMinorVectorSize, /*strides=*/1);
}
rewriter.replaceOp(op, desc);
return success();
}
};
/// ShapeOp 1D -> 2D upcast serves the purpose of unflattening 2-D from 1-D
/// vectors progressively.
/// This iterates over the most major dimension of the 2-D vector and performs
/// rewrites into:
/// vector.extract_strided_slice from 1-D + vector.insert into 2-D
/// Note that 1-D extract_strided_slice are lowered to efficient vector.shuffle.
class ShapeCastOp2DUpCastRewritePattern
: public OpRewritePattern<vector::ShapeCastOp> {
public:
using OpRewritePattern::OpRewritePattern;
LogicalResult matchAndRewrite(vector::ShapeCastOp op,
PatternRewriter &rewriter) const override {
auto sourceVectorType = op.getSourceVectorType();
auto resultVectorType = op.getResultVectorType();
if (sourceVectorType.isScalable() || resultVectorType.isScalable())
return failure();
if (sourceVectorType.getRank() != 1 || resultVectorType.getRank() != 2)
return failure();
auto loc = op.getLoc();
Value desc = rewriter.create<arith::ConstantOp>(
loc, resultVectorType, rewriter.getZeroAttr(resultVectorType));
unsigned mostMinorVectorSize = resultVectorType.getShape()[1];
for (int64_t i = 0, e = resultVectorType.getShape().front(); i != e; ++i) {
Value vec = rewriter.create<vector::ExtractStridedSliceOp>(
loc, op.getSource(), /*offsets=*/i * mostMinorVectorSize,
/*sizes=*/mostMinorVectorSize,
/*strides=*/1);
desc = rewriter.create<vector::InsertOp>(loc, vec, desc, i);
}
rewriter.replaceOp(op, desc);
return success();
}
};
static void incIdx(llvm::MutableArrayRef<int64_t> idx, VectorType tp,
int dimIdx, int initialStep = 1) {
int step = initialStep;
for (int d = dimIdx; d >= 0; d--) {
idx[d] += step;
if (idx[d] >= tp.getDimSize(d)) {
idx[d] = 0;
step = 1;
} else {
break;
}
}
}
// We typically should not lower general shape cast operations into data
// movement instructions, since the assumption is that these casts are
// optimized away during progressive lowering. For completeness, however,
// we fall back to a reference implementation that moves all elements
// into the right place if we get here.
class ShapeCastOpRewritePattern : public OpRewritePattern<vector::ShapeCastOp> {
public:
using OpRewritePattern::OpRewritePattern;
LogicalResult matchAndRewrite(vector::ShapeCastOp op,
PatternRewriter &rewriter) const override {
Location loc = op.getLoc();
auto sourceVectorType = op.getSourceVectorType();
auto resultVectorType = op.getResultVectorType();
if (sourceVectorType.isScalable() || resultVectorType.isScalable())
return failure();
// Special case 2D / 1D lowerings with better implementations.
// TODO: make is ND / 1D to allow generic ND -> 1D -> MD.
int64_t srcRank = sourceVectorType.getRank();
int64_t resRank = resultVectorType.getRank();
if ((srcRank == 2 && resRank == 1) || (srcRank == 1 && resRank == 2))
return failure();
// Generic ShapeCast lowering path goes all the way down to unrolled scalar
// extract/insert chains.
// TODO: consider evolving the semantics to only allow 1D source or dest and
// drop this potentially very expensive lowering.
// Compute number of elements involved in the reshape.
int64_t numElts = 1;
for (int64_t r = 0; r < srcRank; r++)
numElts *= sourceVectorType.getDimSize(r);
// Replace with data movement operations:
// x[0,0,0] = y[0,0]
// x[0,0,1] = y[0,1]
// x[0,1,0] = y[0,2]
// etc., incrementing the two index vectors "row-major"
// within the source and result shape.
SmallVector<int64_t> srcIdx(srcRank);
SmallVector<int64_t> resIdx(resRank);
Value result = rewriter.create<arith::ConstantOp>(
loc, resultVectorType, rewriter.getZeroAttr(resultVectorType));
for (int64_t i = 0; i < numElts; i++) {
if (i != 0) {
incIdx(srcIdx, sourceVectorType, srcRank - 1);
incIdx(resIdx, resultVectorType, resRank - 1);
}
Value extract;
if (srcRank == 0) {
// 0-D vector special case
assert(srcIdx.empty() && "Unexpected indices for 0-D vector");
extract = rewriter.create<vector::ExtractElementOp>(
loc, op.getSourceVectorType().getElementType(), op.getSource());
} else {
extract =
rewriter.create<vector::ExtractOp>(loc, op.getSource(), srcIdx);
}
if (resRank == 0) {
// 0-D vector special case
assert(resIdx.empty() && "Unexpected indices for 0-D vector");
result = rewriter.create<vector::InsertElementOp>(loc, extract, result);
} else {
result =
rewriter.create<vector::InsertOp>(loc, extract, result, resIdx);
}
}
rewriter.replaceOp(op, result);
return success();
}
};
/// A shape_cast lowering for scalable vectors with a single trailing scalable
/// dimension. This is similar to the general shape_cast lowering but makes use
/// of vector.scalable.insert and vector.scalable.extract to move elements a
/// subvector at a time.
///
/// E.g.:
/// ```
/// // Flatten scalable vector
/// %0 = vector.shape_cast %arg0 : vector<2x1x[4]xi32> to vector<[8]xi32>
/// ```
/// is rewritten to:
/// ```
/// // Flatten scalable vector
/// %c = arith.constant dense<0> : vector<[8]xi32>
/// %0 = vector.extract %arg0[0, 0] : vector<[4]xi32> from vector<2x1x[4]xi32>
/// %1 = vector.scalable.insert %0, %c[0] : vector<[4]xi32> into vector<[8]xi32>
/// %2 = vector.extract %arg0[1, 0] : vector<[4]xi32> from vector<2x1x[4]xi32>
/// %3 = vector.scalable.insert %2, %1[4] : vector<[4]xi32> into vector<[8]xi32>
/// ```
/// or:
/// ```
/// // Un-flatten scalable vector
/// %0 = vector.shape_cast %arg0 : vector<[8]xi32> to vector<2x1x[4]xi32>
/// ```
/// is rewritten to:
/// ```
/// // Un-flatten scalable vector
/// %c = arith.constant dense<0> : vector<2x1x[4]xi32>
/// %0 = vector.scalable.extract %arg0[0] : vector<[4]xi32> from vector<[8]xi32>
/// %1 = vector.insert %0, %c [0, 0] : vector<[4]xi32> into vector<2x1x[4]xi32>
/// %2 = vector.scalable.extract %arg0[4] : vector<[4]xi32> from vector<[8]xi32>
/// %3 = vector.insert %2, %1 [1, 0] : vector<[4]xi32> into vector<2x1x[4]xi32>
/// ```
class ScalableShapeCastOpRewritePattern
: public OpRewritePattern<vector::ShapeCastOp> {
public:
using OpRewritePattern::OpRewritePattern;
LogicalResult matchAndRewrite(vector::ShapeCastOp op,
PatternRewriter &rewriter) const override {
Location loc = op.getLoc();
auto sourceVectorType = op.getSourceVectorType();
auto resultVectorType = op.getResultVectorType();
auto srcRank = sourceVectorType.getRank();
auto resRank = resultVectorType.getRank();
// This can only lower shape_casts where both the source and result types
// have a single trailing scalable dimension. This is because there are no
// legal representation of other scalable types in LLVM (and likely won't be
// soon). There are also (currently) no operations that can index or extract
// from >= 2D scalable vectors or scalable vectors of fixed vectors.
if (!isTrailingDimScalable(sourceVectorType) ||
!isTrailingDimScalable(resultVectorType)) {
return failure();
}
// The sizes of the trailing dimension of the source and result vectors, the
// size of subvector to move, and the number of elements in the vectors.
// These are "min" sizes as they are the size when vscale == 1.
auto minSourceTrailingSize = sourceVectorType.getShape().back();
auto minResultTrailingSize = resultVectorType.getShape().back();
auto minExtractionSize =
std::min(minSourceTrailingSize, minResultTrailingSize);
int64_t minNumElts = 1;
for (auto size : sourceVectorType.getShape())
minNumElts *= size;
// The subvector type to move from the source to the result. Note that this
// is a scalable vector. This rewrite will generate code in terms of the
// "min" size (vscale == 1 case), that scales to any vscale.
auto extractionVectorType = VectorType::get(
{minExtractionSize}, sourceVectorType.getElementType(), {true});
Value result = rewriter.create<arith::ConstantOp>(
loc, resultVectorType, rewriter.getZeroAttr(resultVectorType));
SmallVector<int64_t> srcIdx(srcRank);
SmallVector<int64_t> resIdx(resRank);
// TODO: Try rewriting this with StaticTileOffsetRange (from IndexingUtils)
// once D150000 lands.
Value currentResultScalableVector;
Value currentSourceScalableVector;
for (int64_t i = 0; i < minNumElts; i += minExtractionSize) {
// 1. Extract a scalable subvector from the source vector.
if (!currentSourceScalableVector) {
if (srcRank != 1) {
currentSourceScalableVector = rewriter.create<vector::ExtractOp>(
loc, op.getSource(), llvm::ArrayRef(srcIdx).drop_back());
} else {
currentSourceScalableVector = op.getSource();
}
}
Value sourceSubVector = currentSourceScalableVector;
if (minExtractionSize < minSourceTrailingSize) {
sourceSubVector = rewriter.create<vector::ScalableExtractOp>(
loc, extractionVectorType, sourceSubVector, srcIdx.back());
}
// 2. Insert the scalable subvector into the result vector.
if (!currentResultScalableVector) {
if (minExtractionSize == minResultTrailingSize) {
currentResultScalableVector = sourceSubVector;
} else if (resRank != 1) {
currentResultScalableVector = rewriter.create<vector::ExtractOp>(
loc, result, llvm::ArrayRef(resIdx).drop_back());
} else {
currentResultScalableVector = result;
}
}
if (minExtractionSize < minResultTrailingSize) {
currentResultScalableVector = rewriter.create<vector::ScalableInsertOp>(
loc, sourceSubVector, currentResultScalableVector, resIdx.back());
}
// 3. Update the source and result scalable vectors if needed.
if (resIdx.back() + minExtractionSize >= minResultTrailingSize &&
currentResultScalableVector != result) {
// Finished row of result. Insert complete scalable vector into result
// (n-D) vector.
result = rewriter.create<vector::InsertOp>(
loc, currentResultScalableVector, result,
llvm::ArrayRef(resIdx).drop_back());
currentResultScalableVector = {};
}
if (srcIdx.back() + minExtractionSize >= minSourceTrailingSize) {
// Finished row of source.
currentSourceScalableVector = {};
}
// 4. Increment the insert/extract indices, stepping by minExtractionSize
// for the trailing dimensions.
incIdx(srcIdx, sourceVectorType, srcRank - 1, minExtractionSize);
incIdx(resIdx, resultVectorType, resRank - 1, minExtractionSize);
}
rewriter.replaceOp(op, result);
return success();
}
static bool isTrailingDimScalable(VectorType type) {
return type.getRank() >= 1 && type.getScalableDims().back() &&
!llvm::is_contained(type.getScalableDims().drop_back(), true);
}
};
} // namespace
void mlir::vector::populateVectorShapeCastLoweringPatterns(
RewritePatternSet &patterns, PatternBenefit benefit) {
patterns.add<ShapeCastOp2DDownCastRewritePattern,
ShapeCastOp2DUpCastRewritePattern, ShapeCastOpRewritePattern,
ScalableShapeCastOpRewritePattern>(patterns.getContext(),
benefit);
}
|