File: matmul-shared-memory-padding.mlir

package info (click to toggle)
llvm-toolchain-18 1%3A18.1.8-18
  • links: PTS, VCS
  • area: main
  • in suites: trixie
  • size: 1,908,340 kB
  • sloc: cpp: 6,667,937; ansic: 1,440,452; asm: 883,619; python: 230,549; objc: 76,880; f90: 74,238; lisp: 35,989; pascal: 16,571; sh: 10,229; perl: 7,459; ml: 5,047; awk: 3,523; makefile: 2,987; javascript: 2,149; xml: 892; fortran: 649; cs: 573
file content (233 lines) | stat: -rw-r--r-- 11,118 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
// RUN: mlir-opt --split-input-file --transform-interpreter %s | FileCheck %s

// CHECK-LABEL: func @matmul_divisible
//       CHECK:   scf.forall
//   CHECK-NOT:     memref.copy
//       CHECK:     linalg.fill
//       CHECK:     scf.for
//       CHECK:       memref.alloc() : memref<128x16xf32, 3>
//       CHECK:       scf.forall
//       CHECK:         vector.create_mask
//       CHECK:         vector.transfer_read
//       CHECK:         vector.transfer_write
//       CHECK:       memref.alloc() : memref<16x128xf32, 3>
//       CHECK:       scf.forall
//       CHECK:         vector.create_mask
//       CHECK:         vector.transfer_read
//       CHECK:         vector.transfer_write
//       CHECK:       memref.alloc() : memref<128x128xf32, 3>
//       CHECK:       scf.forall
//       CHECK:         vector.create_mask
//       CHECK:         vector.transfer_read
//       CHECK:         vector.transfer_write
//       CHECK:       linalg.matmul
//       CHECK:       scf.forall
//       CHECK:         vector.transfer_read
//       CHECK:         vector.transfer_write
func.func @matmul_divisible(%A: tensor<1024x1024xf32>,
                            %B: tensor<1024x1024xf32>,
                            %C: tensor<1024x1024xf32>)
    -> tensor<1024x1024xf32>
{
  %cst = arith.constant 0.000000e+00 : f32
  %0 = linalg.fill ins(%cst : f32)
                   outs(%C : tensor<1024x1024xf32>)
      -> tensor<1024x1024xf32>
  %1 = linalg.matmul ins(%A, %B : tensor<1024x1024xf32>, tensor<1024x1024xf32>)
                     outs(%0 : tensor<1024x1024xf32>)
      -> tensor<1024x1024xf32>
  return %1 : tensor<1024x1024xf32>
}

module attributes {transform.with_named_sequence} {
  transform.named_sequence @__transform_main(%arg1: !transform.any_op {transform.consumed}) {
    // Fuse linalg.fill into linalg.matmul and tile.
    %matmul_op = transform.structured.match ops{["linalg.matmul"]} in %arg1
        : (!transform.any_op) -> !transform.any_op
    %fill_op = transform.structured.match ops{["linalg.fill"]} in %arg1
        : (!transform.any_op) -> !transform.any_op
    %tiled_matmul_op, %forall_op = transform.structured.tile_using_forall %matmul_op num_threads [] tile_sizes [128, 128](mapping = [#gpu.block<y>, #gpu.block<x>])
        : (!transform.any_op) -> (!transform.any_op, !transform.any_op)
    %fused_op, %new_containing_op = transform.structured.fuse_into_containing_op %fill_op into %forall_op
        : (!transform.any_op, !transform.any_op) -> (!transform.any_op, !transform.any_op)

    // Tile linalg.matmul a second time.
    %tiled_linalg_op, %loops = transform.structured.tile_using_for %tiled_matmul_op[0, 0, 16] : (!transform.any_op) -> (!transform.any_op, !transform.any_op)

    // Pad linalg.matmul.
    %padded, %pad, %copy_back = transform.structured.pad %tiled_linalg_op
        {padding_values=[0.0 : f32, 0.0 : f32, 0.0 : f32],
         padding_dimensions=[0, 1, 2], pack_paddings=[1, 1, 1],
         copy_back_op = "linalg.copy"}
        : (!transform.any_op) -> (!transform.any_op, !transform.any_op, !transform.any_op)

    // Map and tile tensor.pad.
    %pad_forall_op, %tiled_pad_op = transform.structured.gpu.map_copy_to_threads
        %pad total_num_threads = 32 desired_bit_alignment = 128
        : (!transform.any_op) -> (!transform.any_op, !transform.any_op)
    transform.foreach %pad_forall_op : !transform.any_op {
    ^bb2(%arg2 : !transform.any_op):
      %if_op = transform.structured.match ops{["scf.if"]} in %arg2
          : (!transform.any_op) -> !transform.any_op
      // TODO: The scf.if can be avoided with 0x... tensors.
      transform.scf.take_assumed_branch %if_op take_else_branch
          : (!transform.any_op) -> ()
    }

    // Map and tile copy back.
    %copy_forall_op, %tiled_copy_op = transform.structured.gpu.map_copy_to_threads
        %copy_back total_num_threads = 32 desired_bit_alignment = 128
        : (!transform.any_op) -> (!transform.any_op, !transform.any_op)

    // Apply masked vectorization to padding ops.
    transform.structured.vectorize %tiled_pad_op vector_sizes [128, 4]
        : !transform.any_op

    // Assign shared memory buffer to padding.
    %buffer, %new_ops = transform.structured.bufferize_to_allocation
        %pad_forall_op {memory_space = 3, bufferize_destination_only, emit_dealloc}
        : !transform.any_op

    // Bufferize.
    %func_op_1 = transform.structured.match ops{["func.func"]} in %arg1
        : (!transform.any_op) -> !transform.any_op
    transform.bufferization.eliminate_empty_tensors %func_op_1 : !transform.any_op
    transform.apply_dce to %func_op_1 : !transform.any_op
    transform.apply_cse to %func_op_1 : !transform.any_op
    %bufferized = transform.bufferization.one_shot_bufferize
        layout{IdentityLayoutMap} %arg1 {bufferize_function_boundaries=true}
        : (!transform.any_op) -> !transform.any_op

    // Apply vectorization to copy back from shared memory.
    // TODO: Find a way to retain the handle to linalg.copy throughout
    // bufferization.
    %func_op_2 = transform.structured.match ops{["func.func"]} in %bufferized
        : (!transform.any_op) -> !transform.any_op
    %bufferized_copy_back = transform.structured.match ops{["linalg.copy"]} in %func_op_2
        : (!transform.any_op) -> !transform.any_op
    transform.structured.vectorize
        %bufferized_copy_back vector_sizes [128, 4] : !transform.any_op

    // Canonicalize, cleanup and vector lowering. This step also removes buffer
    // self-copies.
    transform.apply_patterns to %func_op_2 {
      transform.apply_patterns.canonicalization
      transform.apply_patterns.vector.lower_masked_transfers
    } {apply_cse} : !transform.any_op
    transform.yield
  }
}

// -----

// CHECK-LABEL: func @matmul_not_divisible
//       CHECK:   scf.forall
//   CHECK-NOT:     memref.copy
//       CHECK:     linalg.fill
//       CHECK:     scf.for
//       CHECK:       memref.alloc() : memref<128x16xf32, 3>
//       CHECK:       scf.forall
//       CHECK:         vector.create_mask
//       CHECK:         vector.transfer_read
//       CHECK:         vector.transfer_write
//       CHECK:       memref.alloc() : memref<16x128xf32, 3>
//       CHECK:       scf.forall
//       CHECK:         vector.create_mask
//       CHECK:         vector.transfer_read
//       CHECK:         vector.transfer_write
//       CHECK:       memref.alloc() : memref<128x128xf32, 3>
//       CHECK:       scf.forall
//       CHECK:         vector.create_mask
//       CHECK:         vector.transfer_read
//       CHECK:         vector.transfer_write
//       CHECK:       linalg.matmul
//       CHECK:       vector.transfer_read
//       CHECK:       vector.transfer_write
func.func @matmul_not_divisible(%A: tensor<1023x1023xf32>,
                                %B: tensor<1023x1023xf32>,
                                %C: tensor<1023x1023xf32>)
    -> tensor<1023x1023xf32>
{
  %cst = arith.constant 0.000000e+00 : f32
  %0 = linalg.fill ins(%cst : f32)
                   outs(%C : tensor<1023x1023xf32>)
      -> tensor<1023x1023xf32>
  %1 = linalg.matmul ins(%A, %B : tensor<1023x1023xf32>, tensor<1023x1023xf32>)
                     outs(%0 : tensor<1023x1023xf32>)
      -> tensor<1023x1023xf32>
  return %1 : tensor<1023x1023xf32>
}

module attributes {transform.with_named_sequence} {
  transform.named_sequence @__transform_main(%arg1: !transform.any_op {transform.consumed}) {
    // Fuse linalg.fill into linalg.matmul and tile.
    %matmul_op = transform.structured.match ops{["linalg.matmul"]} in %arg1
        : (!transform.any_op) -> !transform.any_op
    %fill_op = transform.structured.match ops{["linalg.fill"]} in %arg1
        : (!transform.any_op) -> !transform.any_op
    %tiled_matmul_op, %forall_op = transform.structured.tile_using_forall %matmul_op num_threads [] tile_sizes [128, 128](mapping = [#gpu.block<y>, #gpu.block<x>])
        : (!transform.any_op) -> (!transform.any_op, !transform.any_op)
    %fused_op, %new_containing_op = transform.structured.fuse_into_containing_op %fill_op into %forall_op
        : (!transform.any_op, !transform.any_op) -> (!transform.any_op, !transform.any_op)

    // Tile linalg.matmul a second time.
    %tiled_linalg_op, %loops = transform.structured.tile_using_for %tiled_matmul_op[0, 0, 16] : (!transform.any_op) -> (!transform.any_op, !transform.any_op)

    // Pad linalg.matmul.
    %padded, %pad, %copy_back = transform.structured.pad %tiled_linalg_op
        {padding_values=[0.0 : f32, 0.0 : f32, 0.0 : f32],
         padding_dimensions=[0, 1, 2], pack_paddings=[1, 1, 1],
         copy_back_op = "linalg.copy"}
        : (!transform.any_op) -> (!transform.any_op, !transform.any_op, !transform.any_op)

    // Map and tile tensor.pad.
    %pad_forall_op, %tiled_pad_op = transform.structured.gpu.map_copy_to_threads
        %pad total_num_threads = 32 desired_bit_alignment = 128
        : (!transform.any_op) -> (!transform.any_op, !transform.any_op)
    transform.foreach %pad_forall_op : !transform.any_op {
    ^bb2(%arg2 : !transform.any_op):
      %if_op = transform.structured.match ops{["scf.if"]} in %arg2
          : (!transform.any_op) -> !transform.any_op
      // TODO: The scf.if can be avoided with 0x... tensors.
      transform.scf.take_assumed_branch %if_op take_else_branch
          : (!transform.any_op) -> ()
    }

    // Apply masked vectorization to padding ops.
    transform.structured.vectorize %tiled_pad_op vector_sizes [128, 4]
        : !transform.any_op

    // Assign shared memory buffer to padding.
    %buffer, %new_ops = transform.structured.bufferize_to_allocation
        %pad_forall_op {memory_space = 3, bufferize_destination_only, emit_dealloc}
        : !transform.any_op

    // Bufferize.
    %func_op_1 = transform.structured.match ops{["func.func"]} in %arg1
        : (!transform.any_op) -> !transform.any_op
    transform.bufferization.eliminate_empty_tensors %func_op_1 : !transform.any_op
    transform.apply_dce to %func_op_1 : !transform.any_op
    transform.apply_cse to %func_op_1 : !transform.any_op
    %bufferized = transform.bufferization.one_shot_bufferize
        layout{IdentityLayoutMap} %arg1 {bufferize_function_boundaries=true}
        : (!transform.any_op) -> !transform.any_op

    // Apply vectorization to copy back from shared memory.
    // TODO: Find a way to retain the handle to linalg.copy throughout
    // bufferization.
    %func_op_2 = transform.structured.match ops{["func.func"]} in %bufferized
        : (!transform.any_op) -> !transform.any_op
    %bufferized_copy_back = transform.structured.match ops{["linalg.copy"]} in %func_op_2
        : (!transform.any_op) -> !transform.any_op
    transform.structured.vectorize
        %bufferized_copy_back vector_sizes [128, 4] : !transform.any_op

    // Canonicalize, cleanup and vector lowering. This step also removes buffer
    // self-copies.
    transform.apply_patterns to %func_op_2 {
      transform.apply_patterns.canonicalization
      transform.apply_patterns.vector.lower_masked_transfers
    } {apply_cse} : !transform.any_op
    transform.yield
  }
}