1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233
|
// RUN: mlir-opt --split-input-file --transform-interpreter %s | FileCheck %s
// CHECK-LABEL: func @matmul_divisible
// CHECK: scf.forall
// CHECK-NOT: memref.copy
// CHECK: linalg.fill
// CHECK: scf.for
// CHECK: memref.alloc() : memref<128x16xf32, 3>
// CHECK: scf.forall
// CHECK: vector.create_mask
// CHECK: vector.transfer_read
// CHECK: vector.transfer_write
// CHECK: memref.alloc() : memref<16x128xf32, 3>
// CHECK: scf.forall
// CHECK: vector.create_mask
// CHECK: vector.transfer_read
// CHECK: vector.transfer_write
// CHECK: memref.alloc() : memref<128x128xf32, 3>
// CHECK: scf.forall
// CHECK: vector.create_mask
// CHECK: vector.transfer_read
// CHECK: vector.transfer_write
// CHECK: linalg.matmul
// CHECK: scf.forall
// CHECK: vector.transfer_read
// CHECK: vector.transfer_write
func.func @matmul_divisible(%A: tensor<1024x1024xf32>,
%B: tensor<1024x1024xf32>,
%C: tensor<1024x1024xf32>)
-> tensor<1024x1024xf32>
{
%cst = arith.constant 0.000000e+00 : f32
%0 = linalg.fill ins(%cst : f32)
outs(%C : tensor<1024x1024xf32>)
-> tensor<1024x1024xf32>
%1 = linalg.matmul ins(%A, %B : tensor<1024x1024xf32>, tensor<1024x1024xf32>)
outs(%0 : tensor<1024x1024xf32>)
-> tensor<1024x1024xf32>
return %1 : tensor<1024x1024xf32>
}
module attributes {transform.with_named_sequence} {
transform.named_sequence @__transform_main(%arg1: !transform.any_op {transform.consumed}) {
// Fuse linalg.fill into linalg.matmul and tile.
%matmul_op = transform.structured.match ops{["linalg.matmul"]} in %arg1
: (!transform.any_op) -> !transform.any_op
%fill_op = transform.structured.match ops{["linalg.fill"]} in %arg1
: (!transform.any_op) -> !transform.any_op
%tiled_matmul_op, %forall_op = transform.structured.tile_using_forall %matmul_op num_threads [] tile_sizes [128, 128](mapping = [#gpu.block<y>, #gpu.block<x>])
: (!transform.any_op) -> (!transform.any_op, !transform.any_op)
%fused_op, %new_containing_op = transform.structured.fuse_into_containing_op %fill_op into %forall_op
: (!transform.any_op, !transform.any_op) -> (!transform.any_op, !transform.any_op)
// Tile linalg.matmul a second time.
%tiled_linalg_op, %loops = transform.structured.tile_using_for %tiled_matmul_op[0, 0, 16] : (!transform.any_op) -> (!transform.any_op, !transform.any_op)
// Pad linalg.matmul.
%padded, %pad, %copy_back = transform.structured.pad %tiled_linalg_op
{padding_values=[0.0 : f32, 0.0 : f32, 0.0 : f32],
padding_dimensions=[0, 1, 2], pack_paddings=[1, 1, 1],
copy_back_op = "linalg.copy"}
: (!transform.any_op) -> (!transform.any_op, !transform.any_op, !transform.any_op)
// Map and tile tensor.pad.
%pad_forall_op, %tiled_pad_op = transform.structured.gpu.map_copy_to_threads
%pad total_num_threads = 32 desired_bit_alignment = 128
: (!transform.any_op) -> (!transform.any_op, !transform.any_op)
transform.foreach %pad_forall_op : !transform.any_op {
^bb2(%arg2 : !transform.any_op):
%if_op = transform.structured.match ops{["scf.if"]} in %arg2
: (!transform.any_op) -> !transform.any_op
// TODO: The scf.if can be avoided with 0x... tensors.
transform.scf.take_assumed_branch %if_op take_else_branch
: (!transform.any_op) -> ()
}
// Map and tile copy back.
%copy_forall_op, %tiled_copy_op = transform.structured.gpu.map_copy_to_threads
%copy_back total_num_threads = 32 desired_bit_alignment = 128
: (!transform.any_op) -> (!transform.any_op, !transform.any_op)
// Apply masked vectorization to padding ops.
transform.structured.vectorize %tiled_pad_op vector_sizes [128, 4]
: !transform.any_op
// Assign shared memory buffer to padding.
%buffer, %new_ops = transform.structured.bufferize_to_allocation
%pad_forall_op {memory_space = 3, bufferize_destination_only, emit_dealloc}
: !transform.any_op
// Bufferize.
%func_op_1 = transform.structured.match ops{["func.func"]} in %arg1
: (!transform.any_op) -> !transform.any_op
transform.bufferization.eliminate_empty_tensors %func_op_1 : !transform.any_op
transform.apply_dce to %func_op_1 : !transform.any_op
transform.apply_cse to %func_op_1 : !transform.any_op
%bufferized = transform.bufferization.one_shot_bufferize
layout{IdentityLayoutMap} %arg1 {bufferize_function_boundaries=true}
: (!transform.any_op) -> !transform.any_op
// Apply vectorization to copy back from shared memory.
// TODO: Find a way to retain the handle to linalg.copy throughout
// bufferization.
%func_op_2 = transform.structured.match ops{["func.func"]} in %bufferized
: (!transform.any_op) -> !transform.any_op
%bufferized_copy_back = transform.structured.match ops{["linalg.copy"]} in %func_op_2
: (!transform.any_op) -> !transform.any_op
transform.structured.vectorize
%bufferized_copy_back vector_sizes [128, 4] : !transform.any_op
// Canonicalize, cleanup and vector lowering. This step also removes buffer
// self-copies.
transform.apply_patterns to %func_op_2 {
transform.apply_patterns.canonicalization
transform.apply_patterns.vector.lower_masked_transfers
} {apply_cse} : !transform.any_op
transform.yield
}
}
// -----
// CHECK-LABEL: func @matmul_not_divisible
// CHECK: scf.forall
// CHECK-NOT: memref.copy
// CHECK: linalg.fill
// CHECK: scf.for
// CHECK: memref.alloc() : memref<128x16xf32, 3>
// CHECK: scf.forall
// CHECK: vector.create_mask
// CHECK: vector.transfer_read
// CHECK: vector.transfer_write
// CHECK: memref.alloc() : memref<16x128xf32, 3>
// CHECK: scf.forall
// CHECK: vector.create_mask
// CHECK: vector.transfer_read
// CHECK: vector.transfer_write
// CHECK: memref.alloc() : memref<128x128xf32, 3>
// CHECK: scf.forall
// CHECK: vector.create_mask
// CHECK: vector.transfer_read
// CHECK: vector.transfer_write
// CHECK: linalg.matmul
// CHECK: vector.transfer_read
// CHECK: vector.transfer_write
func.func @matmul_not_divisible(%A: tensor<1023x1023xf32>,
%B: tensor<1023x1023xf32>,
%C: tensor<1023x1023xf32>)
-> tensor<1023x1023xf32>
{
%cst = arith.constant 0.000000e+00 : f32
%0 = linalg.fill ins(%cst : f32)
outs(%C : tensor<1023x1023xf32>)
-> tensor<1023x1023xf32>
%1 = linalg.matmul ins(%A, %B : tensor<1023x1023xf32>, tensor<1023x1023xf32>)
outs(%0 : tensor<1023x1023xf32>)
-> tensor<1023x1023xf32>
return %1 : tensor<1023x1023xf32>
}
module attributes {transform.with_named_sequence} {
transform.named_sequence @__transform_main(%arg1: !transform.any_op {transform.consumed}) {
// Fuse linalg.fill into linalg.matmul and tile.
%matmul_op = transform.structured.match ops{["linalg.matmul"]} in %arg1
: (!transform.any_op) -> !transform.any_op
%fill_op = transform.structured.match ops{["linalg.fill"]} in %arg1
: (!transform.any_op) -> !transform.any_op
%tiled_matmul_op, %forall_op = transform.structured.tile_using_forall %matmul_op num_threads [] tile_sizes [128, 128](mapping = [#gpu.block<y>, #gpu.block<x>])
: (!transform.any_op) -> (!transform.any_op, !transform.any_op)
%fused_op, %new_containing_op = transform.structured.fuse_into_containing_op %fill_op into %forall_op
: (!transform.any_op, !transform.any_op) -> (!transform.any_op, !transform.any_op)
// Tile linalg.matmul a second time.
%tiled_linalg_op, %loops = transform.structured.tile_using_for %tiled_matmul_op[0, 0, 16] : (!transform.any_op) -> (!transform.any_op, !transform.any_op)
// Pad linalg.matmul.
%padded, %pad, %copy_back = transform.structured.pad %tiled_linalg_op
{padding_values=[0.0 : f32, 0.0 : f32, 0.0 : f32],
padding_dimensions=[0, 1, 2], pack_paddings=[1, 1, 1],
copy_back_op = "linalg.copy"}
: (!transform.any_op) -> (!transform.any_op, !transform.any_op, !transform.any_op)
// Map and tile tensor.pad.
%pad_forall_op, %tiled_pad_op = transform.structured.gpu.map_copy_to_threads
%pad total_num_threads = 32 desired_bit_alignment = 128
: (!transform.any_op) -> (!transform.any_op, !transform.any_op)
transform.foreach %pad_forall_op : !transform.any_op {
^bb2(%arg2 : !transform.any_op):
%if_op = transform.structured.match ops{["scf.if"]} in %arg2
: (!transform.any_op) -> !transform.any_op
// TODO: The scf.if can be avoided with 0x... tensors.
transform.scf.take_assumed_branch %if_op take_else_branch
: (!transform.any_op) -> ()
}
// Apply masked vectorization to padding ops.
transform.structured.vectorize %tiled_pad_op vector_sizes [128, 4]
: !transform.any_op
// Assign shared memory buffer to padding.
%buffer, %new_ops = transform.structured.bufferize_to_allocation
%pad_forall_op {memory_space = 3, bufferize_destination_only, emit_dealloc}
: !transform.any_op
// Bufferize.
%func_op_1 = transform.structured.match ops{["func.func"]} in %arg1
: (!transform.any_op) -> !transform.any_op
transform.bufferization.eliminate_empty_tensors %func_op_1 : !transform.any_op
transform.apply_dce to %func_op_1 : !transform.any_op
transform.apply_cse to %func_op_1 : !transform.any_op
%bufferized = transform.bufferization.one_shot_bufferize
layout{IdentityLayoutMap} %arg1 {bufferize_function_boundaries=true}
: (!transform.any_op) -> !transform.any_op
// Apply vectorization to copy back from shared memory.
// TODO: Find a way to retain the handle to linalg.copy throughout
// bufferization.
%func_op_2 = transform.structured.match ops{["func.func"]} in %bufferized
: (!transform.any_op) -> !transform.any_op
%bufferized_copy_back = transform.structured.match ops{["linalg.copy"]} in %func_op_2
: (!transform.any_op) -> !transform.any_op
transform.structured.vectorize
%bufferized_copy_back vector_sizes [128, 4] : !transform.any_op
// Canonicalize, cleanup and vector lowering. This step also removes buffer
// self-copies.
transform.apply_patterns to %func_op_2 {
transform.apply_patterns.canonicalization
transform.apply_patterns.vector.lower_masked_transfers
} {apply_cse} : !transform.any_op
transform.yield
}
}
|