File: transform-ops.mlir

package info (click to toggle)
llvm-toolchain-18 1%3A18.1.8-18
  • links: PTS, VCS
  • area: main
  • in suites: trixie
  • size: 1,908,340 kB
  • sloc: cpp: 6,667,937; ansic: 1,440,452; asm: 883,619; python: 230,549; objc: 76,880; f90: 74,238; lisp: 35,989; pascal: 16,571; sh: 10,229; perl: 7,459; ml: 5,047; awk: 3,523; makefile: 2,987; javascript: 2,149; xml: 892; fortran: 649; cs: 573
file content (375 lines) | stat: -rw-r--r-- 15,880 bytes parent folder | download | duplicates (9)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
// RUN: mlir-opt %s -transform-interpreter -verify-diagnostics -allow-unregistered-dialect -split-input-file | FileCheck %s

// CHECK-DAG: memref.global "private" @[[ALLOC0:alloc.*]] : memref<2x32xf32>
// CHECK-DAG: memref.global "private" @[[ALLOC1:alloc.*]] : memref<2x32xf32>

// CHECK-DAG: func.func @func(%[[LB:.*]]: index, %[[UB:.*]]: index)
func.func @func(%lb: index, %ub: index) {
  // CHECK-DAG: scf.forall (%[[ARG0:.*]], %[[ARG1:.*]]) in (%[[LB]], %[[UB]])
  scf.forall (%arg0, %arg1) in (%lb, %ub) {
    // CHECK-DAG: %[[MR0:.*]] = memref.get_global @[[ALLOC0]] : memref<2x32xf32>
    // CHECK-DAG: %[[MR1:.*]] = memref.get_global @[[ALLOC1]] : memref<2x32xf32>
    // CHECK-DAG: memref.store %{{.*}}, %[[MR0]][%{{.*}}, %{{.*}}] : memref<2x32xf32>
    // CHECK-DAG: memref.store %{{.*}}, %[[MR1]][%{{.*}}, %{{.*}}] : memref<2x32xf32>
    %cst = arith.constant 0.0 : f32
    %mr0 = memref.alloca() : memref<2x32xf32>
    %mr1 = memref.alloca() : memref<2x32xf32>
    memref.store %cst, %mr0[%arg0, %arg1] : memref<2x32xf32>
    memref.store %cst, %mr1[%arg0, %arg1] : memref<2x32xf32>
  }
  return
}

module attributes {transform.with_named_sequence} {
  transform.named_sequence @__transform_main(%arg0: !transform.any_op {transform.readonly}) {
    %alloca = transform.structured.match ops{["memref.alloca"]} in %arg0
        : (!transform.any_op) -> !transform.op<"memref.alloca">
    %get_global, %global = transform.memref.alloca_to_global %alloca
          : (!transform.op<"memref.alloca">)
            -> (!transform.any_op, !transform.any_op)
    transform.yield
  }
}

// -----

// CHECK-DAG: #[[$MAP0:.*]] = affine_map<(d0) -> ((d0 floordiv 4) mod 2)>
// CHECK-DAG: #[[$MAP1:.*]] = affine_map<(d0)[s0] -> (d0 + s0)>

// CHECK-LABEL: func @multi_buffer
func.func @multi_buffer(%in: memref<16xf32>) {
  // CHECK: %[[A:.*]] = memref.alloc() : memref<2x4xf32>
  // expected-remark @below {{transformed}}
  %tmp = memref.alloc() : memref<4xf32>

  // CHECK: %[[C0:.*]] = arith.constant 0 : index
  // CHECK: %[[C4:.*]] = arith.constant 4 : index
  %c0 = arith.constant 0 : index
  %c4 = arith.constant 4 : index
  %c16 = arith.constant 16 : index

  // CHECK: scf.for %[[IV:.*]] = %[[C0]]
  scf.for %i0 = %c0 to %c16 step %c4 {
    // CHECK: %[[I:.*]] = affine.apply #[[$MAP0]](%[[IV]])
    // CHECK: %[[SV:.*]] = memref.subview %[[A]][%[[I]], 0] [1, 4] [1, 1] : memref<2x4xf32> to memref<4xf32, strided<[1], offset: ?>>
    %1 = memref.subview %in[%i0] [4] [1] : memref<16xf32> to memref<4xf32, affine_map<(d0)[s0] -> (d0 + s0)>>
    // CHECK: memref.copy %{{.*}}, %[[SV]] : memref<4xf32, #[[$MAP1]]> to memref<4xf32, strided<[1], offset: ?>>
    memref.copy %1, %tmp :  memref<4xf32, affine_map<(d0)[s0] -> (d0 + s0)>> to memref<4xf32>

    "some_use"(%tmp) : (memref<4xf32>) ->()
  }
  return
}

module attributes {transform.with_named_sequence} {
  transform.named_sequence @__transform_main(%arg1: !transform.any_op {transform.readonly}) {
    %0 = transform.structured.match ops{["memref.alloc"]} in %arg1 : (!transform.any_op) -> !transform.op<"memref.alloc">
    %1 = transform.memref.multibuffer %0 {factor = 2 : i64} : (!transform.op<"memref.alloc">) -> !transform.any_op
    // Verify that the returned handle is usable.
    transform.debug.emit_remark_at %1, "transformed" : !transform.any_op
    transform.yield
  }
}

// -----

// CHECK-DAG: #[[$MAP0:.*]] = affine_map<(d0) -> ((d0 floordiv 4) mod 2)>
// CHECK-DAG: #[[$MAP1:.*]] = affine_map<(d0)[s0] -> (d0 + s0)>

// CHECK-LABEL: func @multi_buffer_on_affine_loop
func.func @multi_buffer_on_affine_loop(%in: memref<16xf32>) {
  // CHECK: %[[A:.*]] = memref.alloc() : memref<2x4xf32>
  // expected-remark @below {{transformed}}
  %tmp = memref.alloc() : memref<4xf32>

  // CHECK: %[[C0:.*]] = arith.constant 0 : index
  %c0 = arith.constant 0 : index

  // CHECK: affine.for %[[IV:.*]] = 0
  affine.for %i0 = 0 to 16 step 4 {
    // CHECK: %[[I:.*]] = affine.apply #[[$MAP0]](%[[IV]])
    // CHECK: %[[SV:.*]] = memref.subview %[[A]][%[[I]], 0] [1, 4] [1, 1] : memref<2x4xf32> to memref<4xf32, strided<[1], offset: ?>>
    %1 = memref.subview %in[%i0] [4] [1] : memref<16xf32> to memref<4xf32, affine_map<(d0)[s0] -> (d0 + s0)>>
    // CHECK: memref.copy %{{.*}}, %[[SV]] : memref<4xf32, #[[$MAP1]]> to memref<4xf32, strided<[1], offset: ?>>
    memref.copy %1, %tmp :  memref<4xf32, affine_map<(d0)[s0] -> (d0 + s0)>> to memref<4xf32>

    "some_use"(%tmp) : (memref<4xf32>) ->()
  }
  return
}

module attributes {transform.with_named_sequence} {
  transform.named_sequence @__transform_main(%arg1: !transform.any_op {transform.readonly}) {
    %0 = transform.structured.match ops{["memref.alloc"]} in %arg1 : (!transform.any_op) -> !transform.op<"memref.alloc">
    %1 = transform.memref.multibuffer %0 {factor = 2 : i64} : (!transform.op<"memref.alloc">) -> !transform.any_op
    // Verify that the returned handle is usable.
    transform.debug.emit_remark_at %1, "transformed" : !transform.any_op
    transform.yield
  }
}

// -----

// Trying to use multibuffer on allocs that are used in different loops
// with none dominating the other is going to fail.
// Check that we emit a proper error for that.
func.func @multi_buffer_uses_with_no_loop_dominator(%in: memref<16xf32>, %cond: i1) {
  // expected-error @below {{op failed to multibuffer}}
  %tmp = memref.alloc() : memref<4xf32>

  %c0 = arith.constant 0 : index
  %c4 = arith.constant 4 : index
  %c16 = arith.constant 16 : index
  scf.if %cond {
    scf.for %i0 = %c0 to %c16 step %c4 {
      %var = memref.subview %in[%i0] [4] [1] : memref<16xf32> to memref<4xf32, affine_map<(d0)[s0] -> (d0 + s0)>>
      memref.copy %var, %tmp :  memref<4xf32, affine_map<(d0)[s0] -> (d0 + s0)>> to memref<4xf32>

      "some_use"(%tmp) : (memref<4xf32>) ->()
    }
  }

  scf.for %i0 = %c0 to %c16 step %c4 {
    %1 = memref.subview %in[%i0] [4] [1] : memref<16xf32> to memref<4xf32, affine_map<(d0)[s0] -> (d0 + s0)>>
    memref.copy %1, %tmp :  memref<4xf32, affine_map<(d0)[s0] -> (d0 + s0)>> to memref<4xf32>

    "some_use"(%tmp) : (memref<4xf32>) ->()
  }
  return
}

module attributes {transform.with_named_sequence} {
  transform.named_sequence @__transform_main(%arg1: !transform.any_op {transform.readonly}) {
    %0 = transform.structured.match ops{["memref.alloc"]} in %arg1 : (!transform.any_op) -> !transform.op<"memref.alloc">
    %1 = transform.memref.multibuffer %0 {factor = 2 : i64} : (!transform.op<"memref.alloc">) -> !transform.any_op
    transform.yield
  }
}

// -----

// Make sure the multibuffer operation is typed so that it only supports
// memref.alloc.
// Check that we emit an error if we try to match something else.
func.func @multi_buffer_reject_alloca(%in: memref<16xf32>, %cond: i1) {
  %tmp = memref.alloca() : memref<4xf32>

  %c0 = arith.constant 0 : index
  %c4 = arith.constant 4 : index
  %c16 = arith.constant 16 : index
  scf.if %cond {
    scf.for %i0 = %c0 to %c16 step %c4 {
      %var = memref.subview %in[%i0] [4] [1] : memref<16xf32> to memref<4xf32, affine_map<(d0)[s0] -> (d0 + s0)>>
      memref.copy %var, %tmp :  memref<4xf32, affine_map<(d0)[s0] -> (d0 + s0)>> to memref<4xf32>

      "some_use"(%tmp) : (memref<4xf32>) ->()
    }
  }

  scf.for %i0 = %c0 to %c16 step %c4 {
    %1 = memref.subview %in[%i0] [4] [1] : memref<16xf32> to memref<4xf32, affine_map<(d0)[s0] -> (d0 + s0)>>
    memref.copy %1, %tmp :  memref<4xf32, affine_map<(d0)[s0] -> (d0 + s0)>> to memref<4xf32>

    "some_use"(%tmp) : (memref<4xf32>) ->()
  }
  return
}

module attributes {transform.with_named_sequence} {
  transform.named_sequence @__transform_main(%arg1: !transform.any_op {transform.readonly}) {
    %0 = transform.structured.match ops{["memref.alloca"]} in %arg1 : (!transform.any_op) -> !transform.op<"memref.alloca">
    // expected-error @below {{'transform.memref.multibuffer' op operand #0 must be Transform IR handle to memref.alloc operations, but got '!transform.op<"memref.alloca">'}}
    %1 = transform.memref.multibuffer %0 {factor = 2 : i64} : (!transform.op<"memref.alloca">) -> !transform.any_op
    transform.yield
  }
}

// -----

// CHECK-DAG: #[[$MAP0:.*]] = affine_map<(d0) -> ((d0 floordiv 4) mod 2)>
// CHECK-DAG: #[[$MAP1:.*]] = affine_map<(d0)[s0] -> (d0 + s0)>

// CHECK-LABEL: func @multi_buffer_one_alloc_with_use_outside_of_loop
// Make sure we manage to apply multi_buffer to the memref that is used in
// the loop (%tmp) and don't error out for the one that is not (%tmp2).
func.func @multi_buffer_one_alloc_with_use_outside_of_loop(%in: memref<16xf32>) {
  // CHECK: %[[A:.*]] = memref.alloc() : memref<2x4xf32>
  // expected-remark @below {{transformed}}
  %tmp = memref.alloc() : memref<4xf32>
  %tmp2 = memref.alloc() : memref<4xf32>

  "some_use_outside_of_loop"(%tmp2) : (memref<4xf32>) -> ()

  // CHECK: %[[C0:.*]] = arith.constant 0 : index
  // CHECK: %[[C4:.*]] = arith.constant 4 : index
  %c0 = arith.constant 0 : index
  %c4 = arith.constant 4 : index
  %c16 = arith.constant 16 : index

  // CHECK: scf.for %[[IV:.*]] = %[[C0]]
  scf.for %i0 = %c0 to %c16 step %c4 {
    // CHECK: %[[I:.*]] = affine.apply #[[$MAP0]](%[[IV]])
    // CHECK: %[[SV:.*]] = memref.subview %[[A]][%[[I]], 0] [1, 4] [1, 1] : memref<2x4xf32> to memref<4xf32, strided<[1], offset: ?>>
    %1 = memref.subview %in[%i0] [4] [1] : memref<16xf32> to memref<4xf32, affine_map<(d0)[s0] -> (d0 + s0)>>
    // CHECK: memref.copy %{{.*}}, %[[SV]] : memref<4xf32, #[[$MAP1]]> to memref<4xf32, strided<[1], offset: ?>>
    memref.copy %1, %tmp :  memref<4xf32, affine_map<(d0)[s0] -> (d0 + s0)>> to memref<4xf32>

    "some_use"(%tmp) : (memref<4xf32>) ->()
  }
  return
}

module attributes {transform.with_named_sequence} {
  transform.named_sequence @__transform_main(%arg1: !transform.any_op {transform.readonly}) {
    %0 = transform.structured.match ops{["memref.alloc"]} in %arg1 : (!transform.any_op) -> !transform.op<"memref.alloc">
    %1 = transform.memref.multibuffer %0 {factor = 2 : i64} : (!transform.op<"memref.alloc">) -> !transform.any_op
    // Verify that the returned handle is usable.
    transform.debug.emit_remark_at %1, "transformed" : !transform.any_op
    transform.yield
  }
}

// -----


// CHECK-DAG: #[[$MAP0:.*]] = affine_map<(d0) -> ((d0 floordiv 4) mod 2)>

// CHECK-LABEL: func @multi_buffer
func.func @multi_buffer_no_analysis(%in: memref<16xf32>) {
  // CHECK: %[[A:.*]] = memref.alloc() : memref<2x4xf32>
  // expected-remark @below {{transformed}}
  %tmp = memref.alloc() : memref<4xf32>

  // CHECK: %[[C0:.*]] = arith.constant 0 : index
  // CHECK: %[[C4:.*]] = arith.constant 4 : index
  %c0 = arith.constant 0 : index
  %c4 = arith.constant 4 : index
  %c16 = arith.constant 16 : index

  // CHECK: scf.for %[[IV:.*]] = %[[C0]]
  scf.for %i0 = %c0 to %c16 step %c4 {
  // CHECK: %[[I:.*]] = affine.apply #[[$MAP0]](%[[IV]])
  // CHECK: %[[SV:.*]] = memref.subview %[[A]][%[[I]], 0] [1, 4] [1, 1] : memref<2x4xf32> to memref<4xf32, strided<[1], offset: ?>>
    "some_write_read"(%tmp) : (memref<4xf32>) ->()
  }
  return
}

module attributes {transform.with_named_sequence} {
  transform.named_sequence @__transform_main(%arg1: !transform.any_op {transform.readonly}) {
    %0 = transform.structured.match ops{["memref.alloc"]} in %arg1 : (!transform.any_op) -> !transform.op<"memref.alloc">
    %1 = transform.memref.multibuffer %0 {factor = 2 : i64, skip_analysis} : (!transform.op<"memref.alloc">) -> !transform.any_op
    // Verify that the returned handle is usable.
    transform.debug.emit_remark_at %1, "transformed" : !transform.any_op
    transform.yield
  }
}

// -----

// CHECK-DAG: #[[$MAP0:.*]] = affine_map<(d0) -> ((d0 floordiv 4) mod 2)>

// CHECK-LABEL: func @multi_buffer_dealloc
func.func @multi_buffer_dealloc(%in: memref<16xf32>) {
  // CHECK: %[[A:.*]] = memref.alloc() : memref<2x4xf32>
  // expected-remark @below {{transformed}}
  %tmp = memref.alloc() : memref<4xf32>

  // CHECK: %[[C0:.*]] = arith.constant 0 : index
  // CHECK: %[[C4:.*]] = arith.constant 4 : index
  %c0 = arith.constant 0 : index
  %c4 = arith.constant 4 : index
  %c16 = arith.constant 16 : index

  // CHECK: scf.for %[[IV:.*]] = %[[C0]]
  scf.for %i0 = %c0 to %c16 step %c4 {
  // CHECK: %[[I:.*]] = affine.apply #[[$MAP0]](%[[IV]])
  // CHECK: %[[SV:.*]] = memref.subview %[[A]][%[[I]], 0] [1, 4] [1, 1] : memref<2x4xf32> to memref<4xf32, strided<[1], offset: ?>>
    "some_write_read"(%tmp) : (memref<4xf32>) ->()
  }

  // CHECK-NOT: memref.dealloc {{.*}} : memref<4xf32>
  // CHECK: memref.dealloc %[[A]] : memref<2x4xf32>
  memref.dealloc %tmp : memref<4xf32>
  return
}

module attributes {transform.with_named_sequence} {
  transform.named_sequence @__transform_main(%arg1: !transform.any_op {transform.readonly}) {
    %0 = transform.structured.match ops{["memref.alloc"]} in %arg1 : (!transform.any_op) -> !transform.op<"memref.alloc">
    %1 = transform.memref.multibuffer %0 {factor = 2 : i64, skip_analysis} : (!transform.op<"memref.alloc">) -> !transform.any_op
    // Verify that the returned handle is usable.
    transform.debug.emit_remark_at %1, "transformed" : !transform.any_op
    transform.yield
  }
}

// -----

// CHECK-LABEL: func.func @dead_alloc
func.func @dead_alloc() {
  // CHECK-NOT: %{{.+}} = memref.alloc
  %0 = memref.alloc() : memref<8x64xf32, 3>
  %1 = memref.subview %0[0, 0] [8, 4] [1, 1] : memref<8x64xf32, 3> to
    memref<8x4xf32, affine_map<(d0, d1) -> (d0 * 64 + d1)>, 3>
  %c0 = arith.constant 0 : index
  %cst_0 = arith.constant dense<0.000000e+00> : vector<1x4xf32>
  vector.transfer_write %cst_0, %1[%c0, %c0] {in_bounds = [true, true]} :
    vector<1x4xf32>, memref<8x4xf32, affine_map<(d0, d1) -> (d0 * 64 + d1)>, 3>
  return
}

module attributes {transform.with_named_sequence} {
  transform.named_sequence @__transform_main(%arg1: !transform.any_op {transform.readonly}) {
    %0 = transform.structured.match ops{["func.func"]} in %arg1 : (!transform.any_op) -> !transform.any_op
    transform.memref.erase_dead_alloc_and_stores %0 : (!transform.any_op) -> ()
    transform.yield
  }
}

// -----

// CHECK-LABEL: @store_to_load
//  CHECK-SAME:   (%[[ARG:.+]]: vector<4xf32>)
//   CHECK-NOT:   memref.alloc()
//   CHECK-NOT:   vector.transfer_write
//   CHECK-NOT:   vector.transfer_read
//       CHECK:   return %[[ARG]] : vector<4xf32>
func.func @store_to_load(%arg: vector<4xf32>) -> vector<4xf32> {
  %c0 = arith.constant 0 : index
  %cst_1 = arith.constant 0.000000e+00 : f32
  %alloc = memref.alloc() {alignment = 64 : i64} : memref<64xf32>
  vector.transfer_write %arg, %alloc[%c0] {in_bounds = [true]} : vector<4xf32>, memref<64xf32>
  %r = vector.transfer_read %alloc[%c0], %cst_1 {in_bounds = [true]} : memref<64xf32>, vector<4xf32>
  return %r : vector<4xf32>
}

module attributes {transform.with_named_sequence} {
  transform.named_sequence @__transform_main(%arg1: !transform.any_op {transform.readonly}) {
    %0 = transform.structured.match ops{["func.func"]} in %arg1 : (!transform.any_op) -> !transform.any_op
    transform.memref.erase_dead_alloc_and_stores %0 : (!transform.any_op) -> ()
    transform.yield
  }
}

// -----

// CHECK-LABEL: func @lower_to_llvm
//   CHECK-NOT:   memref.alloc
//       CHECK:   llvm.call @malloc
func.func @lower_to_llvm() {
  %0 = memref.alloc() : memref<2048xi8>
  return
}

module attributes {transform.with_named_sequence} {
  transform.named_sequence @__transform_main(%arg1: !transform.any_op {transform.readonly}) {
    %0 = transform.structured.match ops{["func.func"]} in %arg1 : (!transform.any_op) -> !transform.any_op
    transform.apply_conversion_patterns to %0 {
      transform.apply_conversion_patterns.dialect_to_llvm "memref"
    } with type_converter {
      transform.apply_conversion_patterns.memref.memref_to_llvm_type_converter
    } {legal_dialects = ["func", "llvm"]} : !transform.any_op
    transform.yield
  }
}