1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137
|
// RUN: mlir-opt %s -transform-interpreter --split-input-file --verify-diagnostics
#map0 = affine_map<(d0) -> (d0 * 110)>
#map1 = affine_map<(d0) -> (696, d0 * 110 + 110)>
func.func @test_loops_do_not_get_coalesced() {
affine.for %i = 0 to 7 {
affine.for %j = #map0(%i) to min #map1(%i) {
}
} {coalesce}
return
}
module attributes {transform.with_named_sequence} {
transform.named_sequence @__transform_main(%arg1: !transform.any_op {transform.readonly}) {
%0 = transform.structured.match ops{["affine.for"]} attributes {coalesce} in %arg1 : (!transform.any_op) -> !transform.any_op
%1 = transform.cast %0 : !transform.any_op to !transform.op<"affine.for">
// expected-error @below {{failed to coalesce}}
%2 = transform.loop.coalesce %1: (!transform.op<"affine.for">) -> (!transform.op<"affine.for">)
transform.yield
}
}
// -----
func.func @test_loops_do_not_get_unrolled() {
affine.for %i = 0 to 7 {
arith.addi %i, %i : index
}
return
}
module attributes {transform.with_named_sequence} {
transform.named_sequence @__transform_main(%arg1: !transform.any_op {transform.readonly}) {
%0 = transform.structured.match ops{["arith.addi"]} in %arg1 : (!transform.any_op) -> !transform.any_op
%1 = transform.get_parent_op %0 {op_name = "affine.for"} : (!transform.any_op) -> !transform.op<"affine.for">
// expected-error @below {{failed to unroll}}
transform.loop.unroll %1 { factor = 8 } : !transform.op<"affine.for">
transform.yield
}
}
// -----
func.func private @cond() -> i1
func.func private @body()
func.func @loop_outline_op_multi_region() {
// expected-note @below {{target op}}
scf.while : () -> () {
%0 = func.call @cond() : () -> i1
scf.condition(%0)
} do {
^bb0:
func.call @body() : () -> ()
scf.yield
}
return
}
module attributes {transform.with_named_sequence} {
transform.named_sequence @__transform_main(%arg1: !transform.any_op {transform.readonly}) {
%0 = transform.structured.match ops{["scf.while"]} in %arg1 : (!transform.any_op) -> !transform.any_op
// expected-error @below {{failed to outline}}
transform.loop.outline %0 {func_name = "foo"} : (!transform.any_op) -> (!transform.any_op, !transform.any_op)
transform.yield
}
}
// -----
func.func @test_loop_peeling_not_beneficial() {
// Loop peeling is not beneficial because the step size already divides
// ub - lb evenly. lb, ub and step are constant in this test case and the
// "fast path" is exercised.
%lb = arith.constant 0 : index
%ub = arith.constant 40 : index
%step = arith.constant 5 : index
scf.for %i = %lb to %ub step %step {
arith.addi %i, %i : index
}
return
}
module attributes {transform.with_named_sequence} {
transform.named_sequence @__transform_main(%arg1: !transform.any_op {transform.readonly}) {
%0 = transform.structured.match ops{["arith.addi"]} in %arg1 : (!transform.any_op) -> !transform.any_op
%1 = transform.get_parent_op %0 {op_name = "scf.for"} : (!transform.any_op) -> !transform.op<"scf.for">
// expected-error @below {{failed to peel}}
transform.loop.peel %1 : (!transform.op<"scf.for">) -> (!transform.any_op, !transform.any_op)
transform.yield
}
}
// -----
func.func @test_loop_peeling_not_beneficial_already_peeled(%lb: index, %ub: index, %step: index) {
// Loop peeling is not beneficial because the step size already divides
// ub - lb evenly. This test case exercises the "slow path".
%new_ub = affine.apply affine_map<()[s0, s1, s2] -> (s1 - (s1 - s0) mod s2)>()[%lb, %ub, %step]
scf.for %i = %lb to %new_ub step %step {
arith.addi %i, %i : index
}
return
}
module attributes {transform.with_named_sequence} {
transform.named_sequence @__transform_main(%arg1: !transform.any_op {transform.readonly}) {
%0 = transform.structured.match ops{["arith.addi"]} in %arg1 : (!transform.any_op) -> !transform.any_op
%1 = transform.get_parent_op %0 {op_name = "scf.for"} : (!transform.any_op) -> !transform.op<"scf.for">
// expected-error @below {{failed to peel}}
transform.loop.peel %1 : (!transform.op<"scf.for">) -> (!transform.any_op, !transform.any_op)
transform.yield
}
}
// -----
func.func @test_loop_peeling_not_beneficial_already_peeled_lb_zero(%ub: index, %step: index) {
// Loop peeling is not beneficial because the step size already divides
// ub - lb evenly. This test case exercises the "slow path".
%lb = arith.constant 0 : index
%new_ub = affine.apply affine_map<()[s1, s2] -> (s1 - s1 mod s2)>()[%ub, %step]
scf.for %i = %lb to %new_ub step %step {
arith.addi %i, %i : index
}
return
}
module attributes {transform.with_named_sequence} {
transform.named_sequence @__transform_main(%arg1: !transform.any_op {transform.readonly}) {
%0 = transform.structured.match ops{["arith.addi"]} in %arg1 : (!transform.any_op) -> !transform.any_op
%1 = transform.get_parent_op %0 {op_name = "scf.for"} : (!transform.any_op) -> !transform.op<"scf.for">
// expected-error @below {{failed to peel}}
transform.loop.peel %1 : (!transform.op<"scf.for">) -> (!transform.any_op, !transform.any_op)
transform.yield
}
}
|