| 12
 3
 4
 5
 6
 7
 8
 9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
 1000
 1001
 1002
 1003
 1004
 1005
 1006
 1007
 1008
 1009
 1010
 1011
 1012
 1013
 1014
 1015
 1016
 1017
 1018
 1019
 1020
 1021
 1022
 1023
 1024
 1025
 1026
 1027
 1028
 1029
 1030
 1031
 1032
 1033
 1034
 1035
 1036
 1037
 1038
 1039
 1040
 1041
 1042
 1043
 1044
 1045
 1046
 1047
 1048
 1049
 1050
 1051
 1052
 1053
 1054
 1055
 1056
 1057
 1058
 1059
 1060
 1061
 1062
 1063
 1064
 1065
 1066
 1067
 1068
 1069
 1070
 1071
 1072
 1073
 1074
 1075
 1076
 1077
 1078
 1079
 1080
 1081
 1082
 1083
 1084
 1085
 1086
 1087
 1088
 1089
 1090
 1091
 1092
 1093
 1094
 1095
 1096
 1097
 1098
 1099
 1100
 1101
 1102
 1103
 1104
 1105
 1106
 1107
 1108
 1109
 1110
 1111
 1112
 1113
 1114
 1115
 1116
 1117
 1118
 1119
 1120
 1121
 1122
 1123
 1124
 1125
 1126
 1127
 1128
 1129
 1130
 1131
 1132
 1133
 1134
 1135
 1136
 1137
 1138
 1139
 1140
 1141
 1142
 1143
 1144
 1145
 1146
 1147
 1148
 1149
 1150
 1151
 1152
 1153
 1154
 1155
 1156
 1157
 1158
 1159
 1160
 1161
 1162
 1163
 1164
 1165
 1166
 1167
 1168
 1169
 1170
 1171
 1172
 1173
 1174
 1175
 1176
 1177
 1178
 1179
 1180
 1181
 1182
 1183
 1184
 1185
 1186
 1187
 1188
 1189
 1190
 1191
 1192
 1193
 1194
 1195
 1196
 1197
 1198
 1199
 1200
 1201
 1202
 1203
 1204
 1205
 1206
 1207
 1208
 1209
 1210
 1211
 1212
 1213
 1214
 1215
 1216
 1217
 1218
 1219
 1220
 1221
 1222
 1223
 1224
 1225
 1226
 1227
 1228
 1229
 1230
 1231
 1232
 1233
 1234
 1235
 1236
 1237
 1238
 1239
 1240
 1241
 1242
 1243
 1244
 1245
 1246
 1247
 1248
 1249
 1250
 1251
 1252
 1253
 1254
 1255
 1256
 1257
 1258
 1259
 1260
 1261
 1262
 1263
 1264
 1265
 1266
 1267
 1268
 1269
 1270
 1271
 1272
 1273
 1274
 1275
 1276
 1277
 1278
 1279
 1280
 1281
 1282
 1283
 1284
 1285
 1286
 1287
 1288
 1289
 1290
 1291
 1292
 1293
 1294
 1295
 1296
 1297
 1298
 1299
 1300
 1301
 1302
 1303
 1304
 1305
 1306
 1307
 1308
 1309
 1310
 1311
 1312
 1313
 1314
 1315
 1316
 1317
 1318
 1319
 1320
 1321
 1322
 1323
 1324
 1325
 1326
 1327
 1328
 1329
 1330
 1331
 1332
 1333
 1334
 1335
 1336
 1337
 1338
 1339
 1340
 
 | // NOTE: Assertions have been autogenerated by utils/generate-test-checks.py
// RUN: mlir-opt %s --sparse-reinterpret-map -sparsification | FileCheck %s
#Td = #sparse_tensor.encoding<{ map = (d0) -> (d0 : dense) }>
#Tddd = #sparse_tensor.encoding<{ map = (d0, d1, d2) -> (d0 : dense, d1 : dense, d2 : dense) }>
#Tdds = #sparse_tensor.encoding<{ map = (d0, d1, d2) -> (d0 : dense, d1 : dense, d2 : compressed) }>
#Tdsd = #sparse_tensor.encoding<{ map = (d0, d1, d2) -> (d0 : dense, d1 : compressed, d2 : dense) }>
#Tdss = #sparse_tensor.encoding<{ map = (d0, d1, d2) -> (d0 : dense, d1 : compressed, d2 : compressed) }>
#Tsdd = #sparse_tensor.encoding<{ map = (d0, d1, d2) -> (d0 : compressed, d1 : dense, d2 : dense) }>
#Tsds = #sparse_tensor.encoding<{ map = (d0, d1, d2) -> (d0 : compressed, d1 : dense, d2 : compressed) }>
#Tssd = #sparse_tensor.encoding<{ map = (d0, d1, d2) -> (d0 : compressed, d1 : compressed, d2 : dense) }>
#Tsss = #sparse_tensor.encoding<{ map = (d0, d1, d2) -> (d0 : compressed, d1 : compressed, d2 : compressed) }>
#trait3 = {
  indexing_maps = [
    affine_map<(i,j,k) -> (i,j,k)>,  // A
    affine_map<(i,j,k) -> (i,j,k)>,  // B
    affine_map<(i,j,k) -> (i,j,k)>   // X (out)
  ],
  iterator_types = ["parallel", "parallel", "parallel"],
  doc = "X(i,j,k) = A(i,j,k) OP B(i,j,k)"
}
// CHECK-LABEL:   func @add_ddd(
// CHECK-SAME:      %[[VAL_0:.*]]: tensor<32x16x8xf32, #sparse{{[0-9]*}}>,
// CHECK-SAME:      %[[VAL_1:.*]]: tensor<32x16x8xf32>,
// CHECK-SAME:      %[[VAL_2:.*]]: tensor<32x16x8xf32>) -> tensor<32x16x8xf32> {
// CHECK-DAG:       %[[ZERO:.*]] = arith.constant 0.000000e+00 : f32
// CHECK-DAG:       %[[VAL_3:.*]] = arith.constant 32 : index
// CHECK-DAG:       %[[VAL_4:.*]] = arith.constant 16 : index
// CHECK-DAG:       %[[VAL_5:.*]] = arith.constant 8 : index
// CHECK-DAG:       %[[VAL_6:.*]] = arith.constant 0 : index
// CHECK-DAG:       %[[VAL_7:.*]] = arith.constant 1 : index
// CHECK-DAG:       %[[VAL_8:.*]] = sparse_tensor.values %[[VAL_0]] : tensor<32x16x8xf32, #sparse{{[0-9]*}}> to memref<?xf32>
// CHECK-DAG:       %[[VAL_9:.*]] = bufferization.to_memref %[[VAL_1]] : memref<32x16x8xf32>
// CHECK-DAG:       %[[VAL_11:.*]] = bufferization.to_memref %[[VAL_2]] : memref<32x16x8xf32>
// CHECK:           linalg.fill ins(%[[ZERO]] : f32) outs(%[[VAL_11]] : memref<32x16x8xf32>)
// CHECK:           scf.for %[[VAL_12:.*]] = %[[VAL_6]] to %[[VAL_3]] step %[[VAL_7]] {
// CHECK:             scf.for %[[VAL_13:.*]] = %[[VAL_6]] to %[[VAL_4]] step %[[VAL_7]] {
// CHECK:               %[[VAL_14:.*]] = arith.muli %[[VAL_12]], %[[VAL_4]] : index
// CHECK:               %[[VAL_15:.*]] = arith.addi %[[VAL_14]], %[[VAL_13]] : index
// CHECK:               scf.for %[[VAL_16:.*]] = %[[VAL_6]] to %[[VAL_5]] step %[[VAL_7]] {
// CHECK:                 %[[VAL_17:.*]] = arith.muli %[[VAL_15]], %[[VAL_5]] : index
// CHECK:                 %[[VAL_18:.*]] = arith.addi %[[VAL_17]], %[[VAL_16]] : index
// CHECK:                 %[[VAL_19:.*]] = memref.load %[[VAL_8]]{{\[}}%[[VAL_18]]] : memref<?xf32>
// CHECK:                 %[[VAL_20:.*]] = memref.load %[[VAL_9]]{{\[}}%[[VAL_12]], %[[VAL_13]], %[[VAL_16]]] : memref<32x16x8xf32>
// CHECK:                 %[[VAL_21:.*]] = arith.addf %[[VAL_19]], %[[VAL_20]] : f32
// CHECK:                 memref.store %[[VAL_21]], %[[VAL_11]]{{\[}}%[[VAL_12]], %[[VAL_13]], %[[VAL_16]]] : memref<32x16x8xf32>
// CHECK:               }
// CHECK:             }
// CHECK:           }
// CHECK:           %[[VAL_22:.*]] = bufferization.to_tensor %[[VAL_11]] : memref<32x16x8xf32>
// CHECK:           return %[[VAL_22]] : tensor<32x16x8xf32>
// CHECK:         }
func.func @add_ddd(%arga: tensor<32x16x8xf32, #Tddd>, %argb: tensor<32x16x8xf32>, %argx: tensor<32x16x8xf32>) -> tensor<32x16x8xf32> {
  %0 = linalg.generic #trait3
     ins(%arga, %argb: tensor<32x16x8xf32, #Tddd>, tensor<32x16x8xf32>)
    outs(%argx: tensor<32x16x8xf32>) {
      ^bb(%a: f32, %b: f32, %x: f32):
        %0 = arith.addf %a, %b : f32
        linalg.yield %0 : f32
  } -> tensor<32x16x8xf32>
  return %0 : tensor<32x16x8xf32>
}
// CHECK-LABEL:   func @mul_ddd(
// CHECK-SAME:      %[[VAL_0:.*]]: tensor<32x16x8xf32, #sparse{{[0-9]*}}>,
// CHECK-SAME:      %[[VAL_1:.*]]: tensor<32x16x8xf32>,
// CHECK-SAME:      %[[VAL_2:.*]]: tensor<32x16x8xf32>) -> tensor<32x16x8xf32> {
// CHECK-DAG:       %[[ZERO:.*]] = arith.constant 0.000000e+00 : f32
// CHECK-DAG:       %[[VAL_3:.*]] = arith.constant 32 : index
// CHECK-DAG:       %[[VAL_4:.*]] = arith.constant 16 : index
// CHECK-DAG:       %[[VAL_5:.*]] = arith.constant 8 : index
// CHECK-DAG:       %[[VAL_6:.*]] = arith.constant 0 : index
// CHECK-DAG:       %[[VAL_7:.*]] = arith.constant 1 : index
// CHECK-DAG:       %[[VAL_8:.*]] = sparse_tensor.values %[[VAL_0]] : tensor<32x16x8xf32, #sparse{{[0-9]*}}> to memref<?xf32>
// CHECK-DAG:       %[[VAL_9:.*]] = bufferization.to_memref %[[VAL_1]] : memref<32x16x8xf32>
// CHECK-DAG:       %[[VAL_11:.*]] = bufferization.to_memref %[[VAL_2]] : memref<32x16x8xf32>
// CHECK:           linalg.fill ins(%[[ZERO]] : f32) outs(%[[VAL_11]] : memref<32x16x8xf32>)
// CHECK:           scf.for %[[VAL_12:.*]] = %[[VAL_6]] to %[[VAL_3]] step %[[VAL_7]] {
// CHECK:             scf.for %[[VAL_13:.*]] = %[[VAL_6]] to %[[VAL_4]] step %[[VAL_7]] {
// CHECK:               %[[VAL_14:.*]] = arith.muli %[[VAL_12]], %[[VAL_4]] : index
// CHECK:               %[[VAL_15:.*]] = arith.addi %[[VAL_14]], %[[VAL_13]] : index
// CHECK:               scf.for %[[VAL_16:.*]] = %[[VAL_6]] to %[[VAL_5]] step %[[VAL_7]] {
// CHECK:                 %[[VAL_17:.*]] = arith.muli %[[VAL_15]], %[[VAL_5]] : index
// CHECK:                 %[[VAL_18:.*]] = arith.addi %[[VAL_17]], %[[VAL_16]] : index
// CHECK:                 %[[VAL_19:.*]] = memref.load %[[VAL_8]]{{\[}}%[[VAL_18]]] : memref<?xf32>
// CHECK:                 %[[VAL_20:.*]] = memref.load %[[VAL_9]]{{\[}}%[[VAL_12]], %[[VAL_13]], %[[VAL_16]]] : memref<32x16x8xf32>
// CHECK:                 %[[VAL_21:.*]] = arith.mulf %[[VAL_19]], %[[VAL_20]] : f32
// CHECK:                 memref.store %[[VAL_21]], %[[VAL_11]]{{\[}}%[[VAL_12]], %[[VAL_13]], %[[VAL_16]]] : memref<32x16x8xf32>
// CHECK:               }
// CHECK:             }
// CHECK:           }
// CHECK:           %[[VAL_22:.*]] = bufferization.to_tensor %[[VAL_11]] : memref<32x16x8xf32>
// CHECK:           return %[[VAL_22]] : tensor<32x16x8xf32>
// CHECK:         }
func.func @mul_ddd(%arga: tensor<32x16x8xf32, #Tddd>, %argb: tensor<32x16x8xf32>, %argx: tensor<32x16x8xf32>) -> tensor<32x16x8xf32> {
  %0 = linalg.generic #trait3
     ins(%arga, %argb: tensor<32x16x8xf32, #Tddd>, tensor<32x16x8xf32>)
    outs(%argx: tensor<32x16x8xf32>) {
      ^bb(%a: f32, %b: f32, %x: f32):
        %0 = arith.mulf %a, %b : f32
        linalg.yield %0 : f32
  } -> tensor<32x16x8xf32>
  return %0 : tensor<32x16x8xf32>
}
// CHECK-LABEL:   func @add_dds(
// CHECK-SAME:      %[[VAL_0:.*]]: tensor<32x16x8xf32, #sparse{{[0-9]*}}>,
// CHECK-SAME:      %[[VAL_1:.*]]: tensor<32x16x8xf32>,
// CHECK-SAME:      %[[VAL_2:.*]]: tensor<32x16x8xf32>) -> tensor<32x16x8xf32> {
// CHECK-DAG:       %[[ZERO:.*]] = arith.constant 0.000000e+00 : f32
// CHECK-DAG:       %[[VAL_4:.*]] = arith.constant 32 : index
// CHECK-DAG:       %[[VAL_5:.*]] = arith.constant 16 : index
// CHECK-DAG:       %[[VAL_6:.*]] = arith.constant 8 : index
// CHECK-DAG:       %[[VAL_7:.*]] = arith.constant 0 : index
// CHECK-DAG:       %[[VAL_8:.*]] = arith.constant true
// CHECK-DAG:       %[[VAL_9:.*]] = arith.constant 1 : index
// CHECK-DAG:       %[[VAL_10:.*]] = sparse_tensor.positions %[[VAL_0]] {level = 2 : index} : tensor<32x16x8xf32, #sparse{{[0-9]*}}> to memref<?xindex>
// CHECK-DAG:       %[[VAL_11:.*]] = sparse_tensor.coordinates %[[VAL_0]] {level = 2 : index} : tensor<32x16x8xf32, #sparse{{[0-9]*}}> to memref<?xindex>
// CHECK-DAG:       %[[VAL_12:.*]] = sparse_tensor.values %[[VAL_0]] : tensor<32x16x8xf32, #sparse{{[0-9]*}}> to memref<?xf32>
// CHECK-DAG:       %[[VAL_13:.*]] = bufferization.to_memref %[[VAL_1]] : memref<32x16x8xf32>
// CHECK-DAG:       %[[VAL_15:.*]] = bufferization.to_memref %[[VAL_2]] : memref<32x16x8xf32>
// CHECK:           linalg.fill ins(%[[ZERO]] : f32) outs(%[[VAL_15]] : memref<32x16x8xf32>)
// CHECK:           scf.for %[[VAL_16:.*]] = %[[VAL_7]] to %[[VAL_4]] step %[[VAL_9]] {
// CHECK:             scf.for %[[VAL_17:.*]] = %[[VAL_7]] to %[[VAL_5]] step %[[VAL_9]] {
// CHECK:               %[[VAL_18:.*]] = arith.muli %[[VAL_16]], %[[VAL_5]] : index
// CHECK:               %[[VAL_19:.*]] = arith.addi %[[VAL_18]], %[[VAL_17]] : index
// CHECK:               %[[VAL_20:.*]] = memref.load %[[VAL_10]]{{\[}}%[[VAL_19]]] : memref<?xindex>
// CHECK:               %[[VAL_21:.*]] = arith.addi %[[VAL_19]], %[[VAL_9]] : index
// CHECK:               %[[VAL_22:.*]] = memref.load %[[VAL_10]]{{\[}}%[[VAL_21]]] : memref<?xindex>
// CHECK:               %[[VAL_23:.*]]:2 = scf.while (%[[VAL_24:.*]] = %[[VAL_20]], %[[VAL_25:.*]] = %[[VAL_7]]) : (index, index) -> (index, index) {
// CHECK:                 %[[VAL_26:.*]] = arith.cmpi ult, %[[VAL_24]], %[[VAL_22]] : index
// CHECK:                 scf.condition(%[[VAL_26]]) %[[VAL_24]], %[[VAL_25]] : index, index
// CHECK:               } do {
// CHECK:               ^bb0(%[[VAL_27:.*]]: index, %[[VAL_28:.*]]: index):
// CHECK:                 %[[VAL_29:.*]] = memref.load %[[VAL_11]]{{\[}}%[[VAL_27]]] : memref<?xindex>
// CHECK:                 %[[VAL_30:.*]] = arith.cmpi eq, %[[VAL_29]], %[[VAL_28]] : index
// CHECK:                 scf.if %[[VAL_30]] {
// CHECK:                   %[[VAL_31:.*]] = memref.load %[[VAL_12]]{{\[}}%[[VAL_27]]] : memref<?xf32>
// CHECK:                   %[[VAL_32:.*]] = memref.load %[[VAL_13]]{{\[}}%[[VAL_16]], %[[VAL_17]], %[[VAL_28]]] : memref<32x16x8xf32>
// CHECK:                   %[[VAL_33:.*]] = arith.addf %[[VAL_31]], %[[VAL_32]] : f32
// CHECK:                   memref.store %[[VAL_33]], %[[VAL_15]]{{\[}}%[[VAL_16]], %[[VAL_17]], %[[VAL_28]]] : memref<32x16x8xf32>
// CHECK:                 } else {
// CHECK:                   scf.if %[[VAL_8]] {
// CHECK:                     %[[VAL_34:.*]] = memref.load %[[VAL_13]]{{\[}}%[[VAL_16]], %[[VAL_17]], %[[VAL_28]]] : memref<32x16x8xf32>
// CHECK:                     memref.store %[[VAL_34]], %[[VAL_15]]{{\[}}%[[VAL_16]], %[[VAL_17]], %[[VAL_28]]] : memref<32x16x8xf32>
// CHECK:                   } else {
// CHECK:                   }
// CHECK:                 }
// CHECK:                 %[[VAL_35:.*]] = arith.cmpi eq, %[[VAL_29]], %[[VAL_28]] : index
// CHECK:                 %[[VAL_36:.*]] = arith.addi %[[VAL_27]], %[[VAL_9]] : index
// CHECK:                 %[[VAL_37:.*]] = arith.select %[[VAL_35]], %[[VAL_36]], %[[VAL_27]] : index
// CHECK:                 %[[VAL_38:.*]] = arith.addi %[[VAL_28]], %[[VAL_9]] : index
// CHECK:                 scf.yield %[[VAL_37]], %[[VAL_38]] : index, index
// CHECK:               }
// CHECK:               scf.for %[[VAL_39:.*]] = %[[VAL_40:.*]]#1 to %[[VAL_6]] step %[[VAL_9]] {
// CHECK:                 %[[VAL_41:.*]] = memref.load %[[VAL_13]]{{\[}}%[[VAL_16]], %[[VAL_17]], %[[VAL_39]]] : memref<32x16x8xf32>
// CHECK:                 memref.store %[[VAL_41]], %[[VAL_15]]{{\[}}%[[VAL_16]], %[[VAL_17]], %[[VAL_39]]] : memref<32x16x8xf32>
// CHECK:               }
// CHECK:             }
// CHECK:           }
// CHECK:           %[[VAL_42:.*]] = bufferization.to_tensor %[[VAL_15]] : memref<32x16x8xf32>
// CHECK:           return %[[VAL_42]] : tensor<32x16x8xf32>
// CHECK:         }
func.func @add_dds(%arga: tensor<32x16x8xf32, #Tdds>, %argb: tensor<32x16x8xf32>, %argx: tensor<32x16x8xf32>) -> tensor<32x16x8xf32> {
  %0 = linalg.generic #trait3
     ins(%arga, %argb: tensor<32x16x8xf32, #Tdds>, tensor<32x16x8xf32>)
    outs(%argx: tensor<32x16x8xf32>) {
      ^bb(%a: f32, %b: f32, %x: f32):
        %0 = arith.addf %a, %b : f32
        linalg.yield %0 : f32
  } -> tensor<32x16x8xf32>
  return %0 : tensor<32x16x8xf32>
}
// CHECK-LABEL:   func @mul_dds(
// CHECK-SAME:      %[[VAL_0:.*]]: tensor<32x16x8xf32, #sparse{{[0-9]*}}>,
// CHECK-SAME:      %[[VAL_1:.*]]: tensor<32x16x8xf32>,
// CHECK-SAME:      %[[VAL_2:.*]]: tensor<32x16x8xf32>) -> tensor<32x16x8xf32> {
// CHECK-DAG:       %[[ZERO:.*]] = arith.constant 0.000000e+00 : f32
// CHECK-DAG:       %[[VAL_4:.*]] = arith.constant 32 : index
// CHECK-DAG:       %[[VAL_5:.*]] = arith.constant 16 : index
// CHECK-DAG:       %[[VAL_6:.*]] = arith.constant 0 : index
// CHECK-DAG:       %[[VAL_7:.*]] = arith.constant 1 : index
// CHECK-DAG:       %[[VAL_8:.*]] = sparse_tensor.positions %[[VAL_0]] {level = 2 : index} : tensor<32x16x8xf32, #sparse{{[0-9]*}}> to memref<?xindex>
// CHECK-DAG:       %[[VAL_9:.*]] = sparse_tensor.coordinates %[[VAL_0]] {level = 2 : index} : tensor<32x16x8xf32, #sparse{{[0-9]*}}> to memref<?xindex>
// CHECK-DAG:       %[[VAL_10:.*]] = sparse_tensor.values %[[VAL_0]] : tensor<32x16x8xf32, #sparse{{[0-9]*}}> to memref<?xf32>
// CHECK-DAG:       %[[VAL_11:.*]] = bufferization.to_memref %[[VAL_1]] : memref<32x16x8xf32>
// CHECK-DAG:       %[[VAL_13:.*]] = bufferization.to_memref %[[VAL_2]] : memref<32x16x8xf32>
// CHECK:           linalg.fill ins(%[[ZERO]] : f32) outs(%[[VAL_13]] : memref<32x16x8xf32>)
// CHECK:           scf.for %[[VAL_14:.*]] = %[[VAL_6]] to %[[VAL_4]] step %[[VAL_7]] {
// CHECK:             scf.for %[[VAL_15:.*]] = %[[VAL_6]] to %[[VAL_5]] step %[[VAL_7]] {
// CHECK:               %[[VAL_16:.*]] = arith.muli %[[VAL_14]], %[[VAL_5]] : index
// CHECK:               %[[VAL_17:.*]] = arith.addi %[[VAL_16]], %[[VAL_15]] : index
// CHECK:               %[[VAL_18:.*]] = memref.load %[[VAL_8]]{{\[}}%[[VAL_17]]] : memref<?xindex>
// CHECK:               %[[VAL_19:.*]] = arith.addi %[[VAL_17]], %[[VAL_7]] : index
// CHECK:               %[[VAL_20:.*]] = memref.load %[[VAL_8]]{{\[}}%[[VAL_19]]] : memref<?xindex>
// CHECK:               scf.for %[[VAL_21:.*]] = %[[VAL_18]] to %[[VAL_20]] step %[[VAL_7]] {
// CHECK:                 %[[VAL_22:.*]] = memref.load %[[VAL_9]]{{\[}}%[[VAL_21]]] : memref<?xindex>
// CHECK:                 %[[VAL_23:.*]] = memref.load %[[VAL_10]]{{\[}}%[[VAL_21]]] : memref<?xf32>
// CHECK:                 %[[VAL_24:.*]] = memref.load %[[VAL_11]]{{\[}}%[[VAL_14]], %[[VAL_15]], %[[VAL_22]]] : memref<32x16x8xf32>
// CHECK:                 %[[VAL_25:.*]] = arith.mulf %[[VAL_23]], %[[VAL_24]] : f32
// CHECK:                 memref.store %[[VAL_25]], %[[VAL_13]]{{\[}}%[[VAL_14]], %[[VAL_15]], %[[VAL_22]]] : memref<32x16x8xf32>
// CHECK:               }
// CHECK:             }
// CHECK:           }
// CHECK:           %[[VAL_26:.*]] = bufferization.to_tensor %[[VAL_13]] : memref<32x16x8xf32>
// CHECK:           return %[[VAL_26]] : tensor<32x16x8xf32>
// CHECK:         }
func.func @mul_dds(%arga: tensor<32x16x8xf32, #Tdds>, %argb: tensor<32x16x8xf32>, %argx: tensor<32x16x8xf32>) -> tensor<32x16x8xf32> {
  %0 = linalg.generic #trait3
     ins(%arga, %argb: tensor<32x16x8xf32, #Tdds>, tensor<32x16x8xf32>)
    outs(%argx: tensor<32x16x8xf32>) {
      ^bb(%a: f32, %b: f32, %x: f32):
        %0 = arith.mulf %a, %b : f32
        linalg.yield %0 : f32
  } -> tensor<32x16x8xf32>
  return %0 : tensor<32x16x8xf32>
}
// CHECK-LABEL:   func @add_dsd(
// CHECK-SAME:      %[[VAL_0:.*]]: tensor<32x16x8xf32, #sparse{{[0-9]*}}>,
// CHECK-SAME:      %[[VAL_1:.*]]: tensor<32x16x8xf32>,
// CHECK-SAME:      %[[VAL_2:.*]]: tensor<32x16x8xf32>) -> tensor<32x16x8xf32> {
// CHECK-DAG:       %[[ZERO:.*]] = arith.constant 0.000000e+00 : f32
// CHECK-DAG:       %[[VAL_3:.*]] = arith.constant 32 : index
// CHECK-DAG:       %[[VAL_4:.*]] = arith.constant 16 : index
// CHECK-DAG:       %[[VAL_5:.*]] = arith.constant 8 : index
// CHECK-DAG:       %[[VAL_6:.*]] = arith.constant true
// CHECK-DAG:       %[[VAL_7:.*]] = arith.constant 0 : index
// CHECK-DAG:       %[[VAL_8:.*]] = arith.constant 1 : index
// CHECK-DAG:       %[[VAL_9:.*]] = sparse_tensor.positions %[[VAL_0]] {level = 1 : index} : tensor<32x16x8xf32, #sparse{{[0-9]*}}> to memref<?xindex>
// CHECK-DAG:       %[[VAL_10:.*]] = sparse_tensor.coordinates %[[VAL_0]] {level = 1 : index} : tensor<32x16x8xf32, #sparse{{[0-9]*}}> to memref<?xindex>
// CHECK-DAG:       %[[VAL_11:.*]] = sparse_tensor.values %[[VAL_0]] : tensor<32x16x8xf32, #sparse{{[0-9]*}}> to memref<?xf32>
// CHECK-DAG:       %[[VAL_12:.*]] = bufferization.to_memref %[[VAL_1]] : memref<32x16x8xf32>
// CHECK-DAG:       %[[VAL_14:.*]] = bufferization.to_memref %[[VAL_2]] : memref<32x16x8xf32>
// CHECK:           linalg.fill ins(%[[ZERO]] : f32) outs(%[[VAL_14]] : memref<32x16x8xf32>)
// CHECK:           scf.for %[[VAL_15:.*]] = %[[VAL_7]] to %[[VAL_3]] step %[[VAL_8]] {
// CHECK:             %[[VAL_16:.*]] = memref.load %[[VAL_9]]{{\[}}%[[VAL_15]]] : memref<?xindex>
// CHECK:             %[[VAL_17:.*]] = arith.addi %[[VAL_15]], %[[VAL_8]] : index
// CHECK:             %[[VAL_18:.*]] = memref.load %[[VAL_9]]{{\[}}%[[VAL_17]]] : memref<?xindex>
// CHECK:             %[[VAL_19:.*]]:2 = scf.while (%[[VAL_20:.*]] = %[[VAL_16]], %[[VAL_21:.*]] = %[[VAL_7]]) : (index, index) -> (index, index) {
// CHECK:               %[[VAL_22:.*]] = arith.cmpi ult, %[[VAL_20]], %[[VAL_18]] : index
// CHECK:               scf.condition(%[[VAL_22]]) %[[VAL_20]], %[[VAL_21]] : index, index
// CHECK:             } do {
// CHECK:             ^bb0(%[[VAL_23:.*]]: index, %[[VAL_24:.*]]: index):
// CHECK:               %[[VAL_25:.*]] = memref.load %[[VAL_10]]{{\[}}%[[VAL_23]]] : memref<?xindex>
// CHECK:               %[[VAL_26:.*]] = arith.cmpi eq, %[[VAL_25]], %[[VAL_24]] : index
// CHECK:               scf.if %[[VAL_26]] {
// CHECK:                 scf.for %[[VAL_27:.*]] = %[[VAL_7]] to %[[VAL_5]] step %[[VAL_8]] {
// CHECK:                   %[[VAL_28:.*]] = arith.muli %[[VAL_23]], %[[VAL_5]] : index
// CHECK:                   %[[VAL_29:.*]] = arith.addi %[[VAL_28]], %[[VAL_27]] : index
// CHECK:                   %[[VAL_30:.*]] = memref.load %[[VAL_11]]{{\[}}%[[VAL_29]]] : memref<?xf32>
// CHECK:                   %[[VAL_31:.*]] = memref.load %[[VAL_12]]{{\[}}%[[VAL_15]], %[[VAL_24]], %[[VAL_27]]] : memref<32x16x8xf32>
// CHECK:                   %[[VAL_32:.*]] = arith.addf %[[VAL_30]], %[[VAL_31]] : f32
// CHECK:                   memref.store %[[VAL_32]], %[[VAL_14]]{{\[}}%[[VAL_15]], %[[VAL_24]], %[[VAL_27]]] : memref<32x16x8xf32>
// CHECK:                 }
// CHECK:               } else {
// CHECK:                 scf.if %[[VAL_6]] {
// CHECK:                   scf.for %[[VAL_33:.*]] = %[[VAL_7]] to %[[VAL_5]] step %[[VAL_8]] {
// CHECK:                     %[[VAL_34:.*]] = memref.load %[[VAL_12]]{{\[}}%[[VAL_15]], %[[VAL_24]], %[[VAL_33]]] : memref<32x16x8xf32>
// CHECK:                     memref.store %[[VAL_34]], %[[VAL_14]]{{\[}}%[[VAL_15]], %[[VAL_24]], %[[VAL_33]]] : memref<32x16x8xf32>
// CHECK:                   }
// CHECK:                 } else {
// CHECK:                 }
// CHECK:               }
// CHECK:               %[[VAL_35:.*]] = arith.cmpi eq, %[[VAL_25]], %[[VAL_24]] : index
// CHECK:               %[[VAL_36:.*]] = arith.addi %[[VAL_23]], %[[VAL_8]] : index
// CHECK:               %[[VAL_37:.*]] = arith.select %[[VAL_35]], %[[VAL_36]], %[[VAL_23]] : index
// CHECK:               %[[VAL_38:.*]] = arith.addi %[[VAL_24]], %[[VAL_8]] : index
// CHECK:               scf.yield %[[VAL_37]], %[[VAL_38]] : index, index
// CHECK:             }
// CHECK:             scf.for %[[VAL_39:.*]] = %[[VAL_40:.*]]#1 to %[[VAL_4]] step %[[VAL_8]] {
// CHECK:               scf.for %[[VAL_41:.*]] = %[[VAL_7]] to %[[VAL_5]] step %[[VAL_8]] {
// CHECK:                 %[[VAL_42:.*]] = memref.load %[[VAL_12]]{{\[}}%[[VAL_15]], %[[VAL_39]], %[[VAL_41]]] : memref<32x16x8xf32>
// CHECK:                 memref.store %[[VAL_42]], %[[VAL_14]]{{\[}}%[[VAL_15]], %[[VAL_39]], %[[VAL_41]]] : memref<32x16x8xf32>
// CHECK:               }
// CHECK:             }
// CHECK:           }
// CHECK:           %[[VAL_43:.*]] = bufferization.to_tensor %[[VAL_14]] : memref<32x16x8xf32>
// CHECK:           return %[[VAL_43]] : tensor<32x16x8xf32>
// CHECK:         }
func.func @add_dsd(%arga: tensor<32x16x8xf32, #Tdsd>, %argb: tensor<32x16x8xf32>, %argx: tensor<32x16x8xf32>) -> tensor<32x16x8xf32> {
  %0 = linalg.generic #trait3
     ins(%arga, %argb: tensor<32x16x8xf32, #Tdsd>, tensor<32x16x8xf32>)
    outs(%argx: tensor<32x16x8xf32>) {
      ^bb(%a: f32, %b: f32, %x: f32):
        %0 = arith.addf %a, %b : f32
        linalg.yield %0 : f32
  } -> tensor<32x16x8xf32>
  return %0 : tensor<32x16x8xf32>
}
// CHECK-LABEL:   func @mul_dsd(
// CHECK-SAME:      %[[VAL_0:.*]]: tensor<32x16x8xf32, #sparse{{[0-9]*}}>,
// CHECK-SAME:      %[[VAL_1:.*]]: tensor<32x16x8xf32>,
// CHECK-SAME:      %[[VAL_2:.*]]: tensor<32x16x8xf32>) -> tensor<32x16x8xf32> {
// CHECK-DAG:       %[[ZERO:.*]] = arith.constant 0.000000e+00 : f32
// CHECK-DAG:       %[[VAL_3:.*]] = arith.constant 32 : index
// CHECK-DAG:       %[[VAL_4:.*]] = arith.constant 8 : index
// CHECK-DAG:       %[[VAL_5:.*]] = arith.constant 0 : index
// CHECK-DAG:       %[[VAL_6:.*]] = arith.constant 1 : index
// CHECK-DAG:       %[[VAL_7:.*]] = sparse_tensor.positions %[[VAL_0]] {level = 1 : index} : tensor<32x16x8xf32, #sparse{{[0-9]*}}> to memref<?xindex>
// CHECK-DAG:       %[[VAL_8:.*]] = sparse_tensor.coordinates %[[VAL_0]] {level = 1 : index} : tensor<32x16x8xf32, #sparse{{[0-9]*}}> to memref<?xindex>
// CHECK-DAG:       %[[VAL_9:.*]] = sparse_tensor.values %[[VAL_0]] : tensor<32x16x8xf32, #sparse{{[0-9]*}}> to memref<?xf32>
// CHECK-DAG:       %[[VAL_10:.*]] = bufferization.to_memref %[[VAL_1]] : memref<32x16x8xf32>
// CHECK-DAG:       %[[VAL_12:.*]] = bufferization.to_memref %[[VAL_2]] : memref<32x16x8xf32>
// CHECK:           linalg.fill ins(%[[ZERO]] : f32) outs(%[[VAL_12]] : memref<32x16x8xf32>)
// CHECK:           scf.for %[[VAL_13:.*]] = %[[VAL_5]] to %[[VAL_3]] step %[[VAL_6]] {
// CHECK:             %[[VAL_14:.*]] = memref.load %[[VAL_7]]{{\[}}%[[VAL_13]]] : memref<?xindex>
// CHECK:             %[[VAL_15:.*]] = arith.addi %[[VAL_13]], %[[VAL_6]] : index
// CHECK:             %[[VAL_16:.*]] = memref.load %[[VAL_7]]{{\[}}%[[VAL_15]]] : memref<?xindex>
// CHECK:             scf.for %[[VAL_17:.*]] = %[[VAL_14]] to %[[VAL_16]] step %[[VAL_6]] {
// CHECK:               %[[VAL_18:.*]] = memref.load %[[VAL_8]]{{\[}}%[[VAL_17]]] : memref<?xindex>
// CHECK:               scf.for %[[VAL_19:.*]] = %[[VAL_5]] to %[[VAL_4]] step %[[VAL_6]] {
// CHECK:                 %[[VAL_20:.*]] = arith.muli %[[VAL_17]], %[[VAL_4]] : index
// CHECK:                 %[[VAL_21:.*]] = arith.addi %[[VAL_20]], %[[VAL_19]] : index
// CHECK:                 %[[VAL_22:.*]] = memref.load %[[VAL_9]]{{\[}}%[[VAL_21]]] : memref<?xf32>
// CHECK:                 %[[VAL_23:.*]] = memref.load %[[VAL_10]]{{\[}}%[[VAL_13]], %[[VAL_18]], %[[VAL_19]]] : memref<32x16x8xf32>
// CHECK:                 %[[VAL_24:.*]] = arith.mulf %[[VAL_22]], %[[VAL_23]] : f32
// CHECK:                 memref.store %[[VAL_24]], %[[VAL_12]]{{\[}}%[[VAL_13]], %[[VAL_18]], %[[VAL_19]]] : memref<32x16x8xf32>
// CHECK:               }
// CHECK:             }
// CHECK:           }
// CHECK:           %[[VAL_25:.*]] = bufferization.to_tensor %[[VAL_12]] : memref<32x16x8xf32>
// CHECK:           return %[[VAL_25]] : tensor<32x16x8xf32>
// CHECK:         }
func.func @mul_dsd(%arga: tensor<32x16x8xf32, #Tdsd>, %argb: tensor<32x16x8xf32>, %argx: tensor<32x16x8xf32>) -> tensor<32x16x8xf32> {
  %0 = linalg.generic #trait3
     ins(%arga, %argb: tensor<32x16x8xf32, #Tdsd>, tensor<32x16x8xf32>)
    outs(%argx: tensor<32x16x8xf32>) {
      ^bb(%a: f32, %b: f32, %x: f32):
        %0 = arith.mulf %a, %b : f32
        linalg.yield %0 : f32
  } -> tensor<32x16x8xf32>
  return %0 : tensor<32x16x8xf32>
}
// CHECK-LABEL:   func @add_dss(
// CHECK-SAME:      %[[VAL_0:.*]]: tensor<32x16x8xf32, #sparse{{[0-9]*}}>,
// CHECK-SAME:      %[[VAL_1:.*]]: tensor<32x16x8xf32>,
// CHECK-SAME:      %[[VAL_2:.*]]: tensor<32x16x8xf32>) -> tensor<32x16x8xf32> {
// CHECK-DAG:       %[[ZERO:.*]] = arith.constant 0.000000e+00 : f32
// CHECK-DAG:       %[[VAL_4:.*]] = arith.constant 32 : index
// CHECK-DAG:       %[[VAL_5:.*]] = arith.constant 16 : index
// CHECK-DAG:       %[[VAL_6:.*]] = arith.constant 8 : index
// CHECK-DAG:       %[[VAL_7:.*]] = arith.constant true
// CHECK-DAG:       %[[VAL_8:.*]] = arith.constant 0 : index
// CHECK-DAG:       %[[VAL_9:.*]] = arith.constant 1 : index
// CHECK-DAG:       %[[VAL_10:.*]] = sparse_tensor.positions %[[VAL_0]] {level = 1 : index} : tensor<32x16x8xf32, #sparse{{[0-9]*}}> to memref<?xindex>
// CHECK-DAG:       %[[VAL_11:.*]] = sparse_tensor.coordinates %[[VAL_0]] {level = 1 : index} : tensor<32x16x8xf32, #sparse{{[0-9]*}}> to memref<?xindex>
// CHECK-DAG:       %[[VAL_12:.*]] = sparse_tensor.positions %[[VAL_0]] {level = 2 : index} : tensor<32x16x8xf32, #sparse{{[0-9]*}}> to memref<?xindex>
// CHECK-DAG:       %[[VAL_13:.*]] = sparse_tensor.coordinates %[[VAL_0]] {level = 2 : index} : tensor<32x16x8xf32, #sparse{{[0-9]*}}> to memref<?xindex>
// CHECK-DAG:       %[[VAL_14:.*]] = sparse_tensor.values %[[VAL_0]] : tensor<32x16x8xf32, #sparse{{[0-9]*}}> to memref<?xf32>
// CHECK-DAG:       %[[VAL_15:.*]] = bufferization.to_memref %[[VAL_1]] : memref<32x16x8xf32>
// CHECK-DAG:       %[[VAL_17:.*]] = bufferization.to_memref %[[VAL_2]] : memref<32x16x8xf32>
// CHECK:           linalg.fill ins(%[[ZERO]] : f32) outs(%[[VAL_17]] : memref<32x16x8xf32>)
// CHECK:           scf.for %[[VAL_18:.*]] = %[[VAL_8]] to %[[VAL_4]] step %[[VAL_9]] {
// CHECK:             %[[VAL_19:.*]] = memref.load %[[VAL_10]]{{\[}}%[[VAL_18]]] : memref<?xindex>
// CHECK:             %[[VAL_20:.*]] = arith.addi %[[VAL_18]], %[[VAL_9]] : index
// CHECK:             %[[VAL_21:.*]] = memref.load %[[VAL_10]]{{\[}}%[[VAL_20]]] : memref<?xindex>
// CHECK:             %[[VAL_22:.*]]:2 = scf.while (%[[VAL_23:.*]] = %[[VAL_19]], %[[VAL_24:.*]] = %[[VAL_8]]) : (index, index) -> (index, index) {
// CHECK:               %[[VAL_25:.*]] = arith.cmpi ult, %[[VAL_23]], %[[VAL_21]] : index
// CHECK:               scf.condition(%[[VAL_25]]) %[[VAL_23]], %[[VAL_24]] : index, index
// CHECK:             } do {
// CHECK:             ^bb0(%[[VAL_26:.*]]: index, %[[VAL_27:.*]]: index):
// CHECK:               %[[VAL_28:.*]] = memref.load %[[VAL_11]]{{\[}}%[[VAL_26]]] : memref<?xindex>
// CHECK:               %[[VAL_29:.*]] = arith.cmpi eq, %[[VAL_28]], %[[VAL_27]] : index
// CHECK:               scf.if %[[VAL_29]] {
// CHECK:                 %[[VAL_30:.*]] = memref.load %[[VAL_12]]{{\[}}%[[VAL_26]]] : memref<?xindex>
// CHECK:                 %[[VAL_31:.*]] = arith.addi %[[VAL_26]], %[[VAL_9]] : index
// CHECK:                 %[[VAL_32:.*]] = memref.load %[[VAL_12]]{{\[}}%[[VAL_31]]] : memref<?xindex>
// CHECK:                 %[[VAL_33:.*]]:2 = scf.while (%[[VAL_34:.*]] = %[[VAL_30]], %[[VAL_35:.*]] = %[[VAL_8]]) : (index, index) -> (index, index) {
// CHECK:                   %[[VAL_36:.*]] = arith.cmpi ult, %[[VAL_34]], %[[VAL_32]] : index
// CHECK:                   scf.condition(%[[VAL_36]]) %[[VAL_34]], %[[VAL_35]] : index, index
// CHECK:                 } do {
// CHECK:                 ^bb0(%[[VAL_37:.*]]: index, %[[VAL_38:.*]]: index):
// CHECK:                   %[[VAL_39:.*]] = memref.load %[[VAL_13]]{{\[}}%[[VAL_37]]] : memref<?xindex>
// CHECK:                   %[[VAL_40:.*]] = arith.cmpi eq, %[[VAL_39]], %[[VAL_38]] : index
// CHECK:                   scf.if %[[VAL_40]] {
// CHECK:                     %[[VAL_41:.*]] = memref.load %[[VAL_14]]{{\[}}%[[VAL_37]]] : memref<?xf32>
// CHECK:                     %[[VAL_42:.*]] = memref.load %[[VAL_15]]{{\[}}%[[VAL_18]], %[[VAL_27]], %[[VAL_38]]] : memref<32x16x8xf32>
// CHECK:                     %[[VAL_43:.*]] = arith.addf %[[VAL_41]], %[[VAL_42]] : f32
// CHECK:                     memref.store %[[VAL_43]], %[[VAL_17]]{{\[}}%[[VAL_18]], %[[VAL_27]], %[[VAL_38]]] : memref<32x16x8xf32>
// CHECK:                   } else {
// CHECK:                     scf.if %[[VAL_7]] {
// CHECK:                       %[[VAL_44:.*]] = memref.load %[[VAL_15]]{{\[}}%[[VAL_18]], %[[VAL_27]], %[[VAL_38]]] : memref<32x16x8xf32>
// CHECK:                       memref.store %[[VAL_44]], %[[VAL_17]]{{\[}}%[[VAL_18]], %[[VAL_27]], %[[VAL_38]]] : memref<32x16x8xf32>
// CHECK:                     } else {
// CHECK:                     }
// CHECK:                   }
// CHECK:                   %[[VAL_45:.*]] = arith.cmpi eq, %[[VAL_39]], %[[VAL_38]] : index
// CHECK:                   %[[VAL_46:.*]] = arith.addi %[[VAL_37]], %[[VAL_9]] : index
// CHECK:                   %[[VAL_47:.*]] = arith.select %[[VAL_45]], %[[VAL_46]], %[[VAL_37]] : index
// CHECK:                   %[[VAL_48:.*]] = arith.addi %[[VAL_38]], %[[VAL_9]] : index
// CHECK:                   scf.yield %[[VAL_47]], %[[VAL_48]] : index, index
// CHECK:                 }
// CHECK:                 scf.for %[[VAL_49:.*]] = %[[VAL_50:.*]]#1 to %[[VAL_6]] step %[[VAL_9]] {
// CHECK:                   %[[VAL_51:.*]] = memref.load %[[VAL_15]]{{\[}}%[[VAL_18]], %[[VAL_27]], %[[VAL_49]]] : memref<32x16x8xf32>
// CHECK:                   memref.store %[[VAL_51]], %[[VAL_17]]{{\[}}%[[VAL_18]], %[[VAL_27]], %[[VAL_49]]] : memref<32x16x8xf32>
// CHECK:                 }
// CHECK:               } else {
// CHECK:                 scf.if %[[VAL_7]] {
// CHECK:                   scf.for %[[VAL_52:.*]] = %[[VAL_8]] to %[[VAL_6]] step %[[VAL_9]] {
// CHECK:                     %[[VAL_53:.*]] = memref.load %[[VAL_15]]{{\[}}%[[VAL_18]], %[[VAL_27]], %[[VAL_52]]] : memref<32x16x8xf32>
// CHECK:                     memref.store %[[VAL_53]], %[[VAL_17]]{{\[}}%[[VAL_18]], %[[VAL_27]], %[[VAL_52]]] : memref<32x16x8xf32>
// CHECK:                   }
// CHECK:                 } else {
// CHECK:                 }
// CHECK:               }
// CHECK:               %[[VAL_54:.*]] = arith.cmpi eq, %[[VAL_28]], %[[VAL_27]] : index
// CHECK:               %[[VAL_55:.*]] = arith.addi %[[VAL_26]], %[[VAL_9]] : index
// CHECK:               %[[VAL_56:.*]] = arith.select %[[VAL_54]], %[[VAL_55]], %[[VAL_26]] : index
// CHECK:               %[[VAL_57:.*]] = arith.addi %[[VAL_27]], %[[VAL_9]] : index
// CHECK:               scf.yield %[[VAL_56]], %[[VAL_57]] : index, index
// CHECK:             }
// CHECK:             scf.for %[[VAL_58:.*]] = %[[VAL_59:.*]]#1 to %[[VAL_5]] step %[[VAL_9]] {
// CHECK:               scf.for %[[VAL_60:.*]] = %[[VAL_8]] to %[[VAL_6]] step %[[VAL_9]] {
// CHECK:                 %[[VAL_61:.*]] = memref.load %[[VAL_15]]{{\[}}%[[VAL_18]], %[[VAL_58]], %[[VAL_60]]] : memref<32x16x8xf32>
// CHECK:                 memref.store %[[VAL_61]], %[[VAL_17]]{{\[}}%[[VAL_18]], %[[VAL_58]], %[[VAL_60]]] : memref<32x16x8xf32>
// CHECK:               }
// CHECK:             }
// CHECK:           }
// CHECK:           %[[VAL_62:.*]] = bufferization.to_tensor %[[VAL_17]] : memref<32x16x8xf32>
// CHECK:           return %[[VAL_62]] : tensor<32x16x8xf32>
// CHECK:         }
func.func @add_dss(%arga: tensor<32x16x8xf32, #Tdss>, %argb: tensor<32x16x8xf32>, %argx: tensor<32x16x8xf32>) -> tensor<32x16x8xf32> {
  %0 = linalg.generic #trait3
     ins(%arga, %argb: tensor<32x16x8xf32, #Tdss>, tensor<32x16x8xf32>)
    outs(%argx: tensor<32x16x8xf32>) {
      ^bb(%a: f32, %b: f32, %x: f32):
        %0 = arith.addf %a, %b : f32
        linalg.yield %0 : f32
  } -> tensor<32x16x8xf32>
  return %0 : tensor<32x16x8xf32>
}
// CHECK-LABEL:   func @mul_dss(
// CHECK-SAME:      %[[VAL_0:.*]]: tensor<32x16x8xf32, #sparse{{[0-9]*}}>,
// CHECK-SAME:      %[[VAL_1:.*]]: tensor<32x16x8xf32>,
// CHECK-SAME:      %[[VAL_2:.*]]: tensor<32x16x8xf32>) -> tensor<32x16x8xf32> {
// CHECK-DAG:       %[[ZERO:.*]] = arith.constant 0.000000e+00 : f32
// CHECK-DAG:       %[[VAL_4:.*]] = arith.constant 32 : index
// CHECK-DAG:       %[[VAL_5:.*]] = arith.constant 0 : index
// CHECK-DAG:       %[[VAL_6:.*]] = arith.constant 1 : index
// CHECK-DAG:       %[[VAL_7:.*]] = sparse_tensor.positions %[[VAL_0]] {level = 1 : index} : tensor<32x16x8xf32, #sparse{{[0-9]*}}> to memref<?xindex>
// CHECK-DAG:       %[[VAL_8:.*]] = sparse_tensor.coordinates %[[VAL_0]] {level = 1 : index} : tensor<32x16x8xf32, #sparse{{[0-9]*}}> to memref<?xindex>
// CHECK-DAG:       %[[VAL_9:.*]] = sparse_tensor.positions %[[VAL_0]] {level = 2 : index} : tensor<32x16x8xf32, #sparse{{[0-9]*}}> to memref<?xindex>
// CHECK-DAG:       %[[VAL_10:.*]] = sparse_tensor.coordinates %[[VAL_0]] {level = 2 : index} : tensor<32x16x8xf32, #sparse{{[0-9]*}}> to memref<?xindex>
// CHECK-DAG:       %[[VAL_11:.*]] = sparse_tensor.values %[[VAL_0]] : tensor<32x16x8xf32, #sparse{{[0-9]*}}> to memref<?xf32>
// CHECK-DAG:       %[[VAL_12:.*]] = bufferization.to_memref %[[VAL_1]] : memref<32x16x8xf32>
// CHECK-DAG:       %[[VAL_14:.*]] = bufferization.to_memref %[[VAL_2]] : memref<32x16x8xf32>
// CHECK:           linalg.fill ins(%[[ZERO]] : f32) outs(%[[VAL_14]] : memref<32x16x8xf32>)
// CHECK:           scf.for %[[VAL_15:.*]] = %[[VAL_5]] to %[[VAL_4]] step %[[VAL_6]] {
// CHECK:             %[[VAL_16:.*]] = memref.load %[[VAL_7]]{{\[}}%[[VAL_15]]] : memref<?xindex>
// CHECK:             %[[VAL_17:.*]] = arith.addi %[[VAL_15]], %[[VAL_6]] : index
// CHECK:             %[[VAL_18:.*]] = memref.load %[[VAL_7]]{{\[}}%[[VAL_17]]] : memref<?xindex>
// CHECK:             scf.for %[[VAL_19:.*]] = %[[VAL_16]] to %[[VAL_18]] step %[[VAL_6]] {
// CHECK:               %[[VAL_20:.*]] = memref.load %[[VAL_8]]{{\[}}%[[VAL_19]]] : memref<?xindex>
// CHECK:               %[[VAL_21:.*]] = memref.load %[[VAL_9]]{{\[}}%[[VAL_19]]] : memref<?xindex>
// CHECK:               %[[VAL_22:.*]] = arith.addi %[[VAL_19]], %[[VAL_6]] : index
// CHECK:               %[[VAL_23:.*]] = memref.load %[[VAL_9]]{{\[}}%[[VAL_22]]] : memref<?xindex>
// CHECK:               scf.for %[[VAL_24:.*]] = %[[VAL_21]] to %[[VAL_23]] step %[[VAL_6]] {
// CHECK:                 %[[VAL_25:.*]] = memref.load %[[VAL_10]]{{\[}}%[[VAL_24]]] : memref<?xindex>
// CHECK:                 %[[VAL_26:.*]] = memref.load %[[VAL_11]]{{\[}}%[[VAL_24]]] : memref<?xf32>
// CHECK:                 %[[VAL_27:.*]] = memref.load %[[VAL_12]]{{\[}}%[[VAL_15]], %[[VAL_20]], %[[VAL_25]]] : memref<32x16x8xf32>
// CHECK:                 %[[VAL_28:.*]] = arith.mulf %[[VAL_26]], %[[VAL_27]] : f32
// CHECK:                 memref.store %[[VAL_28]], %[[VAL_14]]{{\[}}%[[VAL_15]], %[[VAL_20]], %[[VAL_25]]] : memref<32x16x8xf32>
// CHECK:               }
// CHECK:             }
// CHECK:           }
// CHECK:           %[[VAL_29:.*]] = bufferization.to_tensor %[[VAL_14]] : memref<32x16x8xf32>
// CHECK:           return %[[VAL_29]] : tensor<32x16x8xf32>
// CHECK:         }
func.func @mul_dss(%arga: tensor<32x16x8xf32, #Tdss>, %argb: tensor<32x16x8xf32>, %argx: tensor<32x16x8xf32>) -> tensor<32x16x8xf32> {
  %0 = linalg.generic #trait3
     ins(%arga, %argb: tensor<32x16x8xf32, #Tdss>, tensor<32x16x8xf32>)
    outs(%argx: tensor<32x16x8xf32>) {
      ^bb(%a: f32, %b: f32, %x: f32):
        %0 = arith.mulf %a, %b : f32
        linalg.yield %0 : f32
  } -> tensor<32x16x8xf32>
  return %0 : tensor<32x16x8xf32>
}
// CHECK-LABEL:   func @add_sdd(
// CHECK-SAME:      %[[VAL_0:.*]]: tensor<32x16x8xf32, #sparse{{[0-9]*}}>,
// CHECK-SAME:      %[[VAL_1:.*]]: tensor<32x16x8xf32>,
// CHECK-SAME:      %[[VAL_2:.*]]: tensor<32x16x8xf32>) -> tensor<32x16x8xf32> {
// CHECK-DAG:       %[[ZERO:.*]] = arith.constant 0.000000e+00 : f32
// CHECK-DAG:       %[[VAL_3:.*]] = arith.constant 32 : index
// CHECK-DAG:       %[[VAL_4:.*]] = arith.constant 16 : index
// CHECK-DAG:       %[[VAL_5:.*]] = arith.constant 8 : index
// CHECK-DAG:       %[[VAL_6:.*]] = arith.constant true
// CHECK-DAG:       %[[VAL_7:.*]] = arith.constant 0 : index
// CHECK-DAG:       %[[VAL_8:.*]] = arith.constant 1 : index
// CHECK-DAG:       %[[VAL_9:.*]] = sparse_tensor.positions %[[VAL_0]] {level = 0 : index} : tensor<32x16x8xf32, #sparse{{[0-9]*}}> to memref<?xindex>
// CHECK-DAG:       %[[VAL_10:.*]] = sparse_tensor.coordinates %[[VAL_0]] {level = 0 : index} : tensor<32x16x8xf32, #sparse{{[0-9]*}}> to memref<?xindex>
// CHECK-DAG:       %[[VAL_11:.*]] = sparse_tensor.values %[[VAL_0]] : tensor<32x16x8xf32, #sparse{{[0-9]*}}> to memref<?xf32>
// CHECK-DAG:       %[[VAL_12:.*]] = bufferization.to_memref %[[VAL_1]] : memref<32x16x8xf32>
// CHECK-DAG:       %[[VAL_14:.*]] = bufferization.to_memref %[[VAL_2]] : memref<32x16x8xf32>
// CHECK:           linalg.fill ins(%[[ZERO]] : f32) outs(%[[VAL_14]] : memref<32x16x8xf32>)
// CHECK:           %[[VAL_15:.*]] = memref.load %[[VAL_9]]{{\[}}%[[VAL_7]]] : memref<?xindex>
// CHECK:           %[[VAL_16:.*]] = memref.load %[[VAL_9]]{{\[}}%[[VAL_8]]] : memref<?xindex>
// CHECK:           %[[VAL_17:.*]]:2 = scf.while (%[[VAL_18:.*]] = %[[VAL_15]], %[[VAL_19:.*]] = %[[VAL_7]]) : (index, index) -> (index, index) {
// CHECK:             %[[VAL_20:.*]] = arith.cmpi ult, %[[VAL_18]], %[[VAL_16]] : index
// CHECK:             scf.condition(%[[VAL_20]]) %[[VAL_18]], %[[VAL_19]] : index, index
// CHECK:           } do {
// CHECK:           ^bb0(%[[VAL_21:.*]]: index, %[[VAL_22:.*]]: index):
// CHECK:             %[[VAL_23:.*]] = memref.load %[[VAL_10]]{{\[}}%[[VAL_21]]] : memref<?xindex>
// CHECK:             %[[VAL_24:.*]] = arith.cmpi eq, %[[VAL_23]], %[[VAL_22]] : index
// CHECK:             scf.if %[[VAL_24]] {
// CHECK:               scf.for %[[VAL_25:.*]] = %[[VAL_7]] to %[[VAL_4]] step %[[VAL_8]] {
// CHECK:                 %[[VAL_26:.*]] = arith.muli %[[VAL_21]], %[[VAL_4]] : index
// CHECK:                 %[[VAL_27:.*]] = arith.addi %[[VAL_26]], %[[VAL_25]] : index
// CHECK:                 scf.for %[[VAL_28:.*]] = %[[VAL_7]] to %[[VAL_5]] step %[[VAL_8]] {
// CHECK:                   %[[VAL_29:.*]] = arith.muli %[[VAL_27]], %[[VAL_5]] : index
// CHECK:                   %[[VAL_30:.*]] = arith.addi %[[VAL_29]], %[[VAL_28]] : index
// CHECK:                   %[[VAL_31:.*]] = memref.load %[[VAL_11]]{{\[}}%[[VAL_30]]] : memref<?xf32>
// CHECK:                   %[[VAL_32:.*]] = memref.load %[[VAL_12]]{{\[}}%[[VAL_22]], %[[VAL_25]], %[[VAL_28]]] : memref<32x16x8xf32>
// CHECK:                   %[[VAL_33:.*]] = arith.addf %[[VAL_31]], %[[VAL_32]] : f32
// CHECK:                   memref.store %[[VAL_33]], %[[VAL_14]]{{\[}}%[[VAL_22]], %[[VAL_25]], %[[VAL_28]]] : memref<32x16x8xf32>
// CHECK:                 }
// CHECK:               }
// CHECK:             } else {
// CHECK:               scf.if %[[VAL_6]] {
// CHECK:                 scf.for %[[VAL_34:.*]] = %[[VAL_7]] to %[[VAL_4]] step %[[VAL_8]] {
// CHECK:                   scf.for %[[VAL_35:.*]] = %[[VAL_7]] to %[[VAL_5]] step %[[VAL_8]] {
// CHECK:                     %[[VAL_36:.*]] = memref.load %[[VAL_12]]{{\[}}%[[VAL_22]], %[[VAL_34]], %[[VAL_35]]] : memref<32x16x8xf32>
// CHECK:                     memref.store %[[VAL_36]], %[[VAL_14]]{{\[}}%[[VAL_22]], %[[VAL_34]], %[[VAL_35]]] : memref<32x16x8xf32>
// CHECK:                   }
// CHECK:                 }
// CHECK:               } else {
// CHECK:               }
// CHECK:             }
// CHECK:             %[[VAL_37:.*]] = arith.cmpi eq, %[[VAL_23]], %[[VAL_22]] : index
// CHECK:             %[[VAL_38:.*]] = arith.addi %[[VAL_21]], %[[VAL_8]] : index
// CHECK:             %[[VAL_39:.*]] = arith.select %[[VAL_37]], %[[VAL_38]], %[[VAL_21]] : index
// CHECK:             %[[VAL_40:.*]] = arith.addi %[[VAL_22]], %[[VAL_8]] : index
// CHECK:             scf.yield %[[VAL_39]], %[[VAL_40]] : index, index
// CHECK:           }
// CHECK:           scf.for %[[VAL_41:.*]] = %[[VAL_42:.*]]#1 to %[[VAL_3]] step %[[VAL_8]] {
// CHECK:             scf.for %[[VAL_43:.*]] = %[[VAL_7]] to %[[VAL_4]] step %[[VAL_8]] {
// CHECK:               scf.for %[[VAL_44:.*]] = %[[VAL_7]] to %[[VAL_5]] step %[[VAL_8]] {
// CHECK:                 %[[VAL_45:.*]] = memref.load %[[VAL_12]]{{\[}}%[[VAL_41]], %[[VAL_43]], %[[VAL_44]]] : memref<32x16x8xf32>
// CHECK:                 memref.store %[[VAL_45]], %[[VAL_14]]{{\[}}%[[VAL_41]], %[[VAL_43]], %[[VAL_44]]] : memref<32x16x8xf32>
// CHECK:               }
// CHECK:             }
// CHECK:           }
// CHECK:           %[[VAL_46:.*]] = bufferization.to_tensor %[[VAL_14]] : memref<32x16x8xf32>
// CHECK:           return %[[VAL_46]] : tensor<32x16x8xf32>
// CHECK:         }
func.func @add_sdd(%arga: tensor<32x16x8xf32, #Tsdd>, %argb: tensor<32x16x8xf32>, %argx: tensor<32x16x8xf32>) -> tensor<32x16x8xf32> {
  %0 = linalg.generic #trait3
     ins(%arga, %argb: tensor<32x16x8xf32, #Tsdd>, tensor<32x16x8xf32>)
    outs(%argx: tensor<32x16x8xf32>) {
      ^bb(%a: f32, %b: f32, %x: f32):
        %0 = arith.addf %a, %b : f32
        linalg.yield %0 : f32
  } -> tensor<32x16x8xf32>
  return %0 : tensor<32x16x8xf32>
}
// CHECK-LABEL:   func @mul_sdd(
// CHECK-SAME:      %[[VAL_0:.*]]: tensor<32x16x8xf32, #sparse{{[0-9]*}}>,
// CHECK-SAME:      %[[VAL_1:.*]]: tensor<32x16x8xf32>,
// CHECK-SAME:      %[[VAL_2:.*]]: tensor<32x16x8xf32>) -> tensor<32x16x8xf32> {
// CHECK-DAG:       %[[ZERO:.*]] = arith.constant 0.000000e+00 : f32
// CHECK-DAG:       %[[VAL_3:.*]] = arith.constant 16 : index
// CHECK-DAG:       %[[VAL_4:.*]] = arith.constant 8 : index
// CHECK-DAG:       %[[VAL_5:.*]] = arith.constant 0 : index
// CHECK-DAG:       %[[VAL_6:.*]] = arith.constant 1 : index
// CHECK-DAG:       %[[VAL_7:.*]] = sparse_tensor.positions %[[VAL_0]] {level = 0 : index} : tensor<32x16x8xf32, #sparse{{[0-9]*}}> to memref<?xindex>
// CHECK-DAG:       %[[VAL_8:.*]] = sparse_tensor.coordinates %[[VAL_0]] {level = 0 : index} : tensor<32x16x8xf32, #sparse{{[0-9]*}}> to memref<?xindex>
// CHECK-DAG:       %[[VAL_9:.*]] = sparse_tensor.values %[[VAL_0]] : tensor<32x16x8xf32, #sparse{{[0-9]*}}> to memref<?xf32>
// CHECK-DAG:       %[[VAL_10:.*]] = bufferization.to_memref %[[VAL_1]] : memref<32x16x8xf32>
// CHECK-DAG:       %[[VAL_12:.*]] = bufferization.to_memref %[[VAL_2]] : memref<32x16x8xf32>
// CHECK:           linalg.fill ins(%[[ZERO]] : f32) outs(%[[VAL_12]] : memref<32x16x8xf32>)
// CHECK:           %[[VAL_13:.*]] = memref.load %[[VAL_7]]{{\[}}%[[VAL_5]]] : memref<?xindex>
// CHECK:           %[[VAL_14:.*]] = memref.load %[[VAL_7]]{{\[}}%[[VAL_6]]] : memref<?xindex>
// CHECK:           scf.for %[[VAL_15:.*]] = %[[VAL_13]] to %[[VAL_14]] step %[[VAL_6]] {
// CHECK:             %[[VAL_16:.*]] = memref.load %[[VAL_8]]{{\[}}%[[VAL_15]]] : memref<?xindex>
// CHECK:             scf.for %[[VAL_17:.*]] = %[[VAL_5]] to %[[VAL_3]] step %[[VAL_6]] {
// CHECK:               %[[VAL_18:.*]] = arith.muli %[[VAL_15]], %[[VAL_3]] : index
// CHECK:               %[[VAL_19:.*]] = arith.addi %[[VAL_18]], %[[VAL_17]] : index
// CHECK:               scf.for %[[VAL_20:.*]] = %[[VAL_5]] to %[[VAL_4]] step %[[VAL_6]] {
// CHECK:                 %[[VAL_21:.*]] = arith.muli %[[VAL_19]], %[[VAL_4]] : index
// CHECK:                 %[[VAL_22:.*]] = arith.addi %[[VAL_21]], %[[VAL_20]] : index
// CHECK:                 %[[VAL_23:.*]] = memref.load %[[VAL_9]]{{\[}}%[[VAL_22]]] : memref<?xf32>
// CHECK:                 %[[VAL_24:.*]] = memref.load %[[VAL_10]]{{\[}}%[[VAL_16]], %[[VAL_17]], %[[VAL_20]]] : memref<32x16x8xf32>
// CHECK:                 %[[VAL_25:.*]] = arith.mulf %[[VAL_23]], %[[VAL_24]] : f32
// CHECK:                 memref.store %[[VAL_25]], %[[VAL_12]]{{\[}}%[[VAL_16]], %[[VAL_17]], %[[VAL_20]]] : memref<32x16x8xf32>
// CHECK:               }
// CHECK:             }
// CHECK:           }
// CHECK:           %[[VAL_26:.*]] = bufferization.to_tensor %[[VAL_12]] : memref<32x16x8xf32>
// CHECK:           return %[[VAL_26]] : tensor<32x16x8xf32>
// CHECK:         }
func.func @mul_sdd(%arga: tensor<32x16x8xf32, #Tsdd>, %argb: tensor<32x16x8xf32>, %argx: tensor<32x16x8xf32>) -> tensor<32x16x8xf32> {
  %0 = linalg.generic #trait3
     ins(%arga, %argb: tensor<32x16x8xf32, #Tsdd>, tensor<32x16x8xf32>)
    outs(%argx: tensor<32x16x8xf32>) {
      ^bb(%a: f32, %b: f32, %x: f32):
        %0 = arith.mulf %a, %b : f32
        linalg.yield %0 : f32
  } -> tensor<32x16x8xf32>
  return %0 : tensor<32x16x8xf32>
}
// CHECK-LABEL:   func @add_sds(
// CHECK-SAME:      %[[VAL_0:.*]]: tensor<32x16x8xf32, #sparse{{[0-9]*}}>,
// CHECK-SAME:      %[[VAL_1:.*]]: tensor<32x16x8xf32>,
// CHECK-SAME:      %[[VAL_2:.*]]: tensor<32x16x8xf32>) -> tensor<32x16x8xf32> {
// CHECK-DAG:       %[[ZERO:.*]] = arith.constant 0.000000e+00 : f32
// CHECK-DAG:       %[[VAL_4:.*]] = arith.constant 32 : index
// CHECK-DAG:       %[[VAL_5:.*]] = arith.constant 16 : index
// CHECK-DAG:       %[[VAL_6:.*]] = arith.constant 8 : index
// CHECK-DAG:       %[[VAL_7:.*]] = arith.constant true
// CHECK-DAG:       %[[VAL_8:.*]] = arith.constant 0 : index
// CHECK-DAG:       %[[VAL_9:.*]] = arith.constant 1 : index
// CHECK-DAG:       %[[VAL_10:.*]] = sparse_tensor.positions %[[VAL_0]] {level = 0 : index} : tensor<32x16x8xf32, #sparse{{[0-9]*}}> to memref<?xindex>
// CHECK-DAG:       %[[VAL_11:.*]] = sparse_tensor.coordinates %[[VAL_0]] {level = 0 : index} : tensor<32x16x8xf32, #sparse{{[0-9]*}}> to memref<?xindex>
// CHECK-DAG:       %[[VAL_12:.*]] = sparse_tensor.positions %[[VAL_0]] {level = 2 : index} : tensor<32x16x8xf32, #sparse{{[0-9]*}}> to memref<?xindex>
// CHECK-DAG:       %[[VAL_13:.*]] = sparse_tensor.coordinates %[[VAL_0]] {level = 2 : index} : tensor<32x16x8xf32, #sparse{{[0-9]*}}> to memref<?xindex>
// CHECK-DAG:       %[[VAL_14:.*]] = sparse_tensor.values %[[VAL_0]] : tensor<32x16x8xf32, #sparse{{[0-9]*}}> to memref<?xf32>
// CHECK-DAG:       %[[VAL_15:.*]] = bufferization.to_memref %[[VAL_1]] : memref<32x16x8xf32>
// CHECK-DAG:       %[[VAL_17:.*]] = bufferization.to_memref %[[VAL_2]] : memref<32x16x8xf32>
// CHECK:           linalg.fill ins(%[[ZERO]] : f32) outs(%[[VAL_17]] : memref<32x16x8xf32>)
// CHECK:           %[[VAL_18:.*]] = memref.load %[[VAL_10]]{{\[}}%[[VAL_8]]] : memref<?xindex>
// CHECK:           %[[VAL_19:.*]] = memref.load %[[VAL_10]]{{\[}}%[[VAL_9]]] : memref<?xindex>
// CHECK:           %[[VAL_20:.*]]:2 = scf.while (%[[VAL_21:.*]] = %[[VAL_18]], %[[VAL_22:.*]] = %[[VAL_8]]) : (index, index) -> (index, index) {
// CHECK:             %[[VAL_23:.*]] = arith.cmpi ult, %[[VAL_21]], %[[VAL_19]] : index
// CHECK:             scf.condition(%[[VAL_23]]) %[[VAL_21]], %[[VAL_22]] : index, index
// CHECK:           } do {
// CHECK:           ^bb0(%[[VAL_24:.*]]: index, %[[VAL_25:.*]]: index):
// CHECK:             %[[VAL_26:.*]] = memref.load %[[VAL_11]]{{\[}}%[[VAL_24]]] : memref<?xindex>
// CHECK:             %[[VAL_27:.*]] = arith.cmpi eq, %[[VAL_26]], %[[VAL_25]] : index
// CHECK:             scf.if %[[VAL_27]] {
// CHECK:               scf.for %[[VAL_28:.*]] = %[[VAL_8]] to %[[VAL_5]] step %[[VAL_9]] {
// CHECK:                 %[[VAL_29:.*]] = arith.muli %[[VAL_24]], %[[VAL_5]] : index
// CHECK:                 %[[VAL_30:.*]] = arith.addi %[[VAL_29]], %[[VAL_28]] : index
// CHECK:                 %[[VAL_31:.*]] = memref.load %[[VAL_12]]{{\[}}%[[VAL_30]]] : memref<?xindex>
// CHECK:                 %[[VAL_32:.*]] = arith.addi %[[VAL_30]], %[[VAL_9]] : index
// CHECK:                 %[[VAL_33:.*]] = memref.load %[[VAL_12]]{{\[}}%[[VAL_32]]] : memref<?xindex>
// CHECK:                 %[[VAL_34:.*]]:2 = scf.while (%[[VAL_35:.*]] = %[[VAL_31]], %[[VAL_36:.*]] = %[[VAL_8]]) : (index, index) -> (index, index) {
// CHECK:                   %[[VAL_37:.*]] = arith.cmpi ult, %[[VAL_35]], %[[VAL_33]] : index
// CHECK:                   scf.condition(%[[VAL_37]]) %[[VAL_35]], %[[VAL_36]] : index, index
// CHECK:                 } do {
// CHECK:                 ^bb0(%[[VAL_38:.*]]: index, %[[VAL_39:.*]]: index):
// CHECK:                   %[[VAL_40:.*]] = memref.load %[[VAL_13]]{{\[}}%[[VAL_38]]] : memref<?xindex>
// CHECK:                   %[[VAL_41:.*]] = arith.cmpi eq, %[[VAL_40]], %[[VAL_39]] : index
// CHECK:                   scf.if %[[VAL_41]] {
// CHECK:                     %[[VAL_42:.*]] = memref.load %[[VAL_14]]{{\[}}%[[VAL_38]]] : memref<?xf32>
// CHECK:                     %[[VAL_43:.*]] = memref.load %[[VAL_15]]{{\[}}%[[VAL_25]], %[[VAL_28]], %[[VAL_39]]] : memref<32x16x8xf32>
// CHECK:                     %[[VAL_44:.*]] = arith.addf %[[VAL_42]], %[[VAL_43]] : f32
// CHECK:                     memref.store %[[VAL_44]], %[[VAL_17]]{{\[}}%[[VAL_25]], %[[VAL_28]], %[[VAL_39]]] : memref<32x16x8xf32>
// CHECK:                   } else {
// CHECK:                     scf.if %[[VAL_7]] {
// CHECK:                       %[[VAL_45:.*]] = memref.load %[[VAL_15]]{{\[}}%[[VAL_25]], %[[VAL_28]], %[[VAL_39]]] : memref<32x16x8xf32>
// CHECK:                       memref.store %[[VAL_45]], %[[VAL_17]]{{\[}}%[[VAL_25]], %[[VAL_28]], %[[VAL_39]]] : memref<32x16x8xf32>
// CHECK:                     } else {
// CHECK:                     }
// CHECK:                   }
// CHECK:                   %[[VAL_46:.*]] = arith.cmpi eq, %[[VAL_40]], %[[VAL_39]] : index
// CHECK:                   %[[VAL_47:.*]] = arith.addi %[[VAL_38]], %[[VAL_9]] : index
// CHECK:                   %[[VAL_48:.*]] = arith.select %[[VAL_46]], %[[VAL_47]], %[[VAL_38]] : index
// CHECK:                   %[[VAL_49:.*]] = arith.addi %[[VAL_39]], %[[VAL_9]] : index
// CHECK:                   scf.yield %[[VAL_48]], %[[VAL_49]] : index, index
// CHECK:                 }
// CHECK:                 scf.for %[[VAL_50:.*]] = %[[VAL_51:.*]]#1 to %[[VAL_6]] step %[[VAL_9]] {
// CHECK:                   %[[VAL_52:.*]] = memref.load %[[VAL_15]]{{\[}}%[[VAL_25]], %[[VAL_28]], %[[VAL_50]]] : memref<32x16x8xf32>
// CHECK:                   memref.store %[[VAL_52]], %[[VAL_17]]{{\[}}%[[VAL_25]], %[[VAL_28]], %[[VAL_50]]] : memref<32x16x8xf32>
// CHECK:                 }
// CHECK:               }
// CHECK:             } else {
// CHECK:               scf.if %[[VAL_7]] {
// CHECK:                 scf.for %[[VAL_53:.*]] = %[[VAL_8]] to %[[VAL_5]] step %[[VAL_9]] {
// CHECK:                   scf.for %[[VAL_54:.*]] = %[[VAL_8]] to %[[VAL_6]] step %[[VAL_9]] {
// CHECK:                     %[[VAL_55:.*]] = memref.load %[[VAL_15]]{{\[}}%[[VAL_25]], %[[VAL_53]], %[[VAL_54]]] : memref<32x16x8xf32>
// CHECK:                     memref.store %[[VAL_55]], %[[VAL_17]]{{\[}}%[[VAL_25]], %[[VAL_53]], %[[VAL_54]]] : memref<32x16x8xf32>
// CHECK:                   }
// CHECK:                 }
// CHECK:               } else {
// CHECK:               }
// CHECK:             }
// CHECK:             %[[VAL_56:.*]] = arith.cmpi eq, %[[VAL_26]], %[[VAL_25]] : index
// CHECK:             %[[VAL_57:.*]] = arith.addi %[[VAL_24]], %[[VAL_9]] : index
// CHECK:             %[[VAL_58:.*]] = arith.select %[[VAL_56]], %[[VAL_57]], %[[VAL_24]] : index
// CHECK:             %[[VAL_59:.*]] = arith.addi %[[VAL_25]], %[[VAL_9]] : index
// CHECK:             scf.yield %[[VAL_58]], %[[VAL_59]] : index, index
// CHECK:           }
// CHECK:           scf.for %[[VAL_60:.*]] = %[[VAL_61:.*]]#1 to %[[VAL_4]] step %[[VAL_9]] {
// CHECK:             scf.for %[[VAL_62:.*]] = %[[VAL_8]] to %[[VAL_5]] step %[[VAL_9]] {
// CHECK:               scf.for %[[VAL_63:.*]] = %[[VAL_8]] to %[[VAL_6]] step %[[VAL_9]] {
// CHECK:                 %[[VAL_64:.*]] = memref.load %[[VAL_15]]{{\[}}%[[VAL_60]], %[[VAL_62]], %[[VAL_63]]] : memref<32x16x8xf32>
// CHECK:                 memref.store %[[VAL_64]], %[[VAL_17]]{{\[}}%[[VAL_60]], %[[VAL_62]], %[[VAL_63]]] : memref<32x16x8xf32>
// CHECK:               }
// CHECK:             }
// CHECK:           }
// CHECK:           %[[VAL_65:.*]] = bufferization.to_tensor %[[VAL_17]] : memref<32x16x8xf32>
// CHECK:           return %[[VAL_65]] : tensor<32x16x8xf32>
// CHECK:         }
func.func @add_sds(%arga: tensor<32x16x8xf32, #Tsds>, %argb: tensor<32x16x8xf32>, %argx: tensor<32x16x8xf32>) -> tensor<32x16x8xf32> {
  %0 = linalg.generic #trait3
     ins(%arga, %argb: tensor<32x16x8xf32, #Tsds>, tensor<32x16x8xf32>)
    outs(%argx: tensor<32x16x8xf32>) {
      ^bb(%a: f32, %b: f32, %x: f32):
        %0 = arith.addf %a, %b : f32
        linalg.yield %0 : f32
  } -> tensor<32x16x8xf32>
  return %0 : tensor<32x16x8xf32>
}
// CHECK-LABEL:   func @mul_sds(
// CHECK-SAME:      %[[VAL_0:.*]]: tensor<32x16x8xf32, #sparse{{[0-9]*}}>,
// CHECK-SAME:      %[[VAL_1:.*]]: tensor<32x16x8xf32>,
// CHECK-SAME:      %[[VAL_2:.*]]: tensor<32x16x8xf32>) -> tensor<32x16x8xf32> {
// CHECK-DAG:       %[[ZERO:.*]] = arith.constant 0.000000e+00 : f32
// CHECK-DAG:       %[[VAL_4:.*]] = arith.constant 16 : index
// CHECK-DAG:       %[[VAL_5:.*]] = arith.constant 0 : index
// CHECK-DAG:       %[[VAL_6:.*]] = arith.constant 1 : index
// CHECK-DAG:       %[[VAL_7:.*]] = sparse_tensor.positions %[[VAL_0]] {level = 0 : index} : tensor<32x16x8xf32, #sparse{{[0-9]*}}> to memref<?xindex>
// CHECK-DAG:       %[[VAL_8:.*]] = sparse_tensor.coordinates %[[VAL_0]] {level = 0 : index} : tensor<32x16x8xf32, #sparse{{[0-9]*}}> to memref<?xindex>
// CHECK-DAG:       %[[VAL_9:.*]] = sparse_tensor.positions %[[VAL_0]] {level = 2 : index} : tensor<32x16x8xf32, #sparse{{[0-9]*}}> to memref<?xindex>
// CHECK-DAG:       %[[VAL_10:.*]] = sparse_tensor.coordinates %[[VAL_0]] {level = 2 : index} : tensor<32x16x8xf32, #sparse{{[0-9]*}}> to memref<?xindex>
// CHECK-DAG:       %[[VAL_11:.*]] = sparse_tensor.values %[[VAL_0]] : tensor<32x16x8xf32, #sparse{{[0-9]*}}> to memref<?xf32>
// CHECK-DAG:       %[[VAL_12:.*]] = bufferization.to_memref %[[VAL_1]] : memref<32x16x8xf32>
// CHECK-DAG:       %[[VAL_14:.*]] = bufferization.to_memref %[[VAL_2]] : memref<32x16x8xf32>
// CHECK:           linalg.fill ins(%[[ZERO]] : f32) outs(%[[VAL_14]] : memref<32x16x8xf32>)
// CHECK:           %[[VAL_15:.*]] = memref.load %[[VAL_7]]{{\[}}%[[VAL_5]]] : memref<?xindex>
// CHECK:           %[[VAL_16:.*]] = memref.load %[[VAL_7]]{{\[}}%[[VAL_6]]] : memref<?xindex>
// CHECK:           scf.for %[[VAL_17:.*]] = %[[VAL_15]] to %[[VAL_16]] step %[[VAL_6]] {
// CHECK:             %[[VAL_18:.*]] = memref.load %[[VAL_8]]{{\[}}%[[VAL_17]]] : memref<?xindex>
// CHECK:             scf.for %[[VAL_19:.*]] = %[[VAL_5]] to %[[VAL_4]] step %[[VAL_6]] {
// CHECK:               %[[VAL_20:.*]] = arith.muli %[[VAL_17]], %[[VAL_4]] : index
// CHECK:               %[[VAL_21:.*]] = arith.addi %[[VAL_20]], %[[VAL_19]] : index
// CHECK:               %[[VAL_22:.*]] = memref.load %[[VAL_9]]{{\[}}%[[VAL_21]]] : memref<?xindex>
// CHECK:               %[[VAL_23:.*]] = arith.addi %[[VAL_21]], %[[VAL_6]] : index
// CHECK:               %[[VAL_24:.*]] = memref.load %[[VAL_9]]{{\[}}%[[VAL_23]]] : memref<?xindex>
// CHECK:               scf.for %[[VAL_25:.*]] = %[[VAL_22]] to %[[VAL_24]] step %[[VAL_6]] {
// CHECK:                 %[[VAL_26:.*]] = memref.load %[[VAL_10]]{{\[}}%[[VAL_25]]] : memref<?xindex>
// CHECK:                 %[[VAL_27:.*]] = memref.load %[[VAL_11]]{{\[}}%[[VAL_25]]] : memref<?xf32>
// CHECK:                 %[[VAL_28:.*]] = memref.load %[[VAL_12]]{{\[}}%[[VAL_18]], %[[VAL_19]], %[[VAL_26]]] : memref<32x16x8xf32>
// CHECK:                 %[[VAL_29:.*]] = arith.mulf %[[VAL_27]], %[[VAL_28]] : f32
// CHECK:                 memref.store %[[VAL_29]], %[[VAL_14]]{{\[}}%[[VAL_18]], %[[VAL_19]], %[[VAL_26]]] : memref<32x16x8xf32>
// CHECK:               }
// CHECK:             }
// CHECK:           }
// CHECK:           %[[VAL_30:.*]] = bufferization.to_tensor %[[VAL_14]] : memref<32x16x8xf32>
// CHECK:           return %[[VAL_30]] : tensor<32x16x8xf32>
// CHECK:         }
func.func @mul_sds(%arga: tensor<32x16x8xf32, #Tsds>, %argb: tensor<32x16x8xf32>, %argx: tensor<32x16x8xf32>) -> tensor<32x16x8xf32> {
  %0 = linalg.generic #trait3
     ins(%arga, %argb: tensor<32x16x8xf32, #Tsds>, tensor<32x16x8xf32>)
    outs(%argx: tensor<32x16x8xf32>) {
      ^bb(%a: f32, %b: f32, %x: f32):
        %0 = arith.mulf %a, %b : f32
        linalg.yield %0 : f32
  } -> tensor<32x16x8xf32>
  return %0 : tensor<32x16x8xf32>
}
// CHECK-LABEL:   func @add_ssd(
// CHECK-SAME:      %[[VAL_0:.*]]: tensor<32x16x8xf32, #sparse{{[0-9]*}}>,
// CHECK-SAME:      %[[VAL_1:.*]]: tensor<32x16x8xf32>,
// CHECK-SAME:      %[[VAL_2:.*]]: tensor<32x16x8xf32>) -> tensor<32x16x8xf32> {
// CHECK-DAG:       %[[ZERO:.*]] = arith.constant 0.000000e+00 : f32
// CHECK-DAG:       %[[VAL_3:.*]] = arith.constant 32 : index
// CHECK-DAG:       %[[VAL_4:.*]] = arith.constant 16 : index
// CHECK-DAG:       %[[VAL_5:.*]] = arith.constant 8 : index
// CHECK-DAG:       %[[VAL_6:.*]] = arith.constant true
// CHECK-DAG:       %[[VAL_7:.*]] = arith.constant 0 : index
// CHECK-DAG:       %[[VAL_8:.*]] = arith.constant 1 : index
// CHECK-DAG:       %[[VAL_9:.*]] = sparse_tensor.positions %[[VAL_0]] {level = 0 : index} : tensor<32x16x8xf32, #sparse{{[0-9]*}}> to memref<?xindex>
// CHECK-DAG:       %[[VAL_10:.*]] = sparse_tensor.coordinates %[[VAL_0]] {level = 0 : index} : tensor<32x16x8xf32, #sparse{{[0-9]*}}> to memref<?xindex>
// CHECK-DAG:       %[[VAL_11:.*]] = sparse_tensor.positions %[[VAL_0]] {level = 1 : index} : tensor<32x16x8xf32, #sparse{{[0-9]*}}> to memref<?xindex>
// CHECK-DAG:       %[[VAL_12:.*]] = sparse_tensor.coordinates %[[VAL_0]] {level = 1 : index} : tensor<32x16x8xf32, #sparse{{[0-9]*}}> to memref<?xindex>
// CHECK-DAG:       %[[VAL_13:.*]] = sparse_tensor.values %[[VAL_0]] : tensor<32x16x8xf32, #sparse{{[0-9]*}}> to memref<?xf32>
// CHECK-DAG:       %[[VAL_14:.*]] = bufferization.to_memref %[[VAL_1]] : memref<32x16x8xf32>
// CHECK-DAG:       %[[VAL_16:.*]] = bufferization.to_memref %[[VAL_2]] : memref<32x16x8xf32>
// CHECK:           linalg.fill ins(%[[ZERO]] : f32) outs(%[[VAL_16]] : memref<32x16x8xf32>)
// CHECK:           %[[VAL_17:.*]] = memref.load %[[VAL_9]]{{\[}}%[[VAL_7]]] : memref<?xindex>
// CHECK:           %[[VAL_18:.*]] = memref.load %[[VAL_9]]{{\[}}%[[VAL_8]]] : memref<?xindex>
// CHECK:           %[[VAL_19:.*]]:2 = scf.while (%[[VAL_20:.*]] = %[[VAL_17]], %[[VAL_21:.*]] = %[[VAL_7]]) : (index, index) -> (index, index) {
// CHECK:             %[[VAL_22:.*]] = arith.cmpi ult, %[[VAL_20]], %[[VAL_18]] : index
// CHECK:             scf.condition(%[[VAL_22]]) %[[VAL_20]], %[[VAL_21]] : index, index
// CHECK:           } do {
// CHECK:           ^bb0(%[[VAL_23:.*]]: index, %[[VAL_24:.*]]: index):
// CHECK:             %[[VAL_25:.*]] = memref.load %[[VAL_10]]{{\[}}%[[VAL_23]]] : memref<?xindex>
// CHECK:             %[[VAL_26:.*]] = arith.cmpi eq, %[[VAL_25]], %[[VAL_24]] : index
// CHECK:             scf.if %[[VAL_26]] {
// CHECK:               %[[VAL_27:.*]] = memref.load %[[VAL_11]]{{\[}}%[[VAL_23]]] : memref<?xindex>
// CHECK:               %[[VAL_28:.*]] = arith.addi %[[VAL_23]], %[[VAL_8]] : index
// CHECK:               %[[VAL_29:.*]] = memref.load %[[VAL_11]]{{\[}}%[[VAL_28]]] : memref<?xindex>
// CHECK:               %[[VAL_30:.*]]:2 = scf.while (%[[VAL_31:.*]] = %[[VAL_27]], %[[VAL_32:.*]] = %[[VAL_7]]) : (index, index) -> (index, index) {
// CHECK:                 %[[VAL_33:.*]] = arith.cmpi ult, %[[VAL_31]], %[[VAL_29]] : index
// CHECK:                 scf.condition(%[[VAL_33]]) %[[VAL_31]], %[[VAL_32]] : index, index
// CHECK:               } do {
// CHECK:               ^bb0(%[[VAL_34:.*]]: index, %[[VAL_35:.*]]: index):
// CHECK:                 %[[VAL_36:.*]] = memref.load %[[VAL_12]]{{\[}}%[[VAL_34]]] : memref<?xindex>
// CHECK:                 %[[VAL_37:.*]] = arith.cmpi eq, %[[VAL_36]], %[[VAL_35]] : index
// CHECK:                 scf.if %[[VAL_37]] {
// CHECK:                   scf.for %[[VAL_38:.*]] = %[[VAL_7]] to %[[VAL_5]] step %[[VAL_8]] {
// CHECK:                     %[[VAL_39:.*]] = arith.muli %[[VAL_34]], %[[VAL_5]] : index
// CHECK:                     %[[VAL_40:.*]] = arith.addi %[[VAL_39]], %[[VAL_38]] : index
// CHECK:                     %[[VAL_41:.*]] = memref.load %[[VAL_13]]{{\[}}%[[VAL_40]]] : memref<?xf32>
// CHECK:                     %[[VAL_42:.*]] = memref.load %[[VAL_14]]{{\[}}%[[VAL_24]], %[[VAL_35]], %[[VAL_38]]] : memref<32x16x8xf32>
// CHECK:                     %[[VAL_43:.*]] = arith.addf %[[VAL_41]], %[[VAL_42]] : f32
// CHECK:                     memref.store %[[VAL_43]], %[[VAL_16]]{{\[}}%[[VAL_24]], %[[VAL_35]], %[[VAL_38]]] : memref<32x16x8xf32>
// CHECK:                   }
// CHECK:                 } else {
// CHECK:                   scf.if %[[VAL_6]] {
// CHECK:                     scf.for %[[VAL_44:.*]] = %[[VAL_7]] to %[[VAL_5]] step %[[VAL_8]] {
// CHECK:                       %[[VAL_45:.*]] = memref.load %[[VAL_14]]{{\[}}%[[VAL_24]], %[[VAL_35]], %[[VAL_44]]] : memref<32x16x8xf32>
// CHECK:                       memref.store %[[VAL_45]], %[[VAL_16]]{{\[}}%[[VAL_24]], %[[VAL_35]], %[[VAL_44]]] : memref<32x16x8xf32>
// CHECK:                     }
// CHECK:                   } else {
// CHECK:                   }
// CHECK:                 }
// CHECK:                 %[[VAL_46:.*]] = arith.cmpi eq, %[[VAL_36]], %[[VAL_35]] : index
// CHECK:                 %[[VAL_47:.*]] = arith.addi %[[VAL_34]], %[[VAL_8]] : index
// CHECK:                 %[[VAL_48:.*]] = arith.select %[[VAL_46]], %[[VAL_47]], %[[VAL_34]] : index
// CHECK:                 %[[VAL_49:.*]] = arith.addi %[[VAL_35]], %[[VAL_8]] : index
// CHECK:                 scf.yield %[[VAL_48]], %[[VAL_49]] : index, index
// CHECK:               }
// CHECK:               scf.for %[[VAL_50:.*]] = %[[VAL_51:.*]]#1 to %[[VAL_4]] step %[[VAL_8]] {
// CHECK:                 scf.for %[[VAL_52:.*]] = %[[VAL_7]] to %[[VAL_5]] step %[[VAL_8]] {
// CHECK:                   %[[VAL_53:.*]] = memref.load %[[VAL_14]]{{\[}}%[[VAL_24]], %[[VAL_50]], %[[VAL_52]]] : memref<32x16x8xf32>
// CHECK:                   memref.store %[[VAL_53]], %[[VAL_16]]{{\[}}%[[VAL_24]], %[[VAL_50]], %[[VAL_52]]] : memref<32x16x8xf32>
// CHECK:                 }
// CHECK:               }
// CHECK:             } else {
// CHECK:               scf.if %[[VAL_6]] {
// CHECK:                 scf.for %[[VAL_54:.*]] = %[[VAL_7]] to %[[VAL_4]] step %[[VAL_8]] {
// CHECK:                   scf.for %[[VAL_55:.*]] = %[[VAL_7]] to %[[VAL_5]] step %[[VAL_8]] {
// CHECK:                     %[[VAL_56:.*]] = memref.load %[[VAL_14]]{{\[}}%[[VAL_24]], %[[VAL_54]], %[[VAL_55]]] : memref<32x16x8xf32>
// CHECK:                     memref.store %[[VAL_56]], %[[VAL_16]]{{\[}}%[[VAL_24]], %[[VAL_54]], %[[VAL_55]]] : memref<32x16x8xf32>
// CHECK:                   }
// CHECK:                 }
// CHECK:               } else {
// CHECK:               }
// CHECK:             }
// CHECK:             %[[VAL_57:.*]] = arith.cmpi eq, %[[VAL_25]], %[[VAL_24]] : index
// CHECK:             %[[VAL_58:.*]] = arith.addi %[[VAL_23]], %[[VAL_8]] : index
// CHECK:             %[[VAL_59:.*]] = arith.select %[[VAL_57]], %[[VAL_58]], %[[VAL_23]] : index
// CHECK:             %[[VAL_60:.*]] = arith.addi %[[VAL_24]], %[[VAL_8]] : index
// CHECK:             scf.yield %[[VAL_59]], %[[VAL_60]] : index, index
// CHECK:           }
// CHECK:           scf.for %[[VAL_61:.*]] = %[[VAL_62:.*]]#1 to %[[VAL_3]] step %[[VAL_8]] {
// CHECK:             scf.for %[[VAL_63:.*]] = %[[VAL_7]] to %[[VAL_4]] step %[[VAL_8]] {
// CHECK:               scf.for %[[VAL_64:.*]] = %[[VAL_7]] to %[[VAL_5]] step %[[VAL_8]] {
// CHECK:                 %[[VAL_65:.*]] = memref.load %[[VAL_14]]{{\[}}%[[VAL_61]], %[[VAL_63]], %[[VAL_64]]] : memref<32x16x8xf32>
// CHECK:                 memref.store %[[VAL_65]], %[[VAL_16]]{{\[}}%[[VAL_61]], %[[VAL_63]], %[[VAL_64]]] : memref<32x16x8xf32>
// CHECK:               }
// CHECK:             }
// CHECK:           }
// CHECK:           %[[VAL_66:.*]] = bufferization.to_tensor %[[VAL_16]] : memref<32x16x8xf32>
// CHECK:           return %[[VAL_66]] : tensor<32x16x8xf32>
// CHECK:         }
func.func @add_ssd(%arga: tensor<32x16x8xf32, #Tssd>, %argb: tensor<32x16x8xf32>, %argx: tensor<32x16x8xf32>) -> tensor<32x16x8xf32> {
  %0 = linalg.generic #trait3
     ins(%arga, %argb: tensor<32x16x8xf32, #Tssd>, tensor<32x16x8xf32>)
    outs(%argx: tensor<32x16x8xf32>) {
      ^bb(%a: f32, %b: f32, %x: f32):
        %0 = arith.addf %a, %b : f32
        linalg.yield %0 : f32
  } -> tensor<32x16x8xf32>
  return %0 : tensor<32x16x8xf32>
}
// CHECK-LABEL:   func @mul_ssd(
// CHECK-SAME:      %[[VAL_0:.*]]: tensor<32x16x8xf32, #sparse{{[0-9]*}}>,
// CHECK-SAME:      %[[VAL_1:.*]]: tensor<32x16x8xf32>,
// CHECK-SAME:      %[[VAL_2:.*]]: tensor<32x16x8xf32>) -> tensor<32x16x8xf32> {
// CHECK-DAG:       %[[ZERO:.*]] = arith.constant 0.000000e+00 : f32
// CHECK-DAG:       %[[VAL_3:.*]] = arith.constant 8 : index
// CHECK-DAG:       %[[VAL_4:.*]] = arith.constant 0 : index
// CHECK-DAG:       %[[VAL_5:.*]] = arith.constant 1 : index
// CHECK-DAG:       %[[VAL_6:.*]] = sparse_tensor.positions %[[VAL_0]] {level = 0 : index} : tensor<32x16x8xf32, #sparse{{[0-9]*}}> to memref<?xindex>
// CHECK-DAG:       %[[VAL_7:.*]] = sparse_tensor.coordinates %[[VAL_0]] {level = 0 : index} : tensor<32x16x8xf32, #sparse{{[0-9]*}}> to memref<?xindex>
// CHECK-DAG:       %[[VAL_8:.*]] = sparse_tensor.positions %[[VAL_0]] {level = 1 : index} : tensor<32x16x8xf32, #sparse{{[0-9]*}}> to memref<?xindex>
// CHECK-DAG:       %[[VAL_9:.*]] = sparse_tensor.coordinates %[[VAL_0]] {level = 1 : index} : tensor<32x16x8xf32, #sparse{{[0-9]*}}> to memref<?xindex>
// CHECK-DAG:       %[[VAL_10:.*]] = sparse_tensor.values %[[VAL_0]] : tensor<32x16x8xf32, #sparse{{[0-9]*}}> to memref<?xf32>
// CHECK-DAG:       %[[VAL_11:.*]] = bufferization.to_memref %[[VAL_1]] : memref<32x16x8xf32>
// CHECK-DAG:       %[[VAL_13:.*]] = bufferization.to_memref %[[VAL_2]] : memref<32x16x8xf32>
// CHECK:           linalg.fill ins(%[[ZERO]] : f32) outs(%[[VAL_13]] : memref<32x16x8xf32>)
// CHECK:           %[[VAL_14:.*]] = memref.load %[[VAL_6]]{{\[}}%[[VAL_4]]] : memref<?xindex>
// CHECK:           %[[VAL_15:.*]] = memref.load %[[VAL_6]]{{\[}}%[[VAL_5]]] : memref<?xindex>
// CHECK:           scf.for %[[VAL_16:.*]] = %[[VAL_14]] to %[[VAL_15]] step %[[VAL_5]] {
// CHECK:             %[[VAL_17:.*]] = memref.load %[[VAL_7]]{{\[}}%[[VAL_16]]] : memref<?xindex>
// CHECK:             %[[VAL_18:.*]] = memref.load %[[VAL_8]]{{\[}}%[[VAL_16]]] : memref<?xindex>
// CHECK:             %[[VAL_19:.*]] = arith.addi %[[VAL_16]], %[[VAL_5]] : index
// CHECK:             %[[VAL_20:.*]] = memref.load %[[VAL_8]]{{\[}}%[[VAL_19]]] : memref<?xindex>
// CHECK:             scf.for %[[VAL_21:.*]] = %[[VAL_18]] to %[[VAL_20]] step %[[VAL_5]] {
// CHECK:               %[[VAL_22:.*]] = memref.load %[[VAL_9]]{{\[}}%[[VAL_21]]] : memref<?xindex>
// CHECK:               scf.for %[[VAL_23:.*]] = %[[VAL_4]] to %[[VAL_3]] step %[[VAL_5]] {
// CHECK:                 %[[VAL_24:.*]] = arith.muli %[[VAL_21]], %[[VAL_3]] : index
// CHECK:                 %[[VAL_25:.*]] = arith.addi %[[VAL_24]], %[[VAL_23]] : index
// CHECK:                 %[[VAL_26:.*]] = memref.load %[[VAL_10]]{{\[}}%[[VAL_25]]] : memref<?xf32>
// CHECK:                 %[[VAL_27:.*]] = memref.load %[[VAL_11]]{{\[}}%[[VAL_17]], %[[VAL_22]], %[[VAL_23]]] : memref<32x16x8xf32>
// CHECK:                 %[[VAL_28:.*]] = arith.mulf %[[VAL_26]], %[[VAL_27]] : f32
// CHECK:                 memref.store %[[VAL_28]], %[[VAL_13]]{{\[}}%[[VAL_17]], %[[VAL_22]], %[[VAL_23]]] : memref<32x16x8xf32>
// CHECK:               }
// CHECK:             }
// CHECK:           }
// CHECK:           %[[VAL_29:.*]] = bufferization.to_tensor %[[VAL_13]] : memref<32x16x8xf32>
// CHECK:           return %[[VAL_29]] : tensor<32x16x8xf32>
// CHECK:         }
func.func @mul_ssd(%arga: tensor<32x16x8xf32, #Tssd>, %argb: tensor<32x16x8xf32>, %argx: tensor<32x16x8xf32>) -> tensor<32x16x8xf32> {
  %0 = linalg.generic #trait3
     ins(%arga, %argb: tensor<32x16x8xf32, #Tssd>, tensor<32x16x8xf32>)
    outs(%argx: tensor<32x16x8xf32>) {
      ^bb(%a: f32, %b: f32, %x: f32):
        %0 = arith.mulf %a, %b : f32
        linalg.yield %0 : f32
  } -> tensor<32x16x8xf32>
  return %0 : tensor<32x16x8xf32>
}
// CHECK-LABEL:   func @add_sss(
// CHECK-SAME:      %[[VAL_0:.*]]: tensor<32x16x8xf32, #sparse{{[0-9]*}}>,
// CHECK-SAME:      %[[VAL_1:.*]]: tensor<32x16x8xf32>,
// CHECK-SAME:      %[[VAL_2:.*]]: tensor<32x16x8xf32>) -> tensor<32x16x8xf32> {
// CHECK-DAG:       %[[ZERO:.*]] = arith.constant 0.000000e+00 : f32
// CHECK-DAG:       %[[VAL_4:.*]] = arith.constant 32 : index
// CHECK-DAG:       %[[VAL_5:.*]] = arith.constant 16 : index
// CHECK-DAG:       %[[VAL_6:.*]] = arith.constant 8 : index
// CHECK-DAG:       %[[VAL_7:.*]] = arith.constant true
// CHECK-DAG:       %[[VAL_8:.*]] = arith.constant 0 : index
// CHECK-DAG:       %[[VAL_9:.*]] = arith.constant 1 : index
// CHECK-DAG:       %[[VAL_10:.*]] = sparse_tensor.positions %[[VAL_0]] {level = 0 : index} : tensor<32x16x8xf32, #sparse{{[0-9]*}}> to memref<?xindex>
// CHECK-DAG:       %[[VAL_11:.*]] = sparse_tensor.coordinates %[[VAL_0]] {level = 0 : index} : tensor<32x16x8xf32, #sparse{{[0-9]*}}> to memref<?xindex>
// CHECK-DAG:       %[[VAL_12:.*]] = sparse_tensor.positions %[[VAL_0]] {level = 1 : index} : tensor<32x16x8xf32, #sparse{{[0-9]*}}> to memref<?xindex>
// CHECK-DAG:       %[[VAL_13:.*]] = sparse_tensor.coordinates %[[VAL_0]] {level = 1 : index} : tensor<32x16x8xf32, #sparse{{[0-9]*}}> to memref<?xindex>
// CHECK-DAG:       %[[VAL_14:.*]] = sparse_tensor.positions %[[VAL_0]] {level = 2 : index} : tensor<32x16x8xf32, #sparse{{[0-9]*}}> to memref<?xindex>
// CHECK-DAG:       %[[VAL_15:.*]] = sparse_tensor.coordinates %[[VAL_0]] {level = 2 : index} : tensor<32x16x8xf32, #sparse{{[0-9]*}}> to memref<?xindex>
// CHECK-DAG:       %[[VAL_16:.*]] = sparse_tensor.values %[[VAL_0]] : tensor<32x16x8xf32, #sparse{{[0-9]*}}> to memref<?xf32>
// CHECK-DAG:       %[[VAL_17:.*]] = bufferization.to_memref %[[VAL_1]] : memref<32x16x8xf32>
// CHECK-DAG:       %[[VAL_19:.*]] = bufferization.to_memref %[[VAL_2]] : memref<32x16x8xf32>
// CHECK:           linalg.fill ins(%[[ZERO]] : f32) outs(%[[VAL_19]] : memref<32x16x8xf32>)
// CHECK:           %[[VAL_20:.*]] = memref.load %[[VAL_10]]{{\[}}%[[VAL_8]]] : memref<?xindex>
// CHECK:           %[[VAL_21:.*]] = memref.load %[[VAL_10]]{{\[}}%[[VAL_9]]] : memref<?xindex>
// CHECK:           %[[VAL_22:.*]]:2 = scf.while (%[[VAL_23:.*]] = %[[VAL_20]], %[[VAL_24:.*]] = %[[VAL_8]]) : (index, index) -> (index, index) {
// CHECK:             %[[VAL_25:.*]] = arith.cmpi ult, %[[VAL_23]], %[[VAL_21]] : index
// CHECK:             scf.condition(%[[VAL_25]]) %[[VAL_23]], %[[VAL_24]] : index, index
// CHECK:           } do {
// CHECK:           ^bb0(%[[VAL_26:.*]]: index, %[[VAL_27:.*]]: index):
// CHECK:             %[[VAL_28:.*]] = memref.load %[[VAL_11]]{{\[}}%[[VAL_26]]] : memref<?xindex>
// CHECK:             %[[VAL_29:.*]] = arith.cmpi eq, %[[VAL_28]], %[[VAL_27]] : index
// CHECK:             scf.if %[[VAL_29]] {
// CHECK:               %[[VAL_30:.*]] = memref.load %[[VAL_12]]{{\[}}%[[VAL_26]]] : memref<?xindex>
// CHECK:               %[[VAL_31:.*]] = arith.addi %[[VAL_26]], %[[VAL_9]] : index
// CHECK:               %[[VAL_32:.*]] = memref.load %[[VAL_12]]{{\[}}%[[VAL_31]]] : memref<?xindex>
// CHECK:               %[[VAL_33:.*]]:2 = scf.while (%[[VAL_34:.*]] = %[[VAL_30]], %[[VAL_35:.*]] = %[[VAL_8]]) : (index, index) -> (index, index) {
// CHECK:                 %[[VAL_36:.*]] = arith.cmpi ult, %[[VAL_34]], %[[VAL_32]] : index
// CHECK:                 scf.condition(%[[VAL_36]]) %[[VAL_34]], %[[VAL_35]] : index, index
// CHECK:               } do {
// CHECK:               ^bb0(%[[VAL_37:.*]]: index, %[[VAL_38:.*]]: index):
// CHECK:                 %[[VAL_39:.*]] = memref.load %[[VAL_13]]{{\[}}%[[VAL_37]]] : memref<?xindex>
// CHECK:                 %[[VAL_40:.*]] = arith.cmpi eq, %[[VAL_39]], %[[VAL_38]] : index
// CHECK:                 scf.if %[[VAL_40]] {
// CHECK:                   %[[VAL_41:.*]] = memref.load %[[VAL_14]]{{\[}}%[[VAL_37]]] : memref<?xindex>
// CHECK:                   %[[VAL_42:.*]] = arith.addi %[[VAL_37]], %[[VAL_9]] : index
// CHECK:                   %[[VAL_43:.*]] = memref.load %[[VAL_14]]{{\[}}%[[VAL_42]]] : memref<?xindex>
// CHECK:                   %[[VAL_44:.*]]:2 = scf.while (%[[VAL_45:.*]] = %[[VAL_41]], %[[VAL_46:.*]] = %[[VAL_8]]) : (index, index) -> (index, index) {
// CHECK:                     %[[VAL_47:.*]] = arith.cmpi ult, %[[VAL_45]], %[[VAL_43]] : index
// CHECK:                     scf.condition(%[[VAL_47]]) %[[VAL_45]], %[[VAL_46]] : index, index
// CHECK:                   } do {
// CHECK:                   ^bb0(%[[VAL_48:.*]]: index, %[[VAL_49:.*]]: index):
// CHECK:                     %[[VAL_50:.*]] = memref.load %[[VAL_15]]{{\[}}%[[VAL_48]]] : memref<?xindex>
// CHECK:                     %[[VAL_51:.*]] = arith.cmpi eq, %[[VAL_50]], %[[VAL_49]] : index
// CHECK:                     scf.if %[[VAL_51]] {
// CHECK:                       %[[VAL_52:.*]] = memref.load %[[VAL_16]]{{\[}}%[[VAL_48]]] : memref<?xf32>
// CHECK:                       %[[VAL_53:.*]] = memref.load %[[VAL_17]]{{\[}}%[[VAL_27]], %[[VAL_38]], %[[VAL_49]]] : memref<32x16x8xf32>
// CHECK:                       %[[VAL_54:.*]] = arith.addf %[[VAL_52]], %[[VAL_53]] : f32
// CHECK:                       memref.store %[[VAL_54]], %[[VAL_19]]{{\[}}%[[VAL_27]], %[[VAL_38]], %[[VAL_49]]] : memref<32x16x8xf32>
// CHECK:                     } else {
// CHECK:                       scf.if %[[VAL_7]] {
// CHECK:                         %[[VAL_55:.*]] = memref.load %[[VAL_17]]{{\[}}%[[VAL_27]], %[[VAL_38]], %[[VAL_49]]] : memref<32x16x8xf32>
// CHECK:                         memref.store %[[VAL_55]], %[[VAL_19]]{{\[}}%[[VAL_27]], %[[VAL_38]], %[[VAL_49]]] : memref<32x16x8xf32>
// CHECK:                       } else {
// CHECK:                       }
// CHECK:                     }
// CHECK:                     %[[VAL_56:.*]] = arith.cmpi eq, %[[VAL_50]], %[[VAL_49]] : index
// CHECK:                     %[[VAL_57:.*]] = arith.addi %[[VAL_48]], %[[VAL_9]] : index
// CHECK:                     %[[VAL_58:.*]] = arith.select %[[VAL_56]], %[[VAL_57]], %[[VAL_48]] : index
// CHECK:                     %[[VAL_59:.*]] = arith.addi %[[VAL_49]], %[[VAL_9]] : index
// CHECK:                     scf.yield %[[VAL_58]], %[[VAL_59]] : index, index
// CHECK:                   }
// CHECK:                   scf.for %[[VAL_60:.*]] = %[[VAL_61:.*]]#1 to %[[VAL_6]] step %[[VAL_9]] {
// CHECK:                     %[[VAL_62:.*]] = memref.load %[[VAL_17]]{{\[}}%[[VAL_27]], %[[VAL_38]], %[[VAL_60]]] : memref<32x16x8xf32>
// CHECK:                     memref.store %[[VAL_62]], %[[VAL_19]]{{\[}}%[[VAL_27]], %[[VAL_38]], %[[VAL_60]]] : memref<32x16x8xf32>
// CHECK:                   }
// CHECK:                 } else {
// CHECK:                   scf.if %[[VAL_7]] {
// CHECK:                     scf.for %[[VAL_63:.*]] = %[[VAL_8]] to %[[VAL_6]] step %[[VAL_9]] {
// CHECK:                       %[[VAL_64:.*]] = memref.load %[[VAL_17]]{{\[}}%[[VAL_27]], %[[VAL_38]], %[[VAL_63]]] : memref<32x16x8xf32>
// CHECK:                       memref.store %[[VAL_64]], %[[VAL_19]]{{\[}}%[[VAL_27]], %[[VAL_38]], %[[VAL_63]]] : memref<32x16x8xf32>
// CHECK:                     }
// CHECK:                   } else {
// CHECK:                   }
// CHECK:                 }
// CHECK:                 %[[VAL_65:.*]] = arith.cmpi eq, %[[VAL_39]], %[[VAL_38]] : index
// CHECK:                 %[[VAL_66:.*]] = arith.addi %[[VAL_37]], %[[VAL_9]] : index
// CHECK:                 %[[VAL_67:.*]] = arith.select %[[VAL_65]], %[[VAL_66]], %[[VAL_37]] : index
// CHECK:                 %[[VAL_68:.*]] = arith.addi %[[VAL_38]], %[[VAL_9]] : index
// CHECK:                 scf.yield %[[VAL_67]], %[[VAL_68]] : index, index
// CHECK:               }
// CHECK:               scf.for %[[VAL_69:.*]] = %[[VAL_70:.*]]#1 to %[[VAL_5]] step %[[VAL_9]] {
// CHECK:                 scf.for %[[VAL_71:.*]] = %[[VAL_8]] to %[[VAL_6]] step %[[VAL_9]] {
// CHECK:                   %[[VAL_72:.*]] = memref.load %[[VAL_17]]{{\[}}%[[VAL_27]], %[[VAL_69]], %[[VAL_71]]] : memref<32x16x8xf32>
// CHECK:                   memref.store %[[VAL_72]], %[[VAL_19]]{{\[}}%[[VAL_27]], %[[VAL_69]], %[[VAL_71]]] : memref<32x16x8xf32>
// CHECK:                 }
// CHECK:               }
// CHECK:             } else {
// CHECK:               scf.if %[[VAL_7]] {
// CHECK:                 scf.for %[[VAL_73:.*]] = %[[VAL_8]] to %[[VAL_5]] step %[[VAL_9]] {
// CHECK:                   scf.for %[[VAL_74:.*]] = %[[VAL_8]] to %[[VAL_6]] step %[[VAL_9]] {
// CHECK:                     %[[VAL_75:.*]] = memref.load %[[VAL_17]]{{\[}}%[[VAL_27]], %[[VAL_73]], %[[VAL_74]]] : memref<32x16x8xf32>
// CHECK:                     memref.store %[[VAL_75]], %[[VAL_19]]{{\[}}%[[VAL_27]], %[[VAL_73]], %[[VAL_74]]] : memref<32x16x8xf32>
// CHECK:                   }
// CHECK:                 }
// CHECK:               } else {
// CHECK:               }
// CHECK:             }
// CHECK:             %[[VAL_76:.*]] = arith.cmpi eq, %[[VAL_28]], %[[VAL_27]] : index
// CHECK:             %[[VAL_77:.*]] = arith.addi %[[VAL_26]], %[[VAL_9]] : index
// CHECK:             %[[VAL_78:.*]] = arith.select %[[VAL_76]], %[[VAL_77]], %[[VAL_26]] : index
// CHECK:             %[[VAL_79:.*]] = arith.addi %[[VAL_27]], %[[VAL_9]] : index
// CHECK:             scf.yield %[[VAL_78]], %[[VAL_79]] : index, index
// CHECK:           }
// CHECK:           scf.for %[[VAL_80:.*]] = %[[VAL_81:.*]]#1 to %[[VAL_4]] step %[[VAL_9]] {
// CHECK:             scf.for %[[VAL_82:.*]] = %[[VAL_8]] to %[[VAL_5]] step %[[VAL_9]] {
// CHECK:               scf.for %[[VAL_83:.*]] = %[[VAL_8]] to %[[VAL_6]] step %[[VAL_9]] {
// CHECK:                 %[[VAL_84:.*]] = memref.load %[[VAL_17]]{{\[}}%[[VAL_80]], %[[VAL_82]], %[[VAL_83]]] : memref<32x16x8xf32>
// CHECK:                 memref.store %[[VAL_84]], %[[VAL_19]]{{\[}}%[[VAL_80]], %[[VAL_82]], %[[VAL_83]]] : memref<32x16x8xf32>
// CHECK:               }
// CHECK:             }
// CHECK:           }
// CHECK:           %[[VAL_85:.*]] = bufferization.to_tensor %[[VAL_19]] : memref<32x16x8xf32>
// CHECK:           return %[[VAL_85]] : tensor<32x16x8xf32>
// CHECK:         }
func.func @add_sss(%arga: tensor<32x16x8xf32, #Tsss>, %argb: tensor<32x16x8xf32>, %argx: tensor<32x16x8xf32>) -> tensor<32x16x8xf32> {
  %0 = linalg.generic #trait3
     ins(%arga, %argb: tensor<32x16x8xf32, #Tsss>, tensor<32x16x8xf32>)
    outs(%argx: tensor<32x16x8xf32>) {
      ^bb(%a: f32, %b: f32, %x: f32):
        %0 = arith.addf %a, %b : f32
        linalg.yield %0 : f32
  } -> tensor<32x16x8xf32>
  return %0 : tensor<32x16x8xf32>
}
// CHECK-LABEL:   func @mul_sss(
// CHECK-SAME:      %[[VAL_0:.*]]: tensor<32x16x8xf32, #sparse{{[0-9]*}}>,
// CHECK-SAME:      %[[VAL_1:.*]]: tensor<32x16x8xf32>,
// CHECK-SAME:      %[[VAL_2:.*]]: tensor<32x16x8xf32>) -> tensor<32x16x8xf32> {
// CHECK-DAG:       %[[ZERO:.*]] = arith.constant 0.000000e+00 : f32
// CHECK-DAG:       %[[VAL_4:.*]] = arith.constant 0 : index
// CHECK-DAG:       %[[VAL_5:.*]] = arith.constant 1 : index
// CHECK-DAG:       %[[VAL_6:.*]] = sparse_tensor.positions %[[VAL_0]] {level = 0 : index} : tensor<32x16x8xf32, #sparse{{[0-9]*}}> to memref<?xindex>
// CHECK-DAG:       %[[VAL_7:.*]] = sparse_tensor.coordinates %[[VAL_0]] {level = 0 : index} : tensor<32x16x8xf32, #sparse{{[0-9]*}}> to memref<?xindex>
// CHECK-DAG:       %[[VAL_8:.*]] = sparse_tensor.positions %[[VAL_0]] {level = 1 : index} : tensor<32x16x8xf32, #sparse{{[0-9]*}}> to memref<?xindex>
// CHECK-DAG:       %[[VAL_9:.*]] = sparse_tensor.coordinates %[[VAL_0]] {level = 1 : index} : tensor<32x16x8xf32, #sparse{{[0-9]*}}> to memref<?xindex>
// CHECK-DAG:       %[[VAL_10:.*]] = sparse_tensor.positions %[[VAL_0]] {level = 2 : index} : tensor<32x16x8xf32, #sparse{{[0-9]*}}> to memref<?xindex>
// CHECK-DAG:       %[[VAL_11:.*]] = sparse_tensor.coordinates %[[VAL_0]] {level = 2 : index} : tensor<32x16x8xf32, #sparse{{[0-9]*}}> to memref<?xindex>
// CHECK-DAG:       %[[VAL_12:.*]] = sparse_tensor.values %[[VAL_0]] : tensor<32x16x8xf32, #sparse{{[0-9]*}}> to memref<?xf32>
// CHECK-DAG:       %[[VAL_13:.*]] = bufferization.to_memref %[[VAL_1]] : memref<32x16x8xf32>
// CHECK-DAG:       %[[VAL_15:.*]] = bufferization.to_memref %[[VAL_2]] : memref<32x16x8xf32>
// CHECK:           linalg.fill ins(%[[ZERO]] : f32) outs(%[[VAL_15]] : memref<32x16x8xf32>)
// CHECK:           %[[VAL_16:.*]] = memref.load %[[VAL_6]]{{\[}}%[[VAL_4]]] : memref<?xindex>
// CHECK:           %[[VAL_17:.*]] = memref.load %[[VAL_6]]{{\[}}%[[VAL_5]]] : memref<?xindex>
// CHECK:           scf.for %[[VAL_18:.*]] = %[[VAL_16]] to %[[VAL_17]] step %[[VAL_5]] {
// CHECK:             %[[VAL_19:.*]] = memref.load %[[VAL_7]]{{\[}}%[[VAL_18]]] : memref<?xindex>
// CHECK:             %[[VAL_20:.*]] = memref.load %[[VAL_8]]{{\[}}%[[VAL_18]]] : memref<?xindex>
// CHECK:             %[[VAL_21:.*]] = arith.addi %[[VAL_18]], %[[VAL_5]] : index
// CHECK:             %[[VAL_22:.*]] = memref.load %[[VAL_8]]{{\[}}%[[VAL_21]]] : memref<?xindex>
// CHECK:             scf.for %[[VAL_23:.*]] = %[[VAL_20]] to %[[VAL_22]] step %[[VAL_5]] {
// CHECK:               %[[VAL_24:.*]] = memref.load %[[VAL_9]]{{\[}}%[[VAL_23]]] : memref<?xindex>
// CHECK:               %[[VAL_25:.*]] = memref.load %[[VAL_10]]{{\[}}%[[VAL_23]]] : memref<?xindex>
// CHECK:               %[[VAL_26:.*]] = arith.addi %[[VAL_23]], %[[VAL_5]] : index
// CHECK:               %[[VAL_27:.*]] = memref.load %[[VAL_10]]{{\[}}%[[VAL_26]]] : memref<?xindex>
// CHECK:               scf.for %[[VAL_28:.*]] = %[[VAL_25]] to %[[VAL_27]] step %[[VAL_5]] {
// CHECK:                 %[[VAL_29:.*]] = memref.load %[[VAL_11]]{{\[}}%[[VAL_28]]] : memref<?xindex>
// CHECK:                 %[[VAL_30:.*]] = memref.load %[[VAL_12]]{{\[}}%[[VAL_28]]] : memref<?xf32>
// CHECK:                 %[[VAL_31:.*]] = memref.load %[[VAL_13]]{{\[}}%[[VAL_19]], %[[VAL_24]], %[[VAL_29]]] : memref<32x16x8xf32>
// CHECK:                 %[[VAL_32:.*]] = arith.mulf %[[VAL_30]], %[[VAL_31]] : f32
// CHECK:                 memref.store %[[VAL_32]], %[[VAL_15]]{{\[}}%[[VAL_19]], %[[VAL_24]], %[[VAL_29]]] : memref<32x16x8xf32>
// CHECK:               }
// CHECK:             }
// CHECK:           }
// CHECK:           %[[VAL_33:.*]] = bufferization.to_tensor %[[VAL_15]] : memref<32x16x8xf32>
// CHECK:           return %[[VAL_33]] : tensor<32x16x8xf32>
// CHECK:         }
func.func @mul_sss(%arga: tensor<32x16x8xf32, #Tsss>, %argb: tensor<32x16x8xf32>, %argx: tensor<32x16x8xf32>) -> tensor<32x16x8xf32> {
  %0 = linalg.generic #trait3
     ins(%arga, %argb: tensor<32x16x8xf32, #Tsss>, tensor<32x16x8xf32>)
    outs(%argx: tensor<32x16x8xf32>) {
      ^bb(%a: f32, %b: f32, %x: f32):
        %0 = arith.mulf %a, %b : f32
        linalg.yield %0 : f32
  } -> tensor<32x16x8xf32>
  return %0 : tensor<32x16x8xf32>
}
#trait_kernel_3d = {
  indexing_maps = [
    affine_map<(i,j,k,l) -> (i,k,l)>,  // B
    affine_map<(i,j,k,l) -> (k,j)>,    // C
    affine_map<(i,j,k,l) -> (l,j)>,    // D
    affine_map<(i,j,k,l) -> (i,j)>     // A (out)
  ],
  iterator_types = ["parallel", "parallel", "reduction", "reduction"],
  doc = "A(i,j) += SUM_k,l B(i,k,l) * C(k,j) * D(l,j)"
}
// CHECK-LABEL:   func @kernel_3d(
// CHECK-SAME:      %[[VAL_0:.*0]]: tensor<?x?xf32>,
// CHECK-SAME:      %[[VAL_1:.*1]]: tensor<?x?x?xf32, #sparse{{[0-9]*}}>,
// CHECK-SAME:      %[[VAL_2:.*2]]: tensor<?x?xf32>,
// CHECK-SAME:      %[[VAL_3:.*3]]: tensor<?x?xf32>) -> tensor<?x?xf32> {
// CHECK-DAG:       %[[VAL_5:.*]] = arith.constant 0 : index
// CHECK-DAG:       %[[VAL_6:.*]] = arith.constant 1 : index
// CHECK-DAG:       %[[VAL_7:.*]] = sparse_tensor.positions %[[VAL_1]] {level = 2 : index} : tensor<?x?x?xf32, #sparse{{[0-9]*}}> to memref<?xindex>
// CHECK-DAG:       %[[VAL_8:.*]] = sparse_tensor.coordinates %[[VAL_1]] {level = 2 : index} : tensor<?x?x?xf32, #sparse{{[0-9]*}}> to memref<?xindex>
// CHECK-DAG:       %[[VAL_9:.*]] = sparse_tensor.values %[[VAL_1]] : tensor<?x?x?xf32, #sparse{{[0-9]*}}> to memref<?xf32>
// CHECK-DAG:       %[[VAL_10:.*]] = sparse_tensor.lvl %[[VAL_1]], %[[VAL_6]] : tensor<?x?x?xf32, #sparse{{[0-9]*}}>
// CHECK-DAG:       %[[VAL_11:.*]] = bufferization.to_memref %[[VAL_2]] : memref<?x?xf32>
// CHECK-DAG:       %[[VAL_12:.*]] = bufferization.to_memref %[[VAL_3]] : memref<?x?xf32>
// CHECK-DAG:       %[[VAL_13:.*]] = sparse_tensor.lvl %[[VAL_1]], %[[VAL_5]] : tensor<?x?x?xf32, #sparse{{[0-9]*}}>
// CHECK-DAG:       %[[VAL_14:.*]] = tensor.dim %[[VAL_2]], %[[VAL_6]] : tensor<?x?xf32>
// CHECK-DAG:       %[[VAL_16:.*]] = bufferization.to_memref %[[VAL_0]] : memref<?x?xf32>
// CHECK:           scf.for %[[VAL_17:.*]] = %[[VAL_5]] to %[[VAL_13]] step %[[VAL_6]] {
// CHECK:             scf.for %[[VAL_18:.*]] = %[[VAL_5]] to %[[VAL_10]] step %[[VAL_6]] {
// CHECK:               %[[VAL_19:.*]] = arith.muli %[[VAL_10]], %[[VAL_17]] : index
// CHECK:               %[[VAL_20:.*]] = arith.addi %[[VAL_19]], %[[VAL_18]] : index
// CHECK:               %[[VAL_21:.*]] = memref.load %[[VAL_7]]{{\[}}%[[VAL_20]]] : memref<?xindex>
// CHECK:               %[[VAL_22:.*]] = arith.addi %[[VAL_20]], %[[VAL_6]] : index
// CHECK:               %[[VAL_23:.*]] = memref.load %[[VAL_7]]{{\[}}%[[VAL_22]]] : memref<?xindex>
// CHECK:               scf.for %[[VAL_24:.*]] = %[[VAL_21]] to %[[VAL_23]] step %[[VAL_6]] {
// CHECK:                 %[[VAL_25:.*]] = memref.load %[[VAL_8]]{{\[}}%[[VAL_24]]] : memref<?xindex>
// CHECK:                 %[[VAL_26:.*]] = memref.load %[[VAL_9]]{{\[}}%[[VAL_24]]] : memref<?xf32>
// CHECK:                 scf.for %[[VAL_27:.*]] = %[[VAL_5]] to %[[VAL_14]] step %[[VAL_6]] {
// CHECK:                   %[[VAL_28:.*]] = memref.load %[[VAL_11]]{{\[}}%[[VAL_18]], %[[VAL_27]]] : memref<?x?xf32>
// CHECK:                   %[[VAL_29:.*]] = arith.mulf %[[VAL_26]], %[[VAL_28]] : f32
// CHECK:                   %[[VAL_30:.*]] = memref.load %[[VAL_12]]{{\[}}%[[VAL_25]], %[[VAL_27]]] : memref<?x?xf32>
// CHECK:                   %[[VAL_31:.*]] = arith.mulf %[[VAL_29]], %[[VAL_30]] : f32
// CHECK:                   %[[VAL_32:.*]] = memref.load %[[VAL_16]]{{\[}}%[[VAL_17]], %[[VAL_27]]] : memref<?x?xf32>
// CHECK:                   %[[VAL_33:.*]] = arith.addf %[[VAL_31]], %[[VAL_32]] : f32
// CHECK:                   memref.store %[[VAL_33]], %[[VAL_16]]{{\[}}%[[VAL_17]], %[[VAL_27]]] : memref<?x?xf32>
// CHECK:                 }
// CHECK:               }
// CHECK:             }
// CHECK:           }
// CHECK:           %[[VAL_34:.*]] = bufferization.to_tensor %[[VAL_16]] : memref<?x?xf32>
// CHECK:           return %[[VAL_34]] : tensor<?x?xf32>
// CHECK:         }
func.func @kernel_3d(%arga: tensor<?x?xf32>,
                %argb: tensor<?x?x?xf32, #Tdds>,
                %argc: tensor<?x?xf32>,
	        %argd: tensor<?x?xf32>) -> tensor<?x?xf32> {
  %0 = linalg.generic #trait_kernel_3d
       ins(%argb, %argc, %argd: tensor<?x?x?xf32, #Tdds>, tensor<?x?xf32>, tensor<?x?xf32>)
      outs(%arga: tensor<?x?xf32>) {
    ^bb(%b: f32, %c: f32, %d: f32, %a: f32):
      %0 = arith.mulf %b, %c : f32
      %1 = arith.mulf %0, %d : f32
      %2 = arith.addf %1, %a : f32
      linalg.yield %2 : f32
  } -> tensor<?x?xf32>
  return %0 : tensor<?x?xf32>
}
#trait_sum_reduction = {
  indexing_maps = [
    affine_map<(i,j,k) -> (i,j,k)>,  // A
    affine_map<(i,j,k) -> ()>        // x (scalar out)
  ],
  iterator_types = ["reduction", "reduction", "reduction"],
  doc = "x += SUM_ijk A(i,j,k)"
}
// CHECK-LABEL:   func @sum_reduction(
// CHECK-SAME:      %[[VAL_0:.*]]: tensor<10x20x30xf32, #sparse{{[0-9]*}}>,
// CHECK-SAME:      %[[VAL_1:.*]]: tensor<f32>) -> tensor<f32> {
// CHECK-DAG:       %[[VAL_2:.*]] = arith.constant 0 : index
// CHECK-DAG:       %[[VAL_3:.*]] = arith.constant 1 : index
// CHECK-DAG:       %[[VAL_5:.*]] = sparse_tensor.positions %[[VAL_0]] {level = 0 : index} : tensor<10x20x30xf32, #sparse{{[0-9]*}}>
// CHECK-DAG:       %[[VAL_6:.*]] = sparse_tensor.positions %[[VAL_0]] {level = 1 : index} : tensor<10x20x30xf32, #sparse{{[0-9]*}}>
// CHECK-DAG:       %[[VAL_7:.*]] = sparse_tensor.positions %[[VAL_0]] {level = 2 : index} : tensor<10x20x30xf32, #sparse{{[0-9]*}}>
// CHECK-DAG:       %[[VAL_8:.*]] = sparse_tensor.values %[[VAL_0]] : tensor<10x20x30xf32, #sparse{{[0-9]*}}>
// CHECK-DAG:       %[[VAL_10:.*]] = bufferization.to_memref %[[VAL_1]] : memref<f32>
// CHECK:           %[[VAL_11:.*]] = memref.load %[[VAL_10]][] : memref<f32>
// CHECK:           %[[VAL_12:.*]] = memref.load %[[VAL_5]]{{\[}}%[[VAL_2]]] : memref<?xindex>
// CHECK:           %[[VAL_13:.*]] = memref.load %[[VAL_5]]{{\[}}%[[VAL_3]]] : memref<?xindex>
// CHECK:           %[[VAL_14:.*]] = scf.for %[[VAL_15:.*]] = %[[VAL_12]] to %[[VAL_13]] step %[[VAL_3]] iter_args(%[[VAL_16:.*]] = %[[VAL_11]]) -> (f32) {
// CHECK:             %[[VAL_17:.*]] = memref.load %[[VAL_6]]{{\[}}%[[VAL_15]]] : memref<?xindex>
// CHECK:             %[[VAL_18:.*]] = arith.addi %[[VAL_15]], %[[VAL_3]] : index
// CHECK:             %[[VAL_19:.*]] = memref.load %[[VAL_6]]{{\[}}%[[VAL_18]]] : memref<?xindex>
// CHECK:             %[[VAL_20:.*]] = scf.for %[[VAL_21:.*]] = %[[VAL_17]] to %[[VAL_19]] step %[[VAL_3]] iter_args(%[[VAL_22:.*]] = %[[VAL_16]]) -> (f32) {
// CHECK:               %[[VAL_23:.*]] = memref.load %[[VAL_7]]{{\[}}%[[VAL_21]]] : memref<?xindex>
// CHECK:               %[[VAL_24:.*]] = arith.addi %[[VAL_21]], %[[VAL_3]] : index
// CHECK:               %[[VAL_25:.*]] = memref.load %[[VAL_7]]{{\[}}%[[VAL_24]]] : memref<?xindex>
// CHECK:               %[[VAL_26:.*]] = scf.for %[[VAL_27:.*]] = %[[VAL_23]] to %[[VAL_25]] step %[[VAL_3]] iter_args(%[[VAL_28:.*]] = %[[VAL_22]]) -> (f32) {
// CHECK:                 %[[VAL_29:.*]] = memref.load %[[VAL_8]]{{\[}}%[[VAL_27]]] : memref<?xf32>
// CHECK:                 %[[VAL_30:.*]] = arith.addf %[[VAL_28]], %[[VAL_29]] : f32
// CHECK:                 scf.yield %[[VAL_30]] : f32
// CHECK:               }
// CHECK:               scf.yield %[[VAL_26]] : f32
// CHECK:             }
// CHECK:             scf.yield %[[VAL_20]] : f32
// CHECK:           }
// CHECK:           memref.store %[[VAL_14]], %[[VAL_10]][] : memref<f32>
// CHECK:           %[[VAL_34:.*]] = bufferization.to_tensor %[[VAL_10]] : memref<f32>
// CHECK:           return %[[VAL_34]] : tensor<f32>
// CHECK:         }
func.func @sum_reduction(%arga: tensor<10x20x30xf32, #Tsss>, %argx: tensor<f32>) -> tensor<f32> {
  %0 = linalg.generic #trait_sum_reduction
     ins(%arga: tensor<10x20x30xf32, #Tsss>)
    outs(%argx: tensor<f32>) {
      ^bb(%a: f32, %x: f32):
        %0 = arith.addf %x, %a : f32
        linalg.yield %0 : f32
  } -> tensor<f32>
  return %0 : tensor<f32>
}
#trait_sum_reduction_inv = {
  indexing_maps = [
    affine_map<(i,j,k) -> (i,j,k)>,  // A
    affine_map<(i,j,k) -> (i)>,      // b
    affine_map<(i,j,k) -> ()>        // x (scalar out)
  ],
  iterator_types = ["reduction", "reduction", "reduction"],
  doc = "x += SUM_i A(i,j,k) * b(i)"
}
// CHECK-LABEL:   func @sum_reduction_inv(
// CHECK-SAME:      %[[VAL_0:.*]]: tensor<?x?x?xf32>,
// CHECK-SAME:      %[[VAL_1:.*]]: tensor<?xf32, #sparse{{[0-9]*}}>
// CHECK-SAME:      %[[VAL_2:.*]]: tensor<f32>) -> tensor<f32> {
// CHECK-DAG:       %[[VAL_3:.*]] = arith.constant 1 : index
// CHECK-DAG:       %[[VAL_4:.*]] = arith.constant 2 : index
// CHECK-DAG:       %[[VAL_5:.*]] = arith.constant 0 : index
// CHECK-DAG:       %[[VAL_6:.*]] = tensor.dim %[[VAL_0]], %[[VAL_3]] : tensor<?x?x?xf32>
// CHECK-DAG:       %[[VAL_7:.*]] = tensor.dim %[[VAL_0]], %[[VAL_4]] : tensor<?x?x?xf32>
// CHECK-DAG:       %[[VAL_8:.*]] = bufferization.to_memref %[[VAL_0]] : memref<?x?x?xf32>
// CHECK-DAG:       %[[VAL_9:.*]] = tensor.dim %[[VAL_0]], %[[VAL_5]] : tensor<?x?x?xf32>
// CHECK-DAG:       %[[VAL_10:.*]] = sparse_tensor.values %[[VAL_1]] : tensor<?xf32, #sparse{{[0-9]*}}>
// CHECK-DAG:       %[[VAL_12:.*]] = bufferization.to_memref %[[VAL_2]] : memref<f32>
// CHECK:           %[[VAL_13:.*]] = memref.load %[[VAL_12]][] : memref<f32>
// CHECK:           %[[VAL_14:.*]] = scf.for %[[VAL_15:.*]] = %[[VAL_5]] to %[[VAL_9]] step %[[VAL_3]] iter_args(%[[VAL_16:.*]] = %[[VAL_13]]) -> (f32) {
// CHECK:             %[[VAL_17:.*]] = memref.load %[[VAL_10]]{{\[}}%[[VAL_15]]] : memref<?xf32>
// CHECK:             %[[VAL_18:.*]] = scf.for %[[VAL_19:.*]] = %[[VAL_5]] to %[[VAL_6]] step %[[VAL_3]] iter_args(%[[VAL_20:.*]] = %[[VAL_16]]) -> (f32) {
// CHECK:               %[[VAL_21:.*]] = scf.for %[[VAL_22:.*]] = %[[VAL_5]] to %[[VAL_7]] step %[[VAL_3]] iter_args(%[[VAL_23:.*]] = %[[VAL_20]]) -> (f32) {
// CHECK:                 %[[VAL_24:.*]] = memref.load %[[VAL_8]]{{\[}}%[[VAL_15]], %[[VAL_19]], %[[VAL_22]]] : memref<?x?x?xf32>
// CHECK:                 %[[VAL_25:.*]] = arith.mulf %[[VAL_24]], %[[VAL_17]] : f32
// CHECK:                 %[[VAL_26:.*]] = arith.addf %[[VAL_23]], %[[VAL_25]] : f32
// CHECK:                 scf.yield %[[VAL_26]] : f32
// CHECK:               }
// CHECK:               scf.yield %[[VAL_21]] : f32
// CHECK:             }
// CHECK:             scf.yield %[[VAL_18]] : f32
// CHECK:           }
// CHECK:           memref.store %[[VAL_14]], %[[VAL_12]][] : memref<f32>
// CHECK:           %[[VAL_30:.*]] = bufferization.to_tensor %[[VAL_12]] : memref<f32>
// CHECK:           return %[[VAL_30]] : tensor<f32>
// CHECK:         }
func.func @sum_reduction_inv(%arga: tensor<?x?x?xf32>,
                        %argb: tensor<?xf32, #Td>,
		        %argx: tensor<f32>) -> tensor<f32> {
  %0 = linalg.generic #trait_sum_reduction_inv
    ins(%arga, %argb: tensor<?x?x?xf32>, tensor<?xf32, #Td>)
    outs(%argx: tensor<f32>) {
      ^bb(%a: f32, %b: f32, %x: f32):
        %0 = arith.mulf %a, %b : f32
        %1 = arith.addf %x, %0 : f32
        linalg.yield %1 : f32
  } -> tensor<f32>
  return %0 : tensor<f32>
}
#trait_invariants = {
  indexing_maps = [
    affine_map<(i,j,k) -> (i)>,      // a
    affine_map<(i,j,k) -> (j)>,      // b
    affine_map<(i,j,k) -> (k)>,      // c
    affine_map<(i,j,k) -> (i,j,k)>   // X (out)
  ],
  iterator_types = ["parallel", "parallel", "parallel"],
  doc = "X(i,j,k) = a(i) * b(j) * c(k)"
}
// CHECK-LABEL:   func @invariants(
// CHECK-SAME:      %[[VAL_0:.*]]: tensor<10xf32, #sparse{{[0-9]*}}>,
// CHECK-SAME:      %[[VAL_1:.*]]: tensor<20xf32>,
// CHECK-SAME:      %[[VAL_2:.*]]: tensor<30xf32>,
// CHECK-SAME:      %[[VAL_3:.*]]: tensor<10x20x30xf32>) -> tensor<10x20x30xf32> {
// CHECK-DAG:       %[[ZERO:.*]] = arith.constant 0.000000e+00 : f32
// CHECK-DAG:       %[[VAL_4:.*]] = arith.constant 10 : index
// CHECK-DAG:       %[[VAL_5:.*]] = arith.constant 20 : index
// CHECK-DAG:       %[[VAL_6:.*]] = arith.constant 30 : index
// CHECK-DAG:       %[[VAL_7:.*]] = arith.constant 0 : index
// CHECK-DAG:       %[[VAL_8:.*]] = arith.constant 1 : index
// CHECK-DAG:       %[[VAL_9:.*]] = sparse_tensor.values %[[VAL_0]] : tensor<10xf32, #sparse{{[0-9]*}}> to memref<?xf32>
// CHECK-DAG:       %[[VAL_10:.*]] = bufferization.to_memref %[[VAL_1]] : memref<20xf32>
// CHECK-DAG:       %[[VAL_11:.*]] = bufferization.to_memref %[[VAL_2]] : memref<30xf32>
// CHECK-DAG:       %[[VAL_13:.*]] = bufferization.to_memref %[[VAL_3]] : memref<10x20x30xf32>
// CHECK:           linalg.fill ins(%[[ZERO]] : f32) outs(%[[VAL_13]] : memref<10x20x30xf32>)
// CHECK:           scf.for %[[VAL_14:.*]] = %[[VAL_7]] to %[[VAL_4]] step %[[VAL_8]] {
// CHECK:             %[[VAL_15:.*]] = memref.load %[[VAL_9]]{{\[}}%[[VAL_14]]] : memref<?xf32>
// CHECK:             scf.for %[[VAL_16:.*]] = %[[VAL_7]] to %[[VAL_5]] step %[[VAL_8]] {
// CHECK:               %[[VAL_17:.*]] = memref.load %[[VAL_10]]{{\[}}%[[VAL_16]]] : memref<20xf32>
// CHECK:               scf.for %[[VAL_18:.*]] = %[[VAL_7]] to %[[VAL_6]] step %[[VAL_8]] {
// CHECK:                 %[[VAL_19:.*]] = arith.mulf %[[VAL_15]], %[[VAL_17]] : f32
// CHECK:                 %[[VAL_20:.*]] = memref.load %[[VAL_11]]{{\[}}%[[VAL_18]]] : memref<30xf32>
// CHECK:                 %[[VAL_21:.*]] = arith.mulf %[[VAL_19]], %[[VAL_20]] : f32
// CHECK:                 memref.store %[[VAL_21]], %[[VAL_13]]{{\[}}%[[VAL_14]], %[[VAL_16]], %[[VAL_18]]] : memref<10x20x30xf32>
// CHECK:               }
// CHECK:             }
// CHECK:           }
// CHECK:           %[[VAL_22:.*]] = bufferization.to_tensor %[[VAL_13]] : memref<10x20x30xf32>
// CHECK:           return %[[VAL_22]] : tensor<10x20x30xf32>
// CHECK:         }
func.func @invariants(%arga: tensor<10xf32, #Td>,
                 %argb: tensor<20xf32>,
                 %argc: tensor<30xf32>,
                 %argx: tensor<10x20x30xf32>) -> tensor<10x20x30xf32> {
  %0 = linalg.generic #trait_invariants
     ins(%arga, %argb, %argc : tensor<10xf32, #Td>, tensor<20xf32>, tensor<30xf32>)
    outs(%argx: tensor<10x20x30xf32>) {
      ^bb(%a: f32, %b: f32, %c: f32, %x: f32):
        %0 = arith.mulf %a, %b : f32
        %1 = arith.mulf %0, %c : f32
        linalg.yield %1 : f32
  } -> tensor<10x20x30xf32>
  return %0 : tensor<10x20x30xf32>
}
 |