File: sparse_vector_concat.mlir

package info (click to toggle)
llvm-toolchain-18 1%3A18.1.8-18
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 1,908,340 kB
  • sloc: cpp: 6,667,937; ansic: 1,440,452; asm: 883,619; python: 230,549; objc: 76,880; f90: 74,238; lisp: 35,989; pascal: 16,571; sh: 10,229; perl: 7,459; ml: 5,047; awk: 3,523; makefile: 2,987; javascript: 2,149; xml: 892; fortran: 649; cs: 573
file content (29 lines) | stat: -rw-r--r-- 1,004 bytes parent folder | download | duplicates (12)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
// RUN: mlir-opt %s --sparsifier="enable-runtime-library=false vl=2 reassociate-fp-reductions=true enable-index-optimizations=true"

#MAT_D_C = #sparse_tensor.encoding<{
  map = (d0, d1) -> (d0 : dense, d1 : compressed)
}>

#MAT_C_C_P = #sparse_tensor.encoding<{
  map = (d0, d1) -> (d1 : compressed, d0 : compressed)
}>

#MAT_C_D_P = #sparse_tensor.encoding<{
  map = (d0, d1) -> (d1 : compressed, d0 : dense)
}>

//
// Ensures only last loop is vectorized
// (vectorizing the others would crash).
//
// CHECK-LABEL: llvm.func @foo
// CHECK:       llvm.intr.masked.load
// CHECK:       llvm.intr.masked.scatter
//
func.func @foo(%arg0: tensor<2x4xf64, #MAT_C_C_P>,
               %arg1: tensor<3x4xf64, #MAT_C_D_P>,
           %arg2: tensor<4x4xf64, #MAT_D_C>) -> tensor<9x4xf64> {
  %0 = sparse_tensor.concatenate %arg0, %arg1, %arg2 {dimension = 0 : index}
       : tensor<2x4xf64, #MAT_C_C_P>, tensor<3x4xf64, #MAT_C_D_P>, tensor<4x4xf64, #MAT_D_C> to tensor<9x4xf64>
  return %0 : tensor<9x4xf64>
}