| 12
 3
 4
 5
 6
 7
 8
 9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 
 | // RUN: mlir-opt %s --sparse-reinterpret-map --sparsification -cse -sparse-vectorization="vl=16" -scf-for-loop-peeling -canonicalize -cse | \
// RUN:   FileCheck %s
#SparseVector = #sparse_tensor.encoding<{
  map = (d0) -> (d0 : compressed),
  posWidth = 32,
  crdWidth = 32
}>
#trait_mul_s = {
  indexing_maps = [
    affine_map<(i) -> (i)>,  // a
    affine_map<(i) -> (i)>,  // b
    affine_map<(i) -> (i)>   // x (out)
  ],
  iterator_types = ["parallel"],
  doc = "x(i) = a(i) * b(i)"
}
// CHECK-DAG:   #[[$map0:.*]] = affine_map<()[s0, s1] -> (s0 + ((-s0 + s1) floordiv 16) * 16)>
// CHECK-DAG:   #[[$map1:.*]] = affine_map<(d0)[s0] -> (-d0 + s0)>
// CHECK-LABEL: func @mul_s
// CHECK-DAG:   %[[c0:.*]] = arith.constant 0 : index
// CHECK-DAG:   %[[c1:.*]] = arith.constant 1 : index
// CHECK-DAG:   %[[c16:.*]] = arith.constant 16 : index
// CHECK:       %[[p:.*]] = memref.load %{{.*}}[%[[c0]]] : memref<?xi32>
// CHECK:       %[[a:.*]] = arith.extui %[[p]] : i32 to i64
// CHECK:       %[[q:.*]] = arith.index_cast %[[a]] : i64 to index
// CHECK:       %[[r:.*]] = memref.load %{{.*}}[%[[c1]]] : memref<?xi32>
// CHECK:       %[[b:.*]] = arith.extui %[[r]] : i32 to i64
// CHECK:       %[[s:.*]] = arith.index_cast %[[b]] : i64 to index
// CHECK:       %[[boundary:.*]] = affine.apply #[[$map0]]()[%[[q]], %[[s]]]
// CHECK:       scf.for %[[i:.*]] = %[[q]] to %[[boundary]] step %[[c16]] {
// CHECK:         %[[mask:.*]] = vector.constant_mask [16] : vector<16xi1>
// CHECK:         %[[li:.*]] = vector.load %{{.*}}[%[[i]]] : memref<?xi32>, vector<16xi32>
// CHECK:         %[[zi:.*]] = arith.extui %[[li]] : vector<16xi32> to vector<16xi64>
// CHECK:         %[[la:.*]] = vector.load %{{.*}}[%[[i]]] : memref<?xf32>, vector<16xf32>
// CHECK:         %[[lb:.*]] = vector.gather %{{.*}}[%[[c0]]] [%[[zi]]], %[[mask]], %{{.*}} : memref<1024xf32>, vector<16xi64>, vector<16xi1>, vector<16xf32> into vector<16xf32>
// CHECK:         %[[m:.*]] = arith.mulf %[[la]], %[[lb]] : vector<16xf32>
// CHECK:         vector.scatter %{{.*}}[%[[c0]]] [%[[zi]]], %[[mask]], %[[m]] : memref<1024xf32>, vector<16xi64>, vector<16xi1>, vector<16xf32>
// CHECK:       }
// CHECK:       scf.for %[[i2:.*]] = %[[boundary]] to %[[s]] step %[[c16]] {
// CHECK:         %[[sub:.*]] = affine.apply #[[$map1]](%[[i2]])[%[[s]]]
// CHECK:         %[[mask2:.*]] = vector.create_mask %[[sub]] : vector<16xi1>
// CHECK:         %[[li2:.*]] = vector.maskedload %{{.*}}[%[[i2]]], %[[mask2]], %{{.*}} : memref<?xi32>, vector<16xi1>, vector<16xi32> into vector<16xi32>
// CHECK:         %[[zi2:.*]] = arith.extui %[[li2]] : vector<16xi32> to vector<16xi64>
// CHECK:         %[[la2:.*]] = vector.maskedload %{{.*}}[%[[i2]]], %[[mask2]], %{{.*}} : memref<?xf32>, vector<16xi1>, vector<16xf32> into vector<16xf32>
// CHECK:         %[[lb2:.*]] = vector.gather %{{.*}}[%[[c0]]] [%[[zi2]]], %[[mask2]], %{{.*}} : memref<1024xf32>, vector<16xi64>, vector<16xi1>, vector<16xf32> into vector<16xf32>
// CHECK:         %[[m2:.*]] = arith.mulf %[[la2]], %[[lb2]] : vector<16xf32>
// CHECK:         vector.scatter %{{.*}}[%[[c0]]] [%[[zi2]]], %[[mask2]], %[[m2]] : memref<1024xf32>, vector<16xi64>, vector<16xi1>, vector<16xf32>
// CHECK:       }
// CHECK:       return
//
func.func @mul_s(%arga: tensor<1024xf32, #SparseVector>, %argb: tensor<1024xf32>, %argx: tensor<1024xf32>) -> tensor<1024xf32> {
  %0 = linalg.generic #trait_mul_s
    ins(%arga, %argb: tensor<1024xf32, #SparseVector>, tensor<1024xf32>)
    outs(%argx: tensor<1024xf32>) {
      ^bb(%a: f32, %b: f32, %x: f32):
        %0 = arith.mulf %a, %b : f32
        linalg.yield %0 : f32
  } -> tensor<1024xf32>
  return %0 : tensor<1024xf32>
}
 |