1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524
|
// RUN: mlir-opt -split-input-file -test-tensor-transform-patterns=test-fold-into-pack-and-unpack %s | FileCheck %s
func.func @fold_unpack_slice(%arg0 : tensor<?x?x8x4xf32>, %arg1 : tensor<?x?xf32>,
%arg2 : index, %arg3 : index) -> tensor<?x?xf32> {
%0 = tensor.unpack %arg0 inner_dims_pos = [0, 1] inner_tiles = [8, 4] into %arg1
: tensor<?x?x8x4xf32> -> tensor<?x?xf32>
%1 = tensor.extract_slice %0[0, 0] [%arg2, %arg3] [1, 1] : tensor<?x?xf32> to tensor<?x?xf32>
return %1 : tensor<?x?xf32>
}
// CHECK: func @fold_unpack_slice(
// CHECK-SAME: %[[ARG0:.+]]: tensor<?x?x8x4xf32>
// CHECK-SAME: %[[ARG1:[a-zA-Z0-9]+]]: tensor<?x?xf32>
// CHECK-SAME: %[[ARG2:[a-zA-Z0-9]+]]: index
// CHECK-SAME: %[[ARG3:[a-zA-Z0-9]+]]: index
// CHECK: %[[INIT:.+]] = tensor.empty(%[[ARG2]], %[[ARG3]]) : tensor<?x?xf32>
// CHECK: %[[UNPACK:.+]] = tensor.unpack %[[ARG0]] inner_dims_pos = [0, 1] inner_tiles = [8, 4]
// CHECK-SAME: into %[[INIT]]
// CHECK: return %[[UNPACK]]
// -----
func.func @nofold_unpack_slice_non_zero_offset(%arg0 : tensor<?x?x8x4xf32>, %arg1 : tensor<?x?xf32>,
%arg2 : index, %arg3 : index, %arg4 : index) -> tensor<?x?xf32> {
%0 = tensor.unpack %arg0 inner_dims_pos = [0, 1] inner_tiles = [8, 4] into %arg1
: tensor<?x?x8x4xf32> -> tensor<?x?xf32>
%1 = tensor.extract_slice %0[0, %arg4] [%arg2, %arg3] [1, 1] : tensor<?x?xf32> to tensor<?x?xf32>
return %1 : tensor<?x?xf32>
}
// CHECK-LABEL: func @nofold_unpack_slice_non_zero_offset(
// CHECK: %[[UNPACK:.+]] = tensor.unpack
// CHECK: tensor.extract_slice %[[UNPACK]]
// -----
func.func @nofold_unpack_slice_non_unit_stride(%arg0 : tensor<?x?x8x4xf32>, %arg1 : tensor<?x?xf32>,
%arg2 : index, %arg3 : index, %arg4 : index) -> tensor<?x?xf32> {
%0 = tensor.unpack %arg0 inner_dims_pos = [0, 1] inner_tiles = [8, 4] into %arg1
: tensor<?x?x8x4xf32> -> tensor<?x?xf32>
%1 = tensor.extract_slice %0[0, 0] [%arg2, %arg3] [%arg4, 1] : tensor<?x?xf32> to tensor<?x?xf32>
return %1 : tensor<?x?xf32>
}
// CHECK-LABEL: func @nofold_unpack_slice_non_unit_stride(
// CHECK: %[[UNPACK:.+]] = tensor.unpack
// CHECK: tensor.extract_slice %[[UNPACK]]
// -----
func.func @nofold_unpack_slice_rank_reduced(%arg0 : tensor<?x?x8x4xf32>, %arg1 : tensor<?x?xf32>,
%arg2 : index, %arg3 : index) -> tensor<f32> {
%0 = tensor.unpack %arg0 inner_dims_pos = [0, 1] inner_tiles = [8, 4] into %arg1
: tensor<?x?x8x4xf32> -> tensor<?x?xf32>
%1 = tensor.extract_slice %0[0, 0] [1, 1] [1, 1] : tensor<?x?xf32> to tensor<f32>
return %1 : tensor<f32>
}
// CHECK-LABEL: func @nofold_unpack_slice_rank_reduced(
// CHECK: %[[UNPACK:.+]] = tensor.unpack
// CHECK: tensor.extract_slice %[[UNPACK]]
// -----
func.func @pad_pack(%src: tensor<16641x16xf32>) -> tensor<2082x1x8x32xf32> {
%c0 = arith.constant 0 : index
%cst = arith.constant 0.000000e+00 : f32
%padded = tensor.pad %src low[0, 0] high[15, 0] {
^bb0(%arg0: index, %arg1: index):
tensor.yield %cst : f32
} : tensor<16641x16xf32> to tensor<16656x16xf32>
%empty = tensor.empty() : tensor<2082x1x8x32xf32>
%pack = tensor.pack %padded padding_value(%cst : f32) inner_dims_pos = [0, 1] inner_tiles = [8, 32] into %empty
: tensor<16656x16xf32> -> tensor<2082x1x8x32xf32>
return %pack : tensor<2082x1x8x32xf32>
}
// CHECK-LABEL: func.func @pad_pack
// CHECK-SAME: %[[SRC:[a-zA-Z0-9]+]]
// CHECK: %[[PAD_VAL:.+]] = arith.constant 0.000000e+00 : f32
// CHECK: %[[DEST:.+]] = tensor.empty() : tensor<2082x1x8x32xf32>
// CHECK: %[[PACK:.+]] = tensor.pack %[[SRC]]
// CHECK-SAME: padding_value(%[[PAD_VAL]] : f32)
// CHECK-SAME: inner_dims_pos = [0, 1] inner_tiles = [8, 32] into %[[DEST]]
// -----
func.func @nofold_pad_pack(%src: tensor<16641x16xf32>) -> tensor<2082x1x8x32xf32> {
%c0 = arith.constant 0 : index
%cst = arith.constant 0.000000e+00 : f32
%padded = tensor.pad %src nofold low[0, 0] high[15, 0] {
^bb0(%arg0: index, %arg1: index):
tensor.yield %cst : f32
} : tensor<16641x16xf32> to tensor<16656x16xf32>
%empty = tensor.empty() : tensor<2082x1x8x32xf32>
%pack = tensor.pack %padded padding_value(%cst : f32) inner_dims_pos = [0, 1] inner_tiles = [8, 32] into %empty
: tensor<16656x16xf32> -> tensor<2082x1x8x32xf32>
return %pack : tensor<2082x1x8x32xf32>
}
// CHECK-LABEL: func.func @nofold_pad_pack
// CHECK: tensor.pad
// CHECK: tensor.pack
// -----
func.func @pad_pack_different_padding_value(%src: tensor<16641x16xf32>) -> tensor<2082x1x8x32xf32> {
%c0 = arith.constant 0 : index
%cst0 = arith.constant 0.000000e+00 : f32
%cst1 = arith.constant 1.000000e+00 : f32
%padded = tensor.pad %src low[0, 0] high[15, 0] {
^bb0(%arg0: index, %arg1: index):
tensor.yield %cst0 : f32
} : tensor<16641x16xf32> to tensor<16656x16xf32>
%empty = tensor.empty() : tensor<2082x1x8x32xf32>
%pack = tensor.pack %padded padding_value(%cst1 : f32) inner_dims_pos = [0, 1] inner_tiles = [8, 32] into %empty
: tensor<16656x16xf32> -> tensor<2082x1x8x32xf32>
return %pack : tensor<2082x1x8x32xf32>
}
// CHECK-LABEL: func.func @pad_pack_different_padding_value
// CHECK: tensor.pad
// CHECK: tensor.pack
// -----
func.func @tensor_pack_linalg_transpose_fold(%arg0: tensor<56x57x1x64xf32>) -> tensor<1x57x56x2x32xf32> {
%0 = tensor.empty() : tensor<56x2x1x57x32xf32>
%pack = tensor.pack %arg0
outer_dims_perm = [0, 3, 2, 1]
inner_dims_pos = [3]
inner_tiles = [32]
into %0 : tensor<56x57x1x64xf32> -> tensor<56x2x1x57x32xf32>
%1 = tensor.empty() : tensor<1x57x56x2x32xf32>
%transposed = linalg.transpose
ins(%pack : tensor<56x2x1x57x32xf32>)
outs(%1 : tensor<1x57x56x2x32xf32>)
permutation = [2, 3, 0, 1, 4]
return %transposed : tensor<1x57x56x2x32xf32>
}
// CHECK: func @tensor_pack_linalg_transpose_fold(
// CHECK-SAME: %[[ARG0:.+]]: tensor<56x57x1x64xf32>)
// CHECK: %[[INIT:.+]] = tensor.empty() : tensor<1x57x56x2x32xf32>
// CHECK: %[[PACK:.+]] = tensor.pack %[[ARG0]]
// CHECK-SAME: outer_dims_perm = [2, 1, 0, 3]
// CHECK-SAME: inner_dims_pos = [3] inner_tiles = [32]
// CHECK-SAME: into %[[INIT]]
// CHECK: return %[[PACK]]
// -----
func.func @tensor_pack_linalg_transpose_fold_with_padding(%arg0: tensor<56x57x1x55xf32>, %padding: f32) -> tensor<1x57x56x2x32xf32> {
%0 = tensor.empty() : tensor<56x2x1x57x32xf32>
%pack = tensor.pack %arg0 padding_value(%padding : f32)
outer_dims_perm = [0, 3, 2, 1]
inner_dims_pos = [3]
inner_tiles = [32]
into %0 : tensor<56x57x1x55xf32> -> tensor<56x2x1x57x32xf32>
%1 = tensor.empty() : tensor<1x57x56x2x32xf32>
%transposed = linalg.transpose
ins(%pack : tensor<56x2x1x57x32xf32>)
outs(%1 : tensor<1x57x56x2x32xf32>)
permutation = [2, 3, 0, 1, 4]
return %transposed : tensor<1x57x56x2x32xf32>
}
// CHECK: func @tensor_pack_linalg_transpose_fold_with_padding(
// CHECK-SAME: %[[ARG0:.+]]: tensor<56x57x1x55xf32>, %[[PADDING:.+]]: f32)
// CHECK: %[[INIT:.+]] = tensor.empty() : tensor<1x57x56x2x32xf32>
// CHECK: %[[PACK:.+]] = tensor.pack %[[ARG0]] padding_value(%[[PADDING]] : f32)
// CHECK-SAME: outer_dims_perm = [2, 1, 0, 3]
// CHECK-SAME: inner_dims_pos = [3] inner_tiles = [32]
// CHECK-SAME: into %[[INIT]]
// CHECK: return %[[PACK]]
// -----
func.func @tensor_pack_linalg_transpose_fold_no_outer_dims_perm(%arg0: tensor<56x57x1x64xf32>) -> tensor<1x2x56x57x32xf32> {
%0 = tensor.empty() : tensor<56x57x1x2x32xf32>
%pack = tensor.pack %arg0
inner_dims_pos = [3]
inner_tiles = [32]
into %0 : tensor<56x57x1x64xf32> -> tensor<56x57x1x2x32xf32>
%1 = tensor.empty() : tensor<1x2x56x57x32xf32>
%transposed = linalg.transpose
ins(%pack : tensor<56x57x1x2x32xf32>)
outs(%1 : tensor<1x2x56x57x32xf32>)
permutation = [2, 3, 0, 1, 4]
return %transposed : tensor<1x2x56x57x32xf32>
}
// CHECK: func @tensor_pack_linalg_transpose_fold_no_outer_dims_perm(
// CHECK-SAME: %[[ARG0:.+]]: tensor<56x57x1x64xf32>)
// CHECK: %[[INIT:.+]] = tensor.empty() : tensor<1x2x56x57x32xf32>
// CHECK: %[[PACK:.+]] = tensor.pack %[[ARG0]]
// CHECK-SAME: outer_dims_perm = [2, 3, 0, 1]
// CHECK-SAME: inner_dims_pos = [3] inner_tiles = [32]
// CHECK-SAME: into %[[INIT]]
// CHECK: return %[[PACK]]
// -----
func.func @tensor_pack_linalg_transpose_fold_tile_dims_transpose(%arg0: tensor<56x72x24x128xf32>) -> tensor<12x56x4x9x32x8x2xf32> {
%0 = tensor.empty() : tensor<4x9x12x56x8x2x32xf32>
%pack = tensor.pack %arg0
outer_dims_perm = [3, 1, 2, 0]
inner_dims_pos = [1, 2, 3]
inner_tiles = [8, 2, 32]
into %0 : tensor<56x72x24x128xf32> -> tensor<4x9x12x56x8x2x32xf32>
%1 = tensor.empty() : tensor<12x56x4x9x32x8x2xf32>
%transposed = linalg.transpose
ins(%pack : tensor<4x9x12x56x8x2x32xf32>)
outs(%1 : tensor<12x56x4x9x32x8x2xf32>)
permutation = [2, 3, 0, 1, 6, 4, 5]
return %transposed : tensor<12x56x4x9x32x8x2xf32>
}
// CHECK: func @tensor_pack_linalg_transpose_fold_tile_dims_transpose(
// CHECK-SAME: %[[ARG0:.+]]: tensor<56x72x24x128xf32>)
// CHECK: %[[INIT:.+]] = tensor.empty() : tensor<12x56x4x9x32x8x2xf32>
// CHECK: %[[PACK:.+]] = tensor.pack %[[ARG0]]
// CHECK-SAME: outer_dims_perm = [2, 0, 3, 1]
// CHECK-SAME: inner_dims_pos = [3, 1, 2] inner_tiles = [32, 8, 2]
// CHECK-SAME: into %[[INIT]]
// CHECK: return %[[PACK]]
// -----
func.func @tensor_pack_linalg_transpose_fold_tile_dims_outer_dims_transpose(%arg0: tensor<56x72x24x128xf32>) -> tensor<9x56x2x12x32x8x4xf32> {
%0 = tensor.empty() : tensor<4x12x9x56x8x2x32xf32>
%pack = tensor.pack %arg0
outer_dims_perm = [3, 2, 1, 0]
inner_dims_pos = [1, 2, 3]
inner_tiles = [8, 2, 32]
into %0 : tensor<56x72x24x128xf32> -> tensor<4x12x9x56x8x2x32xf32>
%1 = tensor.empty() : tensor<9x56x2x12x32x8x4xf32>
%transposed = linalg.transpose
ins(%pack : tensor<4x12x9x56x8x2x32xf32>)
outs(%1 : tensor<9x56x2x12x32x8x4xf32>)
permutation = [2, 3, 5, 1, 6, 4, 0]
return %transposed : tensor<9x56x2x12x32x8x4xf32>
}
// CHECK: func @tensor_pack_linalg_transpose_fold_tile_dims_outer_dims_transpose(
// CHECK-SAME: %[[ARG0:.+]]: tensor<56x72x24x128xf32>)
// CHECK: tensor.pack
// CHECK: linalg.transpose
// -----
func.func @tensor_pack_linalg_transpose_fold_dynamic_outer_dims(%arg0: tensor<56x?x?x64xf32>) -> tensor<?x?x56x2x32xf32> {
%0 = tensor.empty() : tensor<56x2x1x57x32xf32>
%pack = tensor.pack %arg0
outer_dims_perm = [0, 3, 2, 1]
inner_dims_pos = [3]
inner_tiles = [32]
into %0 : tensor<56x?x?x64xf32> -> tensor<56x2x1x57x32xf32>
%1 = tensor.empty() : tensor<1x57x56x2x32xf32>
%transposed = linalg.transpose
ins(%pack : tensor<56x2x1x57x32xf32>)
outs(%1 : tensor<1x57x56x2x32xf32>)
permutation = [2, 3, 0, 1, 4]
%return_value = tensor.cast %transposed : tensor<1x57x56x2x32xf32> to tensor<?x?x56x2x32xf32>
return %return_value : tensor<?x?x56x2x32xf32>
}
// CHECK: func @tensor_pack_linalg_transpose_fold_dynamic_outer_dims(
// CHECK-SAME: %[[ARG0:.+]]: tensor<56x?x?x64xf32>)
// CHECK-DAG: %[[c1:.+]] = arith.constant 1 : index
// CHECK-DAG: %[[c2:.+]] = arith.constant 2 : index
// CHECK: %[[dim:.+]] = tensor.dim %[[ARG0]], %[[c1]] : tensor<56x?x?x64xf32>
// CHECK: %[[dim_0:.+]] = tensor.dim %[[ARG0]], %[[c2]] : tensor<56x?x?x64xf32>
// CHECK: %[[INIT:.+]] = tensor.empty(%[[dim_0]], %[[dim]]) : tensor<?x?x56x2x32xf32>
// CHECK: %[[PACK:.+]] = tensor.pack %[[ARG0]]
// CHECK-SAME: outer_dims_perm = [2, 1, 0, 3]
// CHECK-SAME: inner_dims_pos = [3] inner_tiles = [32]
// CHECK-SAME: into %[[INIT]]
// CHECK: return %[[PACK]]
// -----
func.func @tensor_pack_linalg_transpose_fold_dynamic_outer_and_tile_dims(%arg0: tensor<56x?x?x128xf32>) -> tensor<?x?x56x9x32x8x2xf32> {
%0 = tensor.empty() : tensor<56x9x12x4x8x2x32xf32>
%pack = tensor.pack %arg0
inner_dims_pos = [1, 2, 3]
inner_tiles = [8, 2, 32]
into %0 : tensor<56x?x?x128xf32> -> tensor<56x9x12x4x8x2x32xf32>
%1 = tensor.empty() : tensor<12x4x56x9x32x8x2xf32>
%transposed = linalg.transpose
ins(%pack : tensor<56x9x12x4x8x2x32xf32>)
outs(%1 : tensor<12x4x56x9x32x8x2xf32>)
permutation = [2, 3, 0, 1, 6, 4, 5]
%return_value = tensor.cast %transposed : tensor<12x4x56x9x32x8x2xf32> to tensor<?x?x56x9x32x8x2xf32>
return %return_value : tensor<?x?x56x9x32x8x2xf32>
}
// CHECK: #[[map:.+]] = affine_map<()[s0] -> (s0 ceildiv 8)>
// CHECK: #[[map1:.+]] = affine_map<()[s0] -> (s0 ceildiv 2)>
// CHECK: module {
// CHECK: func.func @tensor_pack_linalg_transpose_fold_dynamic_outer_and_tile_dims(
// CHECK-SAME: %[[ARG0:.+]]: tensor<56x?x?x128xf32>)
// CHECK-DAG: %[[c1:.+]] = arith.constant 1 : index
// CHECK-DAG: %[[c2:.+]] = arith.constant 2 : index
// CHECK: %[[dim:.+]] = tensor.dim %[[ARG0]], %[[c1]] : tensor<56x?x?x128xf32>
// CHECK: %[[dim_0:.+]] = tensor.dim %[[ARG0]], %[[c2]] : tensor<56x?x?x128xf32>
// CHECK: %[[mapped_dim1:.+]] = affine.apply #[[map:.+]]()[%[[dim]]]
// CHECK: %[[mapped_dim2:.+]] = affine.apply #[[map1:.+]]()[%[[dim_0]]]
// CHECK: %[[INIT:.+]] = tensor.empty(%[[mapped_dim2]], %[[mapped_dim1]]) : tensor<?x4x56x?x32x8x2xf32>
// CHECK: %[[PACK:.+]] = tensor.pack %[[ARG0]] outer_dims_perm = [2, 3, 0, 1] inner_dims_pos = [3, 1, 2] inner_tiles = [32, 8, 2] into %[[INIT]] : tensor<56x?x?x128xf32> -> tensor<?x4x56x?x32x8x2xf32>
// CHECK: %[[CAST:.+]] = tensor.cast %[[PACK]] : tensor<?x4x56x?x32x8x2xf32> to tensor<?x?x56x9x32x8x2xf32>
// CHECK: return %[[CAST]] : tensor<?x?x56x9x32x8x2xf32>
// CHECK: }
// -----
func.func @tensor_pack_linalg_transpose_fold_dynamic_outer_dims_tile_dims_tile_sizes(%arg0: tensor<?x?x?x?xf32>, %pack_dest: tensor<?x?x?x?x?x?x?xf32>, %transpose_dest: tensor<?x?x?x?x?x?x?xf32>, %tile_p : index, %tile_q : index, %tile_r : index) -> tensor<?x?x?x?x?x?x?xf32> {
%pack = tensor.pack %arg0
outer_dims_perm = [3, 0, 2, 1]
inner_dims_pos = [1, 2, 3]
inner_tiles = [%tile_p, %tile_q, %tile_r]
into %pack_dest : tensor<?x?x?x?xf32> -> tensor<?x?x?x?x?x?x?xf32>
%transposed = linalg.transpose
ins(%pack : tensor<?x?x?x?x?x?x?xf32>)
outs(%transpose_dest : tensor<?x?x?x?x?x?x?xf32>)
permutation = [2, 3, 0, 1, 6, 4, 5]
return %transposed : tensor<?x?x?x?x?x?x?xf32>
}
// CHECK: #[[map:.+]] = affine_map<()[s0, s1] -> (s0 ceildiv s1)>
// CHECK: module {
// CHECK: func.func @tensor_pack_linalg_transpose_fold_dynamic_outer_dims_tile_dims_tile_sizes(
// CHECK-SAME: %[[ARG0:.+]]: tensor<?x?x?x?xf32>,
// CHECK-SAME: %[[PACK_DEST:.+]]: tensor<?x?x?x?x?x?x?xf32>, %[[TRANSPOSE_DEST:.+]]: tensor<?x?x?x?x?x?x?xf32>,
// CHECK-SAME: %[[ARG1:.+]]: index, %[[ARG2:.+]]: index,
// CHECK-SAME: %[[ARG3:.+]]: index)
// CHECK-DAG: %[[c0:.+]] = arith.constant 0 : index
// CHECK-DAG: %[[c1:.+]] = arith.constant 1 : index
// CHECK-DAG: %[[c2:.+]] = arith.constant 2 : index
// CHECK-DAG: %[[c3:.+]] = arith.constant 3 : index
// CHECK: %[[dim:.+]] = tensor.dim %[[ARG0]], %[[c0]] : tensor<?x?x?x?xf32>
// CHECK: %[[dim_0:.+]] = tensor.dim %[[ARG0]], %[[c1]] : tensor<?x?x?x?xf32>
// CHECK: %[[dim_1:.+]] = tensor.dim %[[ARG0]], %[[c2]] : tensor<?x?x?x?xf32>
// CHECK: %[[dim_2:.+]] = tensor.dim %[[ARG0]], %[[c3]] : tensor<?x?x?x?xf32>
// CHECK: %[[mapped_dim0:.+]] = affine.apply #[[map:.+]]()[%[[dim_2]], %[[ARG3]]]
// CHECK: %[[mapped_dim1:.+]] = affine.apply #[[map:.+]]()[%[[dim_0]], %[[ARG1]]]
// CHECK: %[[mapped_dim2:.+]] = affine.apply #[[map:.+]]()[%[[dim_1]], %[[ARG2]]]
// CHECK: %[[INIT:.+]] = tensor.empty(%[[mapped_dim2]], %[[mapped_dim1]], %[[mapped_dim0]], %[[dim]], %[[ARG3]], %[[ARG1]], %[[ARG2]]) : tensor<?x?x?x?x?x?x?xf32>
// CHECK: %[[PACK:.+]] = tensor.pack %[[ARG0]] outer_dims_perm = [2, 1, 3, 0] inner_dims_pos = [3, 1, 2] inner_tiles = [%[[ARG3]], %[[ARG1]], %[[ARG2]]] into %[[INIT]] : tensor<?x?x?x?xf32> -> tensor<?x?x?x?x?x?x?xf32>
// CHECK: return %[[PACK]] : tensor<?x?x?x?x?x?x?xf32>
// CHECK: }
// -----
func.func @linalg_transpose_tensor_pack_fold(%arg0: tensor<56x57x1x64xf32>) -> tensor<1x57x56x2x32xf32> {
%0 = tensor.empty() : tensor<1x56x57x64xf32>
%transposed = linalg.transpose
ins(%arg0 : tensor<56x57x1x64xf32>)
outs(%0 : tensor<1x56x57x64xf32>)
permutation = [2, 0, 1, 3]
%1 = tensor.empty() : tensor<1x57x56x2x32xf32>
%pack = tensor.pack %transposed
outer_dims_perm = [0, 2, 1, 3]
inner_dims_pos = [3]
inner_tiles = [32]
into %1 : tensor<1x56x57x64xf32> -> tensor<1x57x56x2x32xf32>
return %pack : tensor<1x57x56x2x32xf32>
}
//CHECK-LABEL: func @linalg_transpose_tensor_pack_fold(
// CHECK-SAME: %[[ARG0:.+]]: tensor<56x57x1x64xf32>)
// CHECK: %[[INIT:.+]] = tensor.empty() : tensor<1x57x56x2x32xf32>
// CHECK: %[[PACK:.+]] = tensor.pack %[[ARG0]]
// CHECK-SAME: outer_dims_perm = [2, 1, 0, 3]
// CHECK-SAME: inner_dims_pos = [3] inner_tiles = [32]
// CHECK-SAME: into %[[INIT]]
// CHECK: return %[[PACK]]
// -----
func.func @linalg_transpose_tensor_pack_fold_with_padding(%arg0: tensor<56x57x1x55xf32>, %padding: f32) -> tensor<1x57x56x2x32xf32> {
%0 = tensor.empty() : tensor<1x56x57x55xf32>
%transpose = linalg.transpose
ins(%arg0 : tensor<56x57x1x55xf32>)
outs(%0 : tensor<1x56x57x55xf32>)
permutation = [2, 0, 1, 3]
%1 = tensor.empty() : tensor<1x57x56x2x32xf32>
%pack = tensor.pack %transpose padding_value(%padding : f32)
outer_dims_perm = [0, 2, 1, 3]
inner_dims_pos = [3]
inner_tiles = [32]
into %1 : tensor<1x56x57x55xf32> -> tensor<1x57x56x2x32xf32>
return %pack : tensor<1x57x56x2x32xf32>
}
//CHECK-LABEL: func @linalg_transpose_tensor_pack_fold_with_padding(
// CHECK-SAME: %[[ARG0:.+]]: tensor<56x57x1x55xf32>, %[[PADDING:.+]]: f32)
// CHECK: %[[INIT:.+]] = tensor.empty() : tensor<1x57x56x2x32xf32>
// CHECK: %[[PACK:.+]] = tensor.pack %[[ARG0]] padding_value(%[[PADDING]] : f32)
// CHECK-SAME: outer_dims_perm = [2, 1, 0, 3]
// CHECK-SAME: inner_dims_pos = [3] inner_tiles = [32]
// CHECK-SAME: into %[[INIT]]
// CHECK: return %[[PACK]]
// -----
func.func @linalg_transpose_tensor_pack_fold_no_outer_dims_perm(%arg0: tensor<56x57x1x64xf32>) -> tensor<1x56x57x2x32xf32> {
%0 = tensor.empty() : tensor<1x56x57x64xf32>
%transposed = linalg.transpose
ins(%arg0 : tensor<56x57x1x64xf32>)
outs(%0 : tensor<1x56x57x64xf32>)
permutation = [2, 0, 1, 3]
%1 = tensor.empty() : tensor<1x56x57x2x32xf32>
%pack = tensor.pack %transposed
inner_dims_pos = [3]
inner_tiles = [32]
into %1 : tensor<1x56x57x64xf32> -> tensor<1x56x57x2x32xf32>
return %pack : tensor<1x56x57x2x32xf32>
}
//CHECK-LABEL: func @linalg_transpose_tensor_pack_fold_no_outer_dims_perm(
// CHECK-SAME: %[[ARG0:.+]]: tensor<56x57x1x64xf32>)
// CHECK: %[[INIT:.+]] = tensor.empty() : tensor<1x56x57x2x32xf32>
// CHECK: %[[PACK:.+]] = tensor.pack %[[ARG0]]
// CHECK-SAME: outer_dims_perm = [2, 0, 1, 3]
// CHECK-SAME: inner_dims_pos = [3] inner_tiles = [32]
// CHECK-SAME: into %[[INIT]]
// CHECK: return %[[PACK]]
// -----
func.func @linalg_transpose_tensor_pack_fold_complex_inner_dims_change(%arg0: tensor<25x30x35x40xf32>, %transpose_dest: tensor<35x40x25x30xf32>, %pack_dest: tensor<3x35x5x8x5x10x5xf32>) -> tensor<3x35x5x8x5x10x5xf32> {
%transposed = linalg.transpose
ins(%arg0 : tensor<25x30x35x40xf32>)
outs(%transpose_dest : tensor<35x40x25x30xf32>)
permutation = [2, 3, 0, 1]
%pack = tensor.pack %transposed
outer_dims_perm = [3, 0, 2, 1]
inner_dims_pos = [1, 3, 2]
inner_tiles = [5, 10, 5]
into %pack_dest : tensor<35x40x25x30xf32> -> tensor<3x35x5x8x5x10x5xf32>
return %pack : tensor<3x35x5x8x5x10x5xf32>
}
//CHECK-LABEL: func.func @linalg_transpose_tensor_pack_fold_complex_inner_dims_change(
// CHECK-SAME: %[[ARG0:.+]]: tensor<25x30x35x40xf32>,
// CHECK-SAME: %[[ARG1:.+]]: tensor<35x40x25x30xf32>,
// CHECK-SAME: %[[ARG2:.+]]: tensor<3x35x5x8x5x10x5xf32>) -> tensor<3x35x5x8x5x10x5xf32> {
// CHECK: %[[VAL0:.+]] = tensor.empty() : tensor<3x35x5x8x5x10x5xf32>
// CHECK: %[[PACK:.+]] = tensor.pack %[[ARG0]]
// CHECK-SAME: outer_dims_perm = [1, 2, 0, 3]
// CHECK-SAME: inner_dims_pos = [3, 1, 0]
// CHECK-SAME: inner_tiles = [5, 10, 5]
// CHECK-SAME: into %[[VAL0]]
// CHECK: return %[[PACK]]
// -----
func.func @linalg_transpose_tensor_pack_fold_dynamic_outer_dims_tile_dims_tile_sizes(%arg0: tensor<?x?x?x?xf32>, %transpose_dest: tensor<?x?x?x?xf32>, %pack_dest: tensor<?x?x?x?x?x?x?xf32>, %tile_p : index, %tile_q : index, %tile_r : index) -> tensor<?x?x?x?x?x?x?xf32> {
%transposed = linalg.transpose
ins(%arg0 : tensor<?x?x?x?xf32>)
outs(%transpose_dest : tensor<?x?x?x?xf32>)
permutation = [2, 3, 0, 1]
%pack = tensor.pack %transposed
outer_dims_perm = [3, 0, 2, 1]
inner_dims_pos = [1, 3, 2]
inner_tiles = [%tile_p, %tile_q, %tile_r]
into %pack_dest : tensor<?x?x?x?xf32> -> tensor<?x?x?x?x?x?x?xf32>
return %pack : tensor<?x?x?x?x?x?x?xf32>
}
// CHECK: #[[map:.+]] = affine_map<()[s0, s1] -> (s0 ceildiv s1)>
//CHECK-LABEL: func.func @linalg_transpose_tensor_pack_fold_dynamic_outer_dims_tile_dims_tile_sizes(
// CHECK-SAME: %[[ARG0:.+]]: tensor<?x?x?x?xf32>, %[[ARG1:.+]]: tensor<?x?x?x?xf32>,
// CHECK-SAME: %[[ARG2:.+]]: tensor<?x?x?x?x?x?x?xf32>, %[[ARG3:.+]]: index, %[[ARG4:.+]]: index, %[[ARG5:.+]]: index) -> tensor<?x?x?x?x?x?x?xf32> {
// CHECK-DAG: %[[C0:.+]] = arith.constant 0 : index
// CHECK-DAG: %[[C1:.+]] = arith.constant 1 : index
// CHECK-DAG: %[[C2:.+]] = arith.constant 2 : index
// CHECK-DAG: %[[C3:.+]] = arith.constant 3 : index
// CHECK: %[[DIM:.+]] = tensor.dim %[[ARG0]], %[[C0]] : tensor<?x?x?x?xf32>
// CHECK: %[[DIM0:.+]] = tensor.dim %[[ARG0]], %[[C1]] : tensor<?x?x?x?xf32>
// CHECK: %[[DIM1:.+]] = tensor.dim %[[ARG0]], %[[C2]] : tensor<?x?x?x?xf32>
// CHECK: %[[DIM2:.+]] = tensor.dim %[[ARG0]], %[[C3]] : tensor<?x?x?x?xf32>
// CHECK: %[[VAL0:.+]] = affine.apply #[[map:.+]]()[%[[DIM2]], %[[ARG3]]]
// CHECK: %[[VAL1:.+]] = affine.apply #[[map:.+]]()[%[[DIM0]], %[[ARG4]]]
// CHECK: %[[VAL2:.+]] = affine.apply #[[map:.+]]()[%[[DIM]], %[[ARG5]]]
// CHECK: %[[VAL3:.+]] = tensor.empty(%[[VAL1]], %[[DIM1]], %[[VAL2]], %[[VAL0]], %[[ARG3]], %[[ARG4]], %[[ARG5]]) : tensor<?x?x?x?x?x?x?xf32>
// CHECK: %[[PACK:.+]] = tensor.pack %[[ARG0]] outer_dims_perm = [1, 2, 0, 3] inner_dims_pos = [3, 1, 0] inner_tiles = [%[[ARG3]], %[[ARG4]], %[[ARG5]]] into %[[VAL3]] : tensor<?x?x?x?xf32> -> tensor<?x?x?x?x?x?x?xf32>
// CHECK: return %[[PACK]] : tensor<?x?x?x?x?x?x?xf32>
// -----
func.func @linalg_transpose_tensor_pack_multiple_tiles(%arg0: tensor<?x32x128xbf16>) -> tensor<32x?x64x16x2xbf16> {
%c0 = arith.constant 0 : index
%cst = arith.constant 0.000000e+00 : bf16
%dim = tensor.dim %arg0, %c0 : tensor<?x32x128xbf16>
%0 = tensor.empty(%dim) : tensor<32x128x?xbf16>
%transposed = linalg.transpose
ins(%arg0 : tensor<?x32x128xbf16>)
outs(%0 : tensor<32x128x?xbf16>)
permutation = [1, 2, 0]
%2 = tensor.empty(%dim) : tensor<32x?x64x16x2xbf16>
%pack = tensor.pack %transposed
padding_value(%cst : bf16)
outer_dims_perm = [0, 2, 1]
inner_dims_pos = [2, 1]
inner_tiles = [16, 2]
into %2 : tensor<32x128x?xbf16> -> tensor<32x?x64x16x2xbf16>
return %pack : tensor<32x?x64x16x2xbf16>
}
// CHECK: #[[map:.+]] = affine_map<()[s0] -> (s0 ceildiv 16)>
//CHECK-LABEL: func.func @linalg_transpose_tensor_pack_multiple_tiles(
// CHECK-SAME: %[[ARG0:.+]]: tensor<?x32x128xbf16>) -> tensor<32x?x64x16x2xbf16> {
// CHECK-DAG: %[[C0:.+]] = arith.constant 0 : index
// CHECK-DAG: %[[CST:.+]] = arith.constant 0.000000e+00 : bf16
// CHECK: %[[DIM:.+]] = tensor.dim %[[ARG0]], %[[C0]] : tensor<?x32x128xbf16>
// CHECK: %[[VAL0:.+]] = affine.apply #[[map:.+]]()[%[[DIM]]]
// CHECK: %[[VAL1:.+]] = tensor.empty(%[[VAL0]]) : tensor<32x?x64x16x2xbf16>
// CHECK: %[[PACK:.+]] = tensor.pack %[[ARG0]]
// CHECK-SAME: padding_value(%[[CST]] : bf16)
// CHECK-SAME: outer_dims_perm = [1, 0, 2]
// CHECK-SAME: inner_dims_pos = [0, 2]
// CHECK-SAME: inner_tiles = [16, 2]
// CHECK-SAME: into %[[VAL1]] : tensor<?x32x128xbf16> -> tensor<32x?x64x16x2xbf16>
// CHECK: return %[[PACK]] : tensor<32x?x64x16x2xbf16>
// CHECK: }
|