File: selective-targeting.mlir

package info (click to toggle)
llvm-toolchain-18 1%3A18.1.8-18
  • links: PTS, VCS
  • area: main
  • in suites: trixie
  • size: 1,908,340 kB
  • sloc: cpp: 6,667,937; ansic: 1,440,452; asm: 883,619; python: 230,549; objc: 76,880; f90: 74,238; lisp: 35,989; pascal: 16,571; sh: 10,229; perl: 7,459; ml: 5,047; awk: 3,523; makefile: 2,987; javascript: 2,149; xml: 892; fortran: 649; cs: 573
file content (166 lines) | stat: -rw-r--r-- 6,621 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
// RUN:  mlir-opt %s --transform-interpreter --split-input-file | FileCheck %s

// CHECK-LABEL: func.func @matmul_tensors_1(
func.func @matmul_tensors_1(
  %arg0: tensor<128x128xf32>, %arg1: tensor<128x128xf32>,
  %arg2: tensor<128x128xf32>)
    -> tensor<128x128xf32> {
  // This operation is marked for tiling only.
  // CHECK-COUNT-3: scf.for
  // CHECK-COUNT-3: tensor.extract_slice
  // CHECK: linalg.matmul
  // CHECK-SAME: -> tensor<4x4xf32>
  %0 = linalg.matmul { test.attrA }
                      ins(%arg0, %arg1: tensor<128x128xf32>, tensor<128x128xf32>)
                     outs(%arg2: tensor<128x128xf32>)
    -> tensor<128x128xf32>
  func.return %0 : tensor<128x128xf32>
}

func.func @matmul_tensors_2(
  %arg0: tensor<128x128xf32>, %arg1: tensor<128x128xf32>,
  %arg2: tensor<128x128xf32>)
    -> tensor<128x128xf32> {
  // This operation is marked f
  // This operation is marked for tiling and vectorization.
  // CHECK-COUNT-3: scf.for
  // CHECK-COUNT-3: vector.transfer_read
  // CHECK:       vector.contract
  // CHECK-NOT:   linalg.matmul
  // CHECK:       vector.transfer_write
  %0 = linalg.matmul { test.attrA, test.attrC }
                      ins(%arg0, %arg1: tensor<128x128xf32>, tensor<128x128xf32>)
                     outs(%arg2: tensor<128x128xf32>)
    -> tensor<128x128xf32>
  func.return %0 : tensor<128x128xf32>
}

func.func @matmul_tensors_3(
  %arg0: tensor<128x128xf32>, %arg1: tensor<128x128xf32>,
  %arg2: tensor<128x128xf32>)
    -> tensor<128x128xf32> {
  // This operation is marked for vectorization only.
  // CHECK-NOT: scf.for
  // CHECK-COUNT-3: vector.transfer_read
  // CHECK: vector.contract
  // CHECK-SAME: into vector<128x128xf32>
  // CHECK: vector.transfer_write
  %0 = linalg.matmul { test.attrC }
                      ins(%arg0, %arg1: tensor<128x128xf32>, tensor<128x128xf32>)
                     outs(%arg2: tensor<128x128xf32>)
    -> tensor<128x128xf32>
  func.return %0 : tensor<128x128xf32>
}

module attributes {transform.with_named_sequence} {
  transform.named_sequence @__transform_main(%root : !transform.any_op) {
    transform.with_pdl_patterns %root : !transform.any_op {
    ^bb0(%arg0: !transform.any_op):
      // Match matmul operations inside @matmul_tensors with test.attrA set.
      pdl.pattern @pdl_target_attrA : benefit(1) {
        %args = operands
        %results = types
        %attr = attribute
        %0 = operation "linalg.matmul"(%args : !pdl.range<value>) {"test.attrA" = %attr}-> (%results : !pdl.range<type>)
        // TODO: we don't want this, but it is the required terminator for pdl.pattern
        rewrite %0 with "transform.dialect"
      }

      // Match matmul operations inside @matmul_tensors with test.attrC set.
      pdl.pattern @pdl_target_attrC : benefit(1) {
        %args = operands
        %results = types
        %attr = attribute
        %0 = operation "linalg.matmul"(%args : !pdl.range<value>) {"test.attrC" = %attr}-> (%results : !pdl.range<type>)
        // TODO: we don't want this, but it is the required terminator for pdl.pattern
        rewrite %0 with "transform.dialect"
      }

      transform.sequence %arg0 : !transform.any_op failures(propagate) {
      ^bb1(%arg1: !transform.any_op):
        %0 = pdl_match @pdl_target_attrA in %arg1 : (!transform.any_op) -> !transform.any_op
        transform.structured.tile_using_for %0 [4, 4, 4] : (!transform.any_op) -> (!transform.any_op, !transform.any_op, !transform.any_op, !transform.any_op)
        %1 = pdl_match @pdl_target_attrC in %arg1 : (!transform.any_op) -> !transform.any_op
        %2 = get_parent_op %1 {isolated_from_above} : (!transform.any_op) -> !transform.any_op
        transform.structured.vectorize_children_and_apply_patterns %2 : (!transform.any_op) -> !transform.any_op
      }
    }
    transform.yield
  }
}

// -----

// CHECK-LABEL: @vectorize_one
func.func @vectorize_one(
  %arg0: tensor<128x128xf32>, %arg1: tensor<128x128xf32>,
  %arg2: tensor<128x128xf32>)
    -> tensor<128x128xf32> {
  // CHECK: vector.contract
  %0 = linalg.matmul {test.attrA}
                     ins(%arg0, %arg1: tensor<128x128xf32>, tensor<128x128xf32>)
                     outs(%arg2: tensor<128x128xf32>)
    -> tensor<128x128xf32>
  func.return %0 : tensor<128x128xf32>
}

func.func @vectorize_none(
  %arg0: tensor<128x128xf32>, %arg1: tensor<128x128xf32>,
  %arg2: tensor<128x128xf32>)
    -> tensor<128x128xf32> {
  // CHECK: linalg.matmul
  %0 = linalg.matmul ins(%arg0, %arg1: tensor<128x128xf32>, tensor<128x128xf32>)
                     outs(%arg2: tensor<128x128xf32>)
    -> tensor<128x128xf32>
  func.return %0 : tensor<128x128xf32>
}

module attributes {transform.with_named_sequence} {
  transform.named_sequence @__transform_main(%root : !transform.any_op) {
    transform.with_pdl_patterns %root : !transform.any_op {
    ^bb0(%arg0: !transform.any_op):
      pdl.pattern @pdl_target : benefit(1) {
        %args = operands
        %results = types
        %attr = attribute
        %0 = operation "linalg.matmul"(%args : !pdl.range<value>) {"test.attrA" = %attr}-> (%results : !pdl.range<type>)
        // TODO: we don't want this, but it is the required terminator for pdl.pattern
        rewrite %0 with "transform.dialect"
      }

      transform.sequence %arg0 : !transform.any_op failures(propagate) {
      ^bb1(%arg1: !transform.any_op):
        %0 = pdl_match @pdl_target in %arg1 : (!transform.any_op) -> !transform.any_op
        %1 = get_parent_op %0 {isolated_from_above} : (!transform.any_op) -> !transform.any_op
        transform.structured.vectorize_children_and_apply_patterns %1 : (!transform.any_op) -> !transform.any_op
      }
    }
    transform.yield
  }
}

// -----

// CHECK-LABEL: @vectorize_all
func.func @vectorize_all(
  %arg0: tensor<128x128xf32>, %arg1: tensor<128x128xf32>, %arg2: tensor<128x128xf32>,
  %arg3: tensor<128x128xf32>)
    -> tensor<128x128xf32> {
  // CHECK: vector.contract
  %0 = linalg.matmul {test.attrA}
                     ins(%arg0, %arg1: tensor<128x128xf32>, tensor<128x128xf32>)
                     outs(%arg2: tensor<128x128xf32>)
    -> tensor<128x128xf32>
  // CHECK: vector.contract
  %1 = linalg.matmul ins(%arg0, %0: tensor<128x128xf32>, tensor<128x128xf32>)
                     outs(%arg3: tensor<128x128xf32>)
    -> tensor<128x128xf32>
  return %1 : tensor<128x128xf32>
}

module attributes {transform.with_named_sequence} {
  transform.named_sequence @__transform_main(%arg0: !transform.any_op) {
    transform.structured.vectorize_children_and_apply_patterns %arg0 : (!transform.any_op) -> !transform.any_op
    transform.yield
  }
}