1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659
|
; NOTE: Assertions have been autogenerated by utils/update_analyze_test_checks.py UTC_ARGS: --version 4
; RUN: opt < %s -disable-output "-passes=print<scalar-evolution>" -scalar-evolution-classify-expressions=0 2>&1 | FileCheck %s
; ScalarEvolution should be able to understand the loop and eliminate the casts.
define void @foo(ptr nocapture %d, i32 %n) nounwind {
; CHECK-LABEL: 'foo'
; CHECK-NEXT: Determining loop execution counts for: @foo
; CHECK-NEXT: Loop %bb: backedge-taken count is (-1 + %n)
; CHECK-NEXT: Loop %bb: constant max backedge-taken count is i32 2147483646
; CHECK-NEXT: Loop %bb: symbolic max backedge-taken count is (-1 + %n)
; CHECK-NEXT: Loop %bb: Trip multiple is 1
;
entry:
%0 = icmp sgt i32 %n, 0 ; <i1> [#uses=1]
br i1 %0, label %bb.nph, label %return
bb.nph: ; preds = %entry
br label %bb
bb: ; preds = %bb1, %bb.nph
%i.02 = phi i32 [ %5, %bb1 ], [ 0, %bb.nph ] ; <i32> [#uses=2]
%p.01 = phi i8 [ %4, %bb1 ], [ -1, %bb.nph ] ; <i8> [#uses=2]
%1 = sext i8 %p.01 to i32 ; <i32> [#uses=1]
%2 = sext i32 %i.02 to i64 ; <i64> [#uses=1]
%3 = getelementptr i32, ptr %d, i64 %2 ; <ptr> [#uses=1]
store i32 %1, ptr %3, align 4
%4 = add i8 %p.01, 1 ; <i8> [#uses=1]
%5 = add i32 %i.02, 1 ; <i32> [#uses=2]
br label %bb1
bb1: ; preds = %bb
%6 = icmp slt i32 %5, %n ; <i1> [#uses=1]
br i1 %6, label %bb, label %bb1.return_crit_edge
bb1.return_crit_edge: ; preds = %bb1
br label %return
return: ; preds = %bb1.return_crit_edge, %entry
ret void
}
; ScalarEvolution should be able to find the maximum tripcount
; of this multiple-exit loop, and if it doesn't know the exact
; count, it should say so.
; PR7845
@.str = private constant [4 x i8] c"%d\0A\00" ; <ptr> [#uses=2]
define i32 @main() nounwind {
; CHECK-LABEL: 'main'
; CHECK-NEXT: Determining loop execution counts for: @main
; CHECK-NEXT: Loop %for.cond: <multiple exits> Unpredictable backedge-taken count.
; CHECK-NEXT: exit count for for.cond: i32 5
; CHECK-NEXT: exit count for for.body: ***COULDNOTCOMPUTE***
; CHECK-NEXT: Loop %for.cond: constant max backedge-taken count is i32 5
; CHECK-NEXT: Loop %for.cond: symbolic max backedge-taken count is i32 5
; CHECK-NEXT: symbolic max exit count for for.cond: i32 5
; CHECK-NEXT: symbolic max exit count for for.body: ***COULDNOTCOMPUTE***
;
entry:
br label %for.cond
for.cond: ; preds = %for.inc, %entry
%g_4.0 = phi i32 [ 0, %entry ], [ %add, %for.inc ] ; <i32> [#uses=5]
%cmp = icmp slt i32 %g_4.0, 5 ; <i1> [#uses=1]
br i1 %cmp, label %for.body, label %for.end
for.body: ; preds = %for.cond
%conv = trunc i32 %g_4.0 to i16 ; <i16> [#uses=1]
%tobool.not = icmp eq i16 %conv, 0 ; <i1> [#uses=1]
%tobool3 = icmp ne i32 %g_4.0, 0 ; <i1> [#uses=1]
%or.cond = and i1 %tobool.not, %tobool3 ; <i1> [#uses=1]
br i1 %or.cond, label %for.end, label %for.inc
for.inc: ; preds = %for.body
%add = add nsw i32 %g_4.0, 1 ; <i32> [#uses=1]
br label %for.cond
for.end: ; preds = %for.body, %for.cond
%call = call i32 (ptr, ...) @printf(ptr @.str, i32 %g_4.0) nounwind ; <i32> [#uses=0]
ret i32 0
}
declare i32 @printf(ptr, ...)
define void @test(ptr %a, i32 %n) nounwind {
; CHECK-LABEL: 'test'
; CHECK-NEXT: Determining loop execution counts for: @test
; CHECK-NEXT: Loop %for.body: backedge-taken count is (-1 + (zext i32 %n to i64))<nsw>
; CHECK-NEXT: Loop %for.body: constant max backedge-taken count is i64 2147483646
; CHECK-NEXT: Loop %for.body: symbolic max backedge-taken count is (-1 + (zext i32 %n to i64))<nsw>
; CHECK-NEXT: Loop %for.body: Trip multiple is 1
;
entry:
%cmp1 = icmp sgt i32 %n, 0
br i1 %cmp1, label %for.body.lr.ph, label %for.end
for.body.lr.ph: ; preds = %entry
%tmp = zext i32 %n to i64
br label %for.body
for.body: ; preds = %for.body, %for.body.lr.ph
%indvar = phi i64 [ %indvar.next, %for.body ], [ 0, %for.body.lr.ph ]
%arrayidx = getelementptr i8, ptr %a, i64 %indvar
store i8 0, ptr %arrayidx, align 1
%indvar.next = add i64 %indvar, 1
%exitcond = icmp ne i64 %indvar.next, %tmp
br i1 %exitcond, label %for.body, label %for.cond.for.end_crit_edge
for.cond.for.end_crit_edge: ; preds = %for.body
br label %for.end
for.end: ; preds = %for.cond.for.end_crit_edge, %entry
ret void
}
; PR19799: Indvars miscompile due to an incorrect max backedge taken count from SCEV.
@a = common global i32 0, align 4
define i32 @pr19799() {
; CHECK-LABEL: 'pr19799'
; CHECK-NEXT: Determining loop execution counts for: @pr19799
; CHECK-NEXT: Loop %for.body.i: <multiple exits> Unpredictable backedge-taken count.
; CHECK-NEXT: exit count for for.body.i: ***COULDNOTCOMPUTE***
; CHECK-NEXT: exit count for for.cond.i: i32 1
; CHECK-NEXT: Loop %for.body.i: constant max backedge-taken count is i32 1
; CHECK-NEXT: Loop %for.body.i: symbolic max backedge-taken count is i32 1
; CHECK-NEXT: symbolic max exit count for for.body.i: ***COULDNOTCOMPUTE***
; CHECK-NEXT: symbolic max exit count for for.cond.i: i32 1
;
entry:
store i32 -1, ptr @a, align 4
br label %for.body.i
for.body.i: ; preds = %for.cond.i, %entry
%storemerge1.i = phi i32 [ -1, %entry ], [ %add.i.i, %for.cond.i ]
%tobool.i = icmp eq i32 %storemerge1.i, 0
%add.i.i = add nsw i32 %storemerge1.i, 2
br i1 %tobool.i, label %bar.exit, label %for.cond.i
for.cond.i: ; preds = %for.body.i
store i32 %add.i.i, ptr @a, align 4
%cmp.i = icmp slt i32 %storemerge1.i, 0
br i1 %cmp.i, label %for.body.i, label %bar.exit
bar.exit: ; preds = %for.cond.i, %for.body.i
ret i32 0
}
; PR18886: Indvars miscompile due to an incorrect max backedge taken count from SCEV.
@aa = global i64 0, align 8
define i32 @pr18886() {
; CHECK-LABEL: 'pr18886'
; CHECK-NEXT: Determining loop execution counts for: @pr18886
; CHECK-NEXT: Loop %for.body: <multiple exits> Unpredictable backedge-taken count.
; CHECK-NEXT: exit count for for.body: ***COULDNOTCOMPUTE***
; CHECK-NEXT: exit count for for.cond: i64 3
; CHECK-NEXT: Loop %for.body: constant max backedge-taken count is i64 3
; CHECK-NEXT: Loop %for.body: symbolic max backedge-taken count is i64 3
; CHECK-NEXT: symbolic max exit count for for.body: ***COULDNOTCOMPUTE***
; CHECK-NEXT: symbolic max exit count for for.cond: i64 3
;
entry:
store i64 -21, ptr @aa, align 8
br label %for.body
for.body:
%storemerge1 = phi i64 [ -21, %entry ], [ %add, %for.cond ]
%tobool = icmp eq i64 %storemerge1, 0
%add = add nsw i64 %storemerge1, 8
br i1 %tobool, label %return, label %for.cond
for.cond:
store i64 %add, ptr @aa, align 8
%cmp = icmp slt i64 %add, 9
br i1 %cmp, label %for.body, label %return
return:
%retval.0 = phi i32 [ 1, %for.body ], [ 0, %for.cond ]
ret i32 %retval.0
}
; Here we have a must-exit loop latch that is not computable and a
; may-exit early exit that can only have one non-exiting iteration
; before the check is forever skipped.
;
@b = common global i32 0, align 4
define i32 @cannot_compute_mustexit() {
; CHECK-LABEL: 'cannot_compute_mustexit'
; CHECK-NEXT: Determining loop execution counts for: @cannot_compute_mustexit
; CHECK-NEXT: Loop %for.body.i: <multiple exits> Unpredictable backedge-taken count.
; CHECK-NEXT: exit count for for.body.i: ***COULDNOTCOMPUTE***
; CHECK-NEXT: exit count for for.cond.i: ***COULDNOTCOMPUTE***
; CHECK-NEXT: Loop %for.body.i: Unpredictable constant max backedge-taken count.
; CHECK-NEXT: Loop %for.body.i: Unpredictable symbolic max backedge-taken count.
; CHECK-NEXT: symbolic max exit count for for.body.i: ***COULDNOTCOMPUTE***
; CHECK-NEXT: symbolic max exit count for for.cond.i: ***COULDNOTCOMPUTE***
;
entry:
store i32 -1, ptr @a, align 4
br label %for.body.i
for.body.i: ; preds = %for.cond.i, %entry
%storemerge1.i = phi i32 [ -1, %entry ], [ %add.i.i, %for.cond.i ]
%tobool.i = icmp eq i32 %storemerge1.i, 0
%add.i.i = add nsw i32 %storemerge1.i, 2
br i1 %tobool.i, label %bar.exit, label %for.cond.i
for.cond.i: ; preds = %for.body.i
store i32 %add.i.i, ptr @a, align 4
%ld = load volatile i32, ptr @b
%cmp.i = icmp ne i32 %ld, 0
br i1 %cmp.i, label %for.body.i, label %bar.exit
bar.exit: ; preds = %for.cond.i, %for.body.i
ret i32 0
}
; This loop has two must-exits, both of which dominate the latch. The
; MaxBECount should be the minimum of them.
;
define i32 @two_mustexit() {
; CHECK-LABEL: 'two_mustexit'
; CHECK-NEXT: Determining loop execution counts for: @two_mustexit
; CHECK-NEXT: Loop %for.body.i: <multiple exits> backedge-taken count is i32 1
; CHECK-NEXT: exit count for for.body.i: i32 1
; CHECK-NEXT: exit count for for.cond.i: i32 2
; CHECK-NEXT: Loop %for.body.i: constant max backedge-taken count is i32 1
; CHECK-NEXT: Loop %for.body.i: symbolic max backedge-taken count is i32 1
; CHECK-NEXT: symbolic max exit count for for.body.i: i32 1
; CHECK-NEXT: symbolic max exit count for for.cond.i: i32 2
; CHECK-NEXT: Loop %for.body.i: Trip multiple is 1
;
entry:
store i32 -1, ptr @a, align 4
br label %for.body.i
for.body.i: ; preds = %for.cond.i, %entry
%storemerge1.i = phi i32 [ -1, %entry ], [ %add.i.i, %for.cond.i ]
%tobool.i = icmp sgt i32 %storemerge1.i, 0
%add.i.i = add nsw i32 %storemerge1.i, 2
br i1 %tobool.i, label %bar.exit, label %for.cond.i
for.cond.i: ; preds = %for.body.i
store i32 %add.i.i, ptr @a, align 4
%cmp.i = icmp slt i32 %storemerge1.i, 3
br i1 %cmp.i, label %for.body.i, label %bar.exit
bar.exit: ; preds = %for.cond.i, %for.body.i
ret i32 0
}
define i32 @ne_max_trip_count_1(i32 %n) {
; CHECK-LABEL: 'ne_max_trip_count_1'
; CHECK-NEXT: Determining loop execution counts for: @ne_max_trip_count_1
; CHECK-NEXT: Loop %for.body: backedge-taken count is (zext i3 (trunc i32 %n to i3) to i32)
; CHECK-NEXT: Loop %for.body: constant max backedge-taken count is i32 7
; CHECK-NEXT: Loop %for.body: symbolic max backedge-taken count is (zext i3 (trunc i32 %n to i3) to i32)
; CHECK-NEXT: Loop %for.body: Trip multiple is 1
;
entry:
%masked = and i32 %n, 7
br label %for.body
for.body:
%i = phi i32 [ 0, %entry ], [ %add, %for.body ]
%add = add nsw i32 %i, 1
%cmp = icmp ne i32 %i, %masked
br i1 %cmp, label %for.body, label %bar.exit
bar.exit:
ret i32 0
}
define i32 @ne_max_trip_count_2(i32 %n) {
; CHECK-LABEL: 'ne_max_trip_count_2'
; CHECK-NEXT: Determining loop execution counts for: @ne_max_trip_count_2
; CHECK-NEXT: Loop %for.body: backedge-taken count is (-1 + (zext i3 (trunc i32 %n to i3) to i32))<nsw>
; CHECK-NEXT: Loop %for.body: constant max backedge-taken count is i32 -1
; CHECK-NEXT: Loop %for.body: symbolic max backedge-taken count is (-1 + (zext i3 (trunc i32 %n to i3) to i32))<nsw>
; CHECK-NEXT: Loop %for.body: Trip multiple is 1
;
entry:
%masked = and i32 %n, 7
br label %for.body
for.body:
%i = phi i32 [ 0, %entry ], [ %add, %for.body ]
%add = add nsw i32 %i, 1
%cmp = icmp ne i32 %add, %masked
br i1 %cmp, label %for.body, label %bar.exit
bar.exit:
ret i32 0
}
define i32 @ne_max_trip_count_3(i32 %n) {
; CHECK-LABEL: 'ne_max_trip_count_3'
; CHECK-NEXT: Determining loop execution counts for: @ne_max_trip_count_3
; CHECK-NEXT: Loop %for.body: backedge-taken count is (-1 + (zext i3 (trunc i32 %n to i3) to i32))<nsw>
; CHECK-NEXT: Loop %for.body: constant max backedge-taken count is i32 6
; CHECK-NEXT: Loop %for.body: symbolic max backedge-taken count is (-1 + (zext i3 (trunc i32 %n to i3) to i32))<nsw>
; CHECK-NEXT: Loop %for.body: Trip multiple is 1
;
entry:
%masked = and i32 %n, 7
%guard = icmp eq i32 %masked, 0
br i1 %guard, label %exit, label %for.preheader
for.preheader:
br label %for.body
for.body:
%i = phi i32 [ 0, %for.preheader ], [ %add, %for.body ]
%add = add nsw i32 %i, 1
%cmp = icmp ne i32 %add, %masked
br i1 %cmp, label %for.body, label %loop.exit
loop.exit:
br label %exit
exit:
ret i32 0
}
define i32 @ne_max_trip_count_4(i32 %n) {
; CHECK-LABEL: 'ne_max_trip_count_4'
; CHECK-NEXT: Determining loop execution counts for: @ne_max_trip_count_4
; CHECK-NEXT: Loop %for.body: backedge-taken count is (-1 + %n)
; CHECK-NEXT: Loop %for.body: constant max backedge-taken count is i32 -2
; CHECK-NEXT: Loop %for.body: symbolic max backedge-taken count is (-1 + %n)
; CHECK-NEXT: Loop %for.body: Trip multiple is 1
;
entry:
%guard = icmp eq i32 %n, 0
br i1 %guard, label %exit, label %for.preheader
for.preheader:
br label %for.body
for.body:
%i = phi i32 [ 0, %for.preheader ], [ %add, %for.body ]
%add = add nsw i32 %i, 1
%cmp = icmp ne i32 %add, %n
br i1 %cmp, label %for.body, label %loop.exit
loop.exit:
br label %exit
exit:
ret i32 0
}
; The end bound of the loop can change between iterations, so the exact trip
; count is unknown, but SCEV can calculate the max trip count.
define void @changing_end_bound(ptr %n_addr, ptr %addr) {
; CHECK-LABEL: 'changing_end_bound'
; CHECK-NEXT: Determining loop execution counts for: @changing_end_bound
; CHECK-NEXT: Loop %loop: Unpredictable backedge-taken count.
; CHECK-NEXT: Loop %loop: constant max backedge-taken count is i32 2147483646
; CHECK-NEXT: Loop %loop: symbolic max backedge-taken count is i32 2147483646
;
entry:
br label %loop
loop:
%iv = phi i32 [ 0, %entry ], [ %iv.next, %loop ]
%acc = phi i32 [ 0, %entry ], [ %acc.next, %loop ]
%val = load atomic i32, ptr %addr unordered, align 4
fence acquire
%acc.next = add i32 %acc, %val
%iv.next = add nsw i32 %iv, 1
%n = load atomic i32, ptr %n_addr unordered, align 4
%cmp = icmp slt i32 %iv.next, %n
br i1 %cmp, label %loop, label %loop.exit
loop.exit:
ret void
}
; Similar test as above, but unknown start value.
; Also, there's no nsw on the iv.next, but SCEV knows
; the termination condition is LT, so the IV cannot wrap.
define void @changing_end_bound2(i32 %start, ptr %n_addr, ptr %addr) {
; CHECK-LABEL: 'changing_end_bound2'
; CHECK-NEXT: Determining loop execution counts for: @changing_end_bound2
; CHECK-NEXT: Loop %loop: Unpredictable backedge-taken count.
; CHECK-NEXT: Loop %loop: constant max backedge-taken count is i32 -1
; CHECK-NEXT: Loop %loop: symbolic max backedge-taken count is i32 -1
;
entry:
br label %loop
loop:
%iv = phi i32 [ %start, %entry ], [ %iv.next, %loop ]
%acc = phi i32 [ 0, %entry ], [ %acc.next, %loop ]
%val = load atomic i32, ptr %addr unordered, align 4
fence acquire
%acc.next = add i32 %acc, %val
%iv.next = add i32 %iv, 1
%n = load atomic i32, ptr %n_addr unordered, align 4
%cmp = icmp slt i32 %iv.next, %n
br i1 %cmp, label %loop, label %loop.exit
loop.exit:
ret void
}
; changing end bound and greater than one stride
define void @changing_end_bound3(i32 %start, ptr %n_addr, ptr %addr) {
; CHECK-LABEL: 'changing_end_bound3'
; CHECK-NEXT: Determining loop execution counts for: @changing_end_bound3
; CHECK-NEXT: Loop %loop: Unpredictable backedge-taken count.
; CHECK-NEXT: Loop %loop: constant max backedge-taken count is i32 1073741823
; CHECK-NEXT: Loop %loop: symbolic max backedge-taken count is i32 1073741823
;
entry:
br label %loop
loop:
%iv = phi i32 [ %start, %entry ], [ %iv.next, %loop ]
%acc = phi i32 [ 0, %entry ], [ %acc.next, %loop ]
%val = load atomic i32, ptr %addr unordered, align 4
fence acquire
%acc.next = add i32 %acc, %val
%iv.next = add nsw i32 %iv, 4
%n = load atomic i32, ptr %n_addr unordered, align 4
%cmp = icmp slt i32 %iv.next, %n
br i1 %cmp, label %loop, label %loop.exit
loop.exit:
ret void
}
; same as above test, but the IV can wrap around.
; so the max backedge taken count is unpredictable.
define void @changing_end_bound4(i32 %start, ptr %n_addr, ptr %addr) {
; CHECK-LABEL: 'changing_end_bound4'
; CHECK-NEXT: Determining loop execution counts for: @changing_end_bound4
; CHECK-NEXT: Loop %loop: Unpredictable backedge-taken count.
; CHECK-NEXT: Loop %loop: Unpredictable constant max backedge-taken count.
; CHECK-NEXT: Loop %loop: Unpredictable symbolic max backedge-taken count.
;
entry:
br label %loop
loop:
%iv = phi i32 [ %start, %entry ], [ %iv.next, %loop ]
%acc = phi i32 [ 0, %entry ], [ %acc.next, %loop ]
%val = load atomic i32, ptr %addr unordered, align 4
fence acquire
%acc.next = add i32 %acc, %val
%iv.next = add i32 %iv, 4
%n = load atomic i32, ptr %n_addr unordered, align 4
%cmp = icmp slt i32 %iv.next, %n
br i1 %cmp, label %loop, label %loop.exit
loop.exit:
ret void
}
; unknown stride. Since it's not knownPositive, we do not estimate the max
; backedge taken count.
define void @changing_end_bound5(i32 %stride, i32 %start, ptr %n_addr, ptr %addr) {
; CHECK-LABEL: 'changing_end_bound5'
; CHECK-NEXT: Determining loop execution counts for: @changing_end_bound5
; CHECK-NEXT: Loop %loop: Unpredictable backedge-taken count.
; CHECK-NEXT: Loop %loop: Unpredictable constant max backedge-taken count.
; CHECK-NEXT: Loop %loop: Unpredictable symbolic max backedge-taken count.
;
entry:
br label %loop
loop:
%iv = phi i32 [ %start, %entry ], [ %iv.next, %loop ]
%acc = phi i32 [ 0, %entry ], [ %acc.next, %loop ]
%val = load atomic i32, ptr %addr unordered, align 4
fence acquire
%acc.next = add i32 %acc, %val
%iv.next = add nsw i32 %iv, %stride
%n = load atomic i32, ptr %n_addr unordered, align 4
%cmp = icmp slt i32 %iv.next, %n
br i1 %cmp, label %loop, label %loop.exit
loop.exit:
ret void
}
; negative stride value
define void @changing_end_bound6(i32 %start, ptr %n_addr, ptr %addr) {
; CHECK-LABEL: 'changing_end_bound6'
; CHECK-NEXT: Determining loop execution counts for: @changing_end_bound6
; CHECK-NEXT: Loop %loop: Unpredictable backedge-taken count.
; CHECK-NEXT: Loop %loop: Unpredictable constant max backedge-taken count.
; CHECK-NEXT: Loop %loop: Unpredictable symbolic max backedge-taken count.
;
entry:
br label %loop
loop:
%iv = phi i32 [ %start, %entry ], [ %iv.next, %loop ]
%acc = phi i32 [ 0, %entry ], [ %acc.next, %loop ]
%val = load atomic i32, ptr %addr unordered, align 4
fence acquire
%acc.next = add i32 %acc, %val
%iv.next = add nsw i32 %iv, -1
%n = load atomic i32, ptr %n_addr unordered, align 4
%cmp = icmp slt i32 %iv.next, %n
br i1 %cmp, label %loop, label %loop.exit
loop.exit:
ret void
}
; sgt with negative stride
define void @changing_end_bound7(i32 %start, ptr %n_addr, ptr %addr) {
; CHECK-LABEL: 'changing_end_bound7'
; CHECK-NEXT: Determining loop execution counts for: @changing_end_bound7
; CHECK-NEXT: Loop %loop: Unpredictable backedge-taken count.
; CHECK-NEXT: Loop %loop: Unpredictable constant max backedge-taken count.
; CHECK-NEXT: Loop %loop: Unpredictable symbolic max backedge-taken count.
;
entry:
br label %loop
loop:
%iv = phi i32 [ %start, %entry ], [ %iv.next, %loop ]
%acc = phi i32 [ 0, %entry ], [ %acc.next, %loop ]
%val = load atomic i32, ptr %addr unordered, align 4
fence acquire
%acc.next = add i32 %acc, %val
%iv.next = add i32 %iv, -1
%n = load atomic i32, ptr %n_addr unordered, align 4
%cmp = icmp sgt i32 %iv.next, %n
br i1 %cmp, label %loop, label %loop.exit
loop.exit:
ret void
}
define void @max_overflow_se(i8 %n) mustprogress {
; CHECK-LABEL: 'max_overflow_se'
; CHECK-NEXT: Determining loop execution counts for: @max_overflow_se
; CHECK-NEXT: Loop %loop: backedge-taken count is i8 0
; CHECK-NEXT: Loop %loop: constant max backedge-taken count is i8 0
; CHECK-NEXT: Loop %loop: symbolic max backedge-taken count is i8 0
; CHECK-NEXT: Loop %loop: Trip multiple is 1
;
entry:
br label %loop
loop:
%i = phi i8 [ 63, %entry ], [ %i.next, %loop ]
%i.next = add nsw i8 %i, 63
%t = icmp slt i8 %i.next, %n
br i1 %t, label %loop, label %exit
exit:
ret void
}
; Show that we correctly realize that %i can overflow here as long as
; the early exit is taken before we branch on poison.
define void @max_overflow_me(i8 %n) mustprogress {
; CHECK-LABEL: 'max_overflow_me'
; CHECK-NEXT: Determining loop execution counts for: @max_overflow_me
; CHECK-NEXT: Loop %loop: <multiple exits> Unpredictable backedge-taken count.
; CHECK-NEXT: exit count for loop: i8 1
; CHECK-NEXT: exit count for latch: ***COULDNOTCOMPUTE***
; CHECK-NEXT: Loop %loop: constant max backedge-taken count is i8 1
; CHECK-NEXT: Loop %loop: symbolic max backedge-taken count is i8 1
; CHECK-NEXT: symbolic max exit count for loop: i8 1
; CHECK-NEXT: symbolic max exit count for latch: ***COULDNOTCOMPUTE***
;
entry:
br label %loop
loop:
%i = phi i8 [ 63, %entry ], [ %i.next, %latch ]
%j = phi i8 [ 0, %entry ], [ %j.next, %latch ]
%early.exit = icmp ne i8 %j, 1
br i1 %early.exit, label %latch, label %exit
latch:
%i.next = add nsw i8 %i, 63
%j.next = add nsw nuw i8 %j, 1
%t = icmp slt i8 %i.next, %n
br i1 %t, label %loop, label %exit
exit:
ret void
}
; Max backedge-taken count is zero.
define void @bool_stride(i1 %s, i1 %n) mustprogress {
; CHECK-LABEL: 'bool_stride'
; CHECK-NEXT: Determining loop execution counts for: @bool_stride
; CHECK-NEXT: Loop %loop: backedge-taken count is i1 false
; CHECK-NEXT: Loop %loop: constant max backedge-taken count is i1 false
; CHECK-NEXT: Loop %loop: symbolic max backedge-taken count is i1 false
; CHECK-NEXT: Loop %loop: Trip multiple is 1
;
entry:
br label %loop
loop:
%i = phi i1 [ -1, %entry ], [ %i.next, %loop ]
%i.next = add nsw i1 %i, %s
%t = icmp slt i1 %i.next, %n
br i1 %t, label %loop, label %exit
exit:
ret void
}
; This is a case where our max-backedge taken count logic happens to be
; able to prove a zero btc, but our symbolic logic doesn't due to a lack
; of context sensativity.
define void @ne_zero_max_btc(i32 %a) {
; CHECK-LABEL: 'ne_zero_max_btc'
; CHECK-NEXT: Determining loop execution counts for: @ne_zero_max_btc
; CHECK-NEXT: Loop %for.body: backedge-taken count is i64 0
; CHECK-NEXT: Loop %for.body: constant max backedge-taken count is i64 0
; CHECK-NEXT: Loop %for.body: symbolic max backedge-taken count is i64 0
; CHECK-NEXT: Loop %for.body: Trip multiple is 1
;
entry:
%cmp = icmp slt i32 %a, 1
%spec.select = select i1 %cmp, i32 %a, i32 1
%cmp8 = icmp sgt i32 %a, 0
br i1 %cmp8, label %for.body.preheader, label %loopexit
for.body.preheader: ; preds = %if.then4.i.i
%umax = call i32 @llvm.umax.i32(i32 %spec.select, i32 1)
%umax.i.i = zext i32 %umax to i64
br label %for.body
for.body: ; preds = %for.inc, %for.body.preheader
%indvars.iv = phi i64 [ 0, %for.body.preheader ], [ %indvars.iv.next, %for.inc ]
call void @unknown()
br label %for.inc
for.inc: ; preds = %for.body
%indvars.iv.next = add nuw nsw i64 %indvars.iv, 1
%exitcond.i.not.i534 = icmp ne i64 %indvars.iv.next, %umax.i.i
br i1 %exitcond.i.not.i534, label %for.body, label %loopexit
loopexit:
ret void
}
declare void @unknown()
declare i32 @llvm.umax.i32(i32, i32)
|