1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446
|
//===-- Assembler.cpp -------------------------------------------*- C++ -*-===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
#include "Assembler.h"
#include "SnippetRepetitor.h"
#include "SubprocessMemory.h"
#include "Target.h"
#include "llvm/Analysis/TargetLibraryInfo.h"
#include "llvm/CodeGen/FunctionLoweringInfo.h"
#include "llvm/CodeGen/GlobalISel/CallLowering.h"
#include "llvm/CodeGen/GlobalISel/MachineIRBuilder.h"
#include "llvm/CodeGen/MachineInstrBuilder.h"
#include "llvm/CodeGen/MachineModuleInfo.h"
#include "llvm/CodeGen/MachineRegisterInfo.h"
#include "llvm/CodeGen/TargetInstrInfo.h"
#include "llvm/CodeGen/TargetLowering.h"
#include "llvm/CodeGen/TargetPassConfig.h"
#include "llvm/CodeGen/TargetSubtargetInfo.h"
#include "llvm/ExecutionEngine/Orc/LLJIT.h"
#include "llvm/IR/BasicBlock.h"
#include "llvm/IR/Instructions.h"
#include "llvm/IR/LegacyPassManager.h"
#include "llvm/MC/MCInstrInfo.h"
#include "llvm/Object/SymbolSize.h"
#include "llvm/Support/Alignment.h"
#include "llvm/Support/MemoryBuffer.h"
#include "llvm/Support/raw_ostream.h"
#ifdef HAVE_LIBPFM
#include "perfmon/perf_event.h"
#endif // HAVE_LIBPFM
#ifdef __linux__
#include <unistd.h>
#endif
namespace llvm {
namespace exegesis {
static constexpr const char ModuleID[] = "ExegesisInfoTest";
static constexpr const char FunctionID[] = "foo";
static const Align kFunctionAlignment(4096);
// Fills the given basic block with register setup code, and returns true if
// all registers could be setup correctly.
static bool generateSnippetSetupCode(const ExegesisTarget &ET,
const MCSubtargetInfo *const MSI,
BasicBlockFiller &BBF,
const BenchmarkKey &Key,
bool GenerateMemoryInstructions) {
bool IsSnippetSetupComplete = true;
if (GenerateMemoryInstructions) {
BBF.addInstructions(ET.generateMemoryInitialSetup());
for (const MemoryMapping &MM : Key.MemoryMappings) {
#ifdef __linux__
// The frontend that generates that parses the memory mapping information
// from the user should validate that the requested address is a multiple
// of the page size. Assert that this is true here.
assert(MM.Address % getpagesize() == 0 &&
"Memory mappings need to be aligned to page boundaries.");
#endif
BBF.addInstructions(ET.generateMmap(
MM.Address, Key.MemoryValues.at(MM.MemoryValueName).SizeBytes,
ET.getAuxiliaryMemoryStartAddress() +
sizeof(int) * (Key.MemoryValues.at(MM.MemoryValueName).Index +
SubprocessMemory::AuxiliaryMemoryOffset)));
}
BBF.addInstructions(ET.setStackRegisterToAuxMem());
}
Register StackPointerRegister = BBF.MF.getSubtarget()
.getTargetLowering()
->getStackPointerRegisterToSaveRestore();
for (const RegisterValue &RV : Key.RegisterInitialValues) {
if (GenerateMemoryInstructions) {
// If we're generating memory instructions, don't load in the value for
// the register with the stack pointer as it will be used later to finish
// the setup.
if (RV.Register == StackPointerRegister)
continue;
}
// Load a constant in the register.
const auto SetRegisterCode = ET.setRegTo(*MSI, RV.Register, RV.Value);
if (SetRegisterCode.empty())
IsSnippetSetupComplete = false;
BBF.addInstructions(SetRegisterCode);
}
if (GenerateMemoryInstructions) {
#ifdef HAVE_LIBPFM
BBF.addInstructions(ET.configurePerfCounter(PERF_EVENT_IOC_RESET, true));
#endif // HAVE_LIBPFM
for (const RegisterValue &RV : Key.RegisterInitialValues) {
// Load in the stack register now as we're done using it elsewhere
// and need to set the value in preparation for executing the
// snippet.
if (RV.Register != StackPointerRegister)
continue;
const auto SetRegisterCode = ET.setRegTo(*MSI, RV.Register, RV.Value);
if (SetRegisterCode.empty())
IsSnippetSetupComplete = false;
BBF.addInstructions(SetRegisterCode);
break;
}
}
return IsSnippetSetupComplete;
}
// Small utility function to add named passes.
static bool addPass(PassManagerBase &PM, StringRef PassName,
TargetPassConfig &TPC) {
const PassRegistry *PR = PassRegistry::getPassRegistry();
const PassInfo *PI = PR->getPassInfo(PassName);
if (!PI) {
errs() << " run-pass " << PassName << " is not registered.\n";
return true;
}
if (!PI->getNormalCtor()) {
errs() << " cannot create pass: " << PI->getPassName() << "\n";
return true;
}
Pass *P = PI->getNormalCtor()();
std::string Banner = std::string("After ") + std::string(P->getPassName());
PM.add(P);
TPC.printAndVerify(Banner);
return false;
}
MachineFunction &createVoidVoidPtrMachineFunction(StringRef FunctionName,
Module *Module,
MachineModuleInfo *MMI) {
Type *const ReturnType = Type::getInt32Ty(Module->getContext());
Type *const MemParamType = PointerType::get(
Type::getInt8Ty(Module->getContext()), 0 /*default address space*/);
FunctionType *FunctionType =
FunctionType::get(ReturnType, {MemParamType}, false);
Function *const F = Function::Create(
FunctionType, GlobalValue::ExternalLinkage, FunctionName, Module);
BasicBlock *BB = BasicBlock::Create(Module->getContext(), "", F);
new UnreachableInst(Module->getContext(), BB);
return MMI->getOrCreateMachineFunction(*F);
}
BasicBlockFiller::BasicBlockFiller(MachineFunction &MF, MachineBasicBlock *MBB,
const MCInstrInfo *MCII)
: MF(MF), MBB(MBB), MCII(MCII) {}
void BasicBlockFiller::addInstruction(const MCInst &Inst, const DebugLoc &DL) {
const unsigned Opcode = Inst.getOpcode();
const MCInstrDesc &MCID = MCII->get(Opcode);
MachineInstrBuilder Builder = BuildMI(MBB, DL, MCID);
for (unsigned OpIndex = 0, E = Inst.getNumOperands(); OpIndex < E;
++OpIndex) {
const MCOperand &Op = Inst.getOperand(OpIndex);
if (Op.isReg()) {
const bool IsDef = OpIndex < MCID.getNumDefs();
unsigned Flags = 0;
const MCOperandInfo &OpInfo = MCID.operands().begin()[OpIndex];
if (IsDef && !OpInfo.isOptionalDef())
Flags |= RegState::Define;
Builder.addReg(Op.getReg(), Flags);
} else if (Op.isImm()) {
Builder.addImm(Op.getImm());
} else if (!Op.isValid()) {
llvm_unreachable("Operand is not set");
} else {
llvm_unreachable("Not yet implemented");
}
}
}
void BasicBlockFiller::addInstructions(ArrayRef<MCInst> Insts,
const DebugLoc &DL) {
for (const MCInst &Inst : Insts)
addInstruction(Inst, DL);
}
void BasicBlockFiller::addReturn(const ExegesisTarget &ET,
bool SubprocessCleanup, const DebugLoc &DL) {
// Insert cleanup code
if (SubprocessCleanup) {
#ifdef HAVE_LIBPFM
addInstructions(ET.configurePerfCounter(PERF_EVENT_IOC_DISABLE, false));
#endif // HAVE_LIBPFM
#ifdef __linux__
addInstructions(ET.generateExitSyscall(0));
#endif // __linux__
}
// Insert the return code.
const TargetInstrInfo *TII = MF.getSubtarget().getInstrInfo();
if (TII->getReturnOpcode() < TII->getNumOpcodes()) {
BuildMI(MBB, DL, TII->get(TII->getReturnOpcode()));
} else {
MachineIRBuilder MIB(MF);
MIB.setMBB(*MBB);
FunctionLoweringInfo FuncInfo;
FuncInfo.CanLowerReturn = true;
MF.getSubtarget().getCallLowering()->lowerReturn(MIB, nullptr, {}, FuncInfo,
0);
}
}
FunctionFiller::FunctionFiller(MachineFunction &MF,
std::vector<unsigned> RegistersSetUp)
: MF(MF), MCII(MF.getTarget().getMCInstrInfo()), Entry(addBasicBlock()),
RegistersSetUp(std::move(RegistersSetUp)) {}
BasicBlockFiller FunctionFiller::addBasicBlock() {
MachineBasicBlock *MBB = MF.CreateMachineBasicBlock();
MF.push_back(MBB);
return BasicBlockFiller(MF, MBB, MCII);
}
ArrayRef<unsigned> FunctionFiller::getRegistersSetUp() const {
return RegistersSetUp;
}
static std::unique_ptr<Module>
createModule(const std::unique_ptr<LLVMContext> &Context, const DataLayout &DL) {
auto Mod = std::make_unique<Module>(ModuleID, *Context);
Mod->setDataLayout(DL);
return Mod;
}
BitVector getFunctionReservedRegs(const TargetMachine &TM) {
std::unique_ptr<LLVMContext> Context = std::make_unique<LLVMContext>();
std::unique_ptr<Module> Module = createModule(Context, TM.createDataLayout());
// TODO: This only works for targets implementing LLVMTargetMachine.
const LLVMTargetMachine &LLVMTM = static_cast<const LLVMTargetMachine &>(TM);
auto MMIWP = std::make_unique<MachineModuleInfoWrapperPass>(&LLVMTM);
MachineFunction &MF = createVoidVoidPtrMachineFunction(
FunctionID, Module.get(), &MMIWP->getMMI());
// Saving reserved registers for client.
return MF.getSubtarget().getRegisterInfo()->getReservedRegs(MF);
}
Error assembleToStream(const ExegesisTarget &ET,
std::unique_ptr<LLVMTargetMachine> TM,
ArrayRef<unsigned> LiveIns, const FillFunction &Fill,
raw_pwrite_stream &AsmStream, const BenchmarkKey &Key,
bool GenerateMemoryInstructions) {
auto Context = std::make_unique<LLVMContext>();
std::unique_ptr<Module> Module =
createModule(Context, TM->createDataLayout());
auto MMIWP = std::make_unique<MachineModuleInfoWrapperPass>(TM.get());
MachineFunction &MF = createVoidVoidPtrMachineFunction(
FunctionID, Module.get(), &MMIWP.get()->getMMI());
MF.ensureAlignment(kFunctionAlignment);
// We need to instruct the passes that we're done with SSA and virtual
// registers.
auto &Properties = MF.getProperties();
Properties.set(MachineFunctionProperties::Property::NoVRegs);
Properties.reset(MachineFunctionProperties::Property::IsSSA);
Properties.set(MachineFunctionProperties::Property::NoPHIs);
for (const unsigned Reg : LiveIns)
MF.getRegInfo().addLiveIn(Reg);
if (GenerateMemoryInstructions) {
for (const unsigned Reg : ET.getArgumentRegisters())
MF.getRegInfo().addLiveIn(Reg);
// Add a live in for registers that need saving so that the machine verifier
// doesn't fail if the register is never defined.
for (const unsigned Reg : ET.getRegistersNeedSaving())
MF.getRegInfo().addLiveIn(Reg);
}
std::vector<unsigned> RegistersSetUp;
for (const auto &InitValue : Key.RegisterInitialValues) {
RegistersSetUp.push_back(InitValue.Register);
}
FunctionFiller Sink(MF, std::move(RegistersSetUp));
auto Entry = Sink.getEntry();
for (const unsigned Reg : LiveIns)
Entry.MBB->addLiveIn(Reg);
if (GenerateMemoryInstructions) {
for (const unsigned Reg : ET.getArgumentRegisters())
Entry.MBB->addLiveIn(Reg);
// Add a live in for registers that need saving so that the machine verifier
// doesn't fail if the register is never defined.
for (const unsigned Reg : ET.getRegistersNeedSaving())
Entry.MBB->addLiveIn(Reg);
}
const bool IsSnippetSetupComplete = generateSnippetSetupCode(
ET, TM->getMCSubtargetInfo(), Entry, Key, GenerateMemoryInstructions);
// If the snippet setup is not complete, we disable liveliness tracking. This
// means that we won't know what values are in the registers.
// FIXME: this should probably be an assertion.
if (!IsSnippetSetupComplete)
Properties.reset(MachineFunctionProperties::Property::TracksLiveness);
Fill(Sink);
// prologue/epilogue pass needs the reserved registers to be frozen, this
// is usually done by the SelectionDAGISel pass.
MF.getRegInfo().freezeReservedRegs();
// We create the pass manager, run the passes to populate AsmBuffer.
MCContext &MCContext = MMIWP->getMMI().getContext();
legacy::PassManager PM;
TargetLibraryInfoImpl TLII(Triple(Module->getTargetTriple()));
PM.add(new TargetLibraryInfoWrapperPass(TLII));
TargetPassConfig *TPC = TM->createPassConfig(PM);
PM.add(TPC);
PM.add(MMIWP.release());
TPC->printAndVerify("MachineFunctionGenerator::assemble");
// Add target-specific passes.
ET.addTargetSpecificPasses(PM);
TPC->printAndVerify("After ExegesisTarget::addTargetSpecificPasses");
// Adding the following passes:
// - postrapseudos: expands pseudo return instructions used on some targets.
// - machineverifier: checks that the MachineFunction is well formed.
// - prologepilog: saves and restore callee saved registers.
for (const char *PassName :
{"postrapseudos", "machineverifier", "prologepilog"})
if (addPass(PM, PassName, *TPC))
return make_error<Failure>("Unable to add a mandatory pass");
TPC->setInitialized();
// AsmPrinter is responsible for generating the assembly into AsmBuffer.
if (TM->addAsmPrinter(PM, AsmStream, nullptr, CodeGenFileType::ObjectFile,
MCContext))
return make_error<Failure>("Cannot add AsmPrinter passes");
PM.run(*Module); // Run all the passes
return Error::success();
}
object::OwningBinary<object::ObjectFile>
getObjectFromBuffer(StringRef InputData) {
// Storing the generated assembly into a MemoryBuffer that owns the memory.
std::unique_ptr<MemoryBuffer> Buffer =
MemoryBuffer::getMemBufferCopy(InputData);
// Create the ObjectFile from the MemoryBuffer.
std::unique_ptr<object::ObjectFile> Obj =
cantFail(object::ObjectFile::createObjectFile(Buffer->getMemBufferRef()));
// Returning both the MemoryBuffer and the ObjectFile.
return object::OwningBinary<object::ObjectFile>(std::move(Obj),
std::move(Buffer));
}
object::OwningBinary<object::ObjectFile> getObjectFromFile(StringRef Filename) {
return cantFail(object::ObjectFile::createObjectFile(Filename));
}
Expected<ExecutableFunction> ExecutableFunction::create(
std::unique_ptr<LLVMTargetMachine> TM,
object::OwningBinary<object::ObjectFile> &&ObjectFileHolder) {
assert(ObjectFileHolder.getBinary() && "cannot create object file");
std::unique_ptr<LLVMContext> Ctx = std::make_unique<LLVMContext>();
auto SymbolSizes = object::computeSymbolSizes(*ObjectFileHolder.getBinary());
// Get the size of the function that we want to call into (with the name of
// FunctionID).
auto SymbolIt = find_if(SymbolSizes, [&](const auto &Pair) {
auto SymbolName = Pair.first.getName();
if (SymbolName)
return *SymbolName == FunctionID;
// We should always succeed in finding the FunctionID, hence we suppress
// the error here and assert later on the search result, rather than
// propagating the Expected<> error back to the caller.
consumeError(SymbolName.takeError());
return false;
});
assert(SymbolIt != SymbolSizes.end() &&
"Cannot find the symbol for FunctionID");
uintptr_t CodeSize = SymbolIt->second;
auto EJITOrErr = orc::LLJITBuilder().create();
if (!EJITOrErr)
return EJITOrErr.takeError();
auto EJIT = std::move(*EJITOrErr);
if (auto ObjErr =
EJIT->addObjectFile(std::get<1>(ObjectFileHolder.takeBinary())))
return std::move(ObjErr);
auto FunctionAddressOrErr = EJIT->lookup(FunctionID);
if (!FunctionAddressOrErr)
return FunctionAddressOrErr.takeError();
const uint64_t FunctionAddress = FunctionAddressOrErr->getValue();
assert(isAligned(kFunctionAlignment, FunctionAddress) &&
"function is not properly aligned");
StringRef FBytes =
StringRef(reinterpret_cast<const char *>(FunctionAddress), CodeSize);
return ExecutableFunction(std::move(Ctx), std::move(EJIT), FBytes);
}
ExecutableFunction::ExecutableFunction(std::unique_ptr<LLVMContext> Ctx,
std::unique_ptr<orc::LLJIT> EJIT,
StringRef FB)
: FunctionBytes(FB), Context(std::move(Ctx)), ExecJIT(std::move(EJIT)) {}
Error getBenchmarkFunctionBytes(const StringRef InputData,
std::vector<uint8_t> &Bytes) {
const auto Holder = getObjectFromBuffer(InputData);
const auto *Obj = Holder.getBinary();
// See RuntimeDyldImpl::loadObjectImpl(Obj) for much more complete
// implementation.
// Find the only function in the object file.
SmallVector<object::SymbolRef, 1> Functions;
for (auto &Sym : Obj->symbols()) {
auto SymType = Sym.getType();
if (SymType && *SymType == object::SymbolRef::Type::ST_Function)
Functions.push_back(Sym);
}
if (Functions.size() != 1)
return make_error<Failure>("Exactly one function expected");
// Find the containing section - it is assumed to contain only this function.
auto SectionOrErr = Functions.front().getSection();
if (!SectionOrErr || *SectionOrErr == Obj->section_end())
return make_error<Failure>("Section not found");
auto Address = Functions.front().getAddress();
if (!Address || *Address != SectionOrErr.get()->getAddress())
return make_error<Failure>("Unexpected layout");
auto ContentsOrErr = SectionOrErr.get()->getContents();
if (!ContentsOrErr)
return ContentsOrErr.takeError();
Bytes.assign(ContentsOrErr->begin(), ContentsOrErr->end());
return Error::success();
}
} // namespace exegesis
} // namespace llvm
|