1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362
|
//===-- Target.cpp ----------------------------------------------*- C++ -*-===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
#include "../Target.h"
#include "../Error.h"
#include "../MmapUtils.h"
#include "../ParallelSnippetGenerator.h"
#include "../SerialSnippetGenerator.h"
#include "../SnippetGenerator.h"
#include "../SubprocessMemory.h"
#include "MCTargetDesc/X86BaseInfo.h"
#include "MCTargetDesc/X86MCTargetDesc.h"
#include "X86.h"
#include "X86Counter.h"
#include "X86RegisterInfo.h"
#include "llvm/ADT/Sequence.h"
#include "llvm/CodeGen/MachineInstrBuilder.h"
#include "llvm/MC/MCInstBuilder.h"
#include "llvm/Support/Errc.h"
#include "llvm/Support/Error.h"
#include "llvm/Support/ErrorHandling.h"
#include "llvm/Support/FormatVariadic.h"
#include "llvm/TargetParser/Host.h"
#include <memory>
#include <string>
#include <vector>
#if defined(_MSC_VER) && (defined(_M_IX86) || defined(_M_X64))
#include <immintrin.h>
#include <intrin.h>
#endif
#if defined(_MSC_VER) && defined(_M_X64)
#include <float.h> // For _clearfp in ~X86SavedState().
#endif
#ifdef __linux__
#ifdef __x86_64__
#include <asm/prctl.h>
#endif // __x86_64__
#include <sys/mman.h>
#include <sys/syscall.h>
#include <unistd.h>
#ifdef HAVE_LIBPFM
#include <perfmon/perf_event.h>
#endif // HAVE_LIBPFM
#endif
#define GET_AVAILABLE_OPCODE_CHECKER
#include "X86GenInstrInfo.inc"
namespace llvm {
namespace exegesis {
// If a positive value is specified, we are going to use the LBR in
// latency-mode.
//
// Note:
// - A small value is preferred, but too low a value could result in
// throttling.
// - A prime number is preferred to avoid always skipping certain blocks.
//
static cl::opt<unsigned> LbrSamplingPeriod(
"x86-lbr-sample-period",
cl::desc("The sample period (nbranches/sample), used for LBR sampling"),
cl::cat(BenchmarkOptions), cl::init(0));
static cl::opt<bool>
DisableUpperSSERegisters("x86-disable-upper-sse-registers",
cl::desc("Disable XMM8-XMM15 register usage"),
cl::cat(BenchmarkOptions), cl::init(false));
// FIXME: Validates that repetition-mode is loop if LBR is requested.
// Returns a non-null reason if we cannot handle the memory references in this
// instruction.
static const char *isInvalidMemoryInstr(const Instruction &Instr) {
switch (Instr.Description.TSFlags & X86II::FormMask) {
default:
return "Unknown FormMask value";
// These have no memory access.
case X86II::Pseudo:
case X86II::RawFrm:
case X86II::AddCCFrm:
case X86II::PrefixByte:
case X86II::MRMDestReg:
case X86II::MRMSrcReg:
case X86II::MRMSrcReg4VOp3:
case X86II::MRMSrcRegOp4:
case X86II::MRMSrcRegCC:
case X86II::MRMXrCC:
case X86II::MRMr0:
case X86II::MRMXr:
case X86II::MRM0r:
case X86II::MRM1r:
case X86II::MRM2r:
case X86II::MRM3r:
case X86II::MRM4r:
case X86II::MRM5r:
case X86II::MRM6r:
case X86II::MRM7r:
case X86II::MRM0X:
case X86II::MRM1X:
case X86II::MRM2X:
case X86II::MRM3X:
case X86II::MRM4X:
case X86II::MRM5X:
case X86II::MRM6X:
case X86II::MRM7X:
case X86II::MRM_C0:
case X86II::MRM_C1:
case X86II::MRM_C2:
case X86II::MRM_C3:
case X86II::MRM_C4:
case X86II::MRM_C5:
case X86II::MRM_C6:
case X86II::MRM_C7:
case X86II::MRM_C8:
case X86II::MRM_C9:
case X86II::MRM_CA:
case X86II::MRM_CB:
case X86II::MRM_CC:
case X86II::MRM_CD:
case X86II::MRM_CE:
case X86II::MRM_CF:
case X86II::MRM_D0:
case X86II::MRM_D1:
case X86II::MRM_D2:
case X86II::MRM_D3:
case X86II::MRM_D4:
case X86II::MRM_D5:
case X86II::MRM_D6:
case X86II::MRM_D7:
case X86II::MRM_D8:
case X86II::MRM_D9:
case X86II::MRM_DA:
case X86II::MRM_DB:
case X86II::MRM_DC:
case X86II::MRM_DD:
case X86II::MRM_DE:
case X86II::MRM_DF:
case X86II::MRM_E0:
case X86II::MRM_E1:
case X86II::MRM_E2:
case X86II::MRM_E3:
case X86II::MRM_E4:
case X86II::MRM_E5:
case X86II::MRM_E6:
case X86II::MRM_E7:
case X86II::MRM_E8:
case X86II::MRM_E9:
case X86II::MRM_EA:
case X86II::MRM_EB:
case X86II::MRM_EC:
case X86II::MRM_ED:
case X86II::MRM_EE:
case X86II::MRM_EF:
case X86II::MRM_F0:
case X86II::MRM_F1:
case X86II::MRM_F2:
case X86II::MRM_F3:
case X86II::MRM_F4:
case X86II::MRM_F5:
case X86II::MRM_F6:
case X86II::MRM_F7:
case X86II::MRM_F8:
case X86II::MRM_F9:
case X86II::MRM_FA:
case X86II::MRM_FB:
case X86II::MRM_FC:
case X86II::MRM_FD:
case X86II::MRM_FE:
case X86II::MRM_FF:
case X86II::RawFrmImm8:
return nullptr;
case X86II::AddRegFrm:
return (Instr.Description.Opcode == X86::POP16r ||
Instr.Description.Opcode == X86::POP32r ||
Instr.Description.Opcode == X86::PUSH16r ||
Instr.Description.Opcode == X86::PUSH32r)
? "unsupported opcode: unsupported memory access"
: nullptr;
// These access memory and are handled.
case X86II::MRMDestMem:
case X86II::MRMSrcMem:
case X86II::MRMSrcMem4VOp3:
case X86II::MRMSrcMemOp4:
case X86II::MRMSrcMemCC:
case X86II::MRMXmCC:
case X86II::MRMXm:
case X86II::MRM0m:
case X86II::MRM1m:
case X86II::MRM2m:
case X86II::MRM3m:
case X86II::MRM4m:
case X86II::MRM5m:
case X86II::MRM6m:
case X86II::MRM7m:
return nullptr;
// These access memory and are not handled yet.
case X86II::RawFrmImm16:
case X86II::RawFrmMemOffs:
case X86II::RawFrmSrc:
case X86II::RawFrmDst:
case X86II::RawFrmDstSrc:
return "unsupported opcode: non uniform memory access";
}
}
// If the opcode is invalid, returns a pointer to a character literal indicating
// the reason. nullptr indicates a valid opcode.
static const char *isInvalidOpcode(const Instruction &Instr) {
const auto OpcodeName = Instr.Name;
if ((Instr.Description.TSFlags & X86II::FormMask) == X86II::Pseudo)
return "unsupported opcode: pseudo instruction";
if ((OpcodeName.starts_with("POP") && !OpcodeName.starts_with("POPCNT")) ||
OpcodeName.starts_with("PUSH") ||
OpcodeName.starts_with("ADJCALLSTACK") || OpcodeName.starts_with("LEAVE"))
return "unsupported opcode: Push/Pop/AdjCallStack/Leave";
switch (Instr.Description.Opcode) {
case X86::LFS16rm:
case X86::LFS32rm:
case X86::LFS64rm:
case X86::LGS16rm:
case X86::LGS32rm:
case X86::LGS64rm:
case X86::LSS16rm:
case X86::LSS32rm:
case X86::LSS64rm:
case X86::SYSENTER:
case X86::WRFSBASE:
case X86::WRFSBASE64:
return "unsupported opcode";
default:
break;
}
if (const auto reason = isInvalidMemoryInstr(Instr))
return reason;
// We do not handle instructions with OPERAND_PCREL.
for (const Operand &Op : Instr.Operands)
if (Op.isExplicit() &&
Op.getExplicitOperandInfo().OperandType == MCOI::OPERAND_PCREL)
return "unsupported opcode: PC relative operand";
// We do not handle second-form X87 instructions. We only handle first-form
// ones (_Fp), see comment in X86InstrFPStack.td.
for (const Operand &Op : Instr.Operands)
if (Op.isReg() && Op.isExplicit() &&
Op.getExplicitOperandInfo().RegClass == X86::RSTRegClassID)
return "unsupported second-form X87 instruction";
return nullptr;
}
static unsigned getX86FPFlags(const Instruction &Instr) {
return Instr.Description.TSFlags & X86II::FPTypeMask;
}
// Helper to fill a memory operand with a value.
static void setMemOp(InstructionTemplate &IT, int OpIdx,
const MCOperand &OpVal) {
const auto Op = IT.getInstr().Operands[OpIdx];
assert(Op.isExplicit() && "invalid memory pattern");
IT.getValueFor(Op) = OpVal;
}
// Common (latency, uops) code for LEA templates. `GetDestReg` takes the
// addressing base and index registers and returns the LEA destination register.
static Expected<std::vector<CodeTemplate>> generateLEATemplatesCommon(
const Instruction &Instr, const BitVector &ForbiddenRegisters,
const LLVMState &State, const SnippetGenerator::Options &Opts,
std::function<void(unsigned, unsigned, BitVector &CandidateDestRegs)>
RestrictDestRegs) {
assert(Instr.Operands.size() == 6 && "invalid LEA");
assert(X86II::getMemoryOperandNo(Instr.Description.TSFlags) == 1 &&
"invalid LEA");
constexpr const int kDestOp = 0;
constexpr const int kBaseOp = 1;
constexpr const int kIndexOp = 3;
auto PossibleDestRegs =
Instr.Operands[kDestOp].getRegisterAliasing().sourceBits();
remove(PossibleDestRegs, ForbiddenRegisters);
auto PossibleBaseRegs =
Instr.Operands[kBaseOp].getRegisterAliasing().sourceBits();
remove(PossibleBaseRegs, ForbiddenRegisters);
auto PossibleIndexRegs =
Instr.Operands[kIndexOp].getRegisterAliasing().sourceBits();
remove(PossibleIndexRegs, ForbiddenRegisters);
const auto &RegInfo = State.getRegInfo();
std::vector<CodeTemplate> Result;
for (const unsigned BaseReg : PossibleBaseRegs.set_bits()) {
for (const unsigned IndexReg : PossibleIndexRegs.set_bits()) {
for (int LogScale = 0; LogScale <= 3; ++LogScale) {
// FIXME: Add an option for controlling how we explore immediates.
for (const int Disp : {0, 42}) {
InstructionTemplate IT(&Instr);
const int64_t Scale = 1ull << LogScale;
setMemOp(IT, 1, MCOperand::createReg(BaseReg));
setMemOp(IT, 2, MCOperand::createImm(Scale));
setMemOp(IT, 3, MCOperand::createReg(IndexReg));
setMemOp(IT, 4, MCOperand::createImm(Disp));
// SegmentReg must be 0 for LEA.
setMemOp(IT, 5, MCOperand::createReg(0));
// Output reg candidates are selected by the caller.
auto PossibleDestRegsNow = PossibleDestRegs;
RestrictDestRegs(BaseReg, IndexReg, PossibleDestRegsNow);
assert(PossibleDestRegsNow.set_bits().begin() !=
PossibleDestRegsNow.set_bits().end() &&
"no remaining registers");
setMemOp(
IT, 0,
MCOperand::createReg(*PossibleDestRegsNow.set_bits().begin()));
CodeTemplate CT;
CT.Instructions.push_back(std::move(IT));
CT.Config = formatv("{3}(%{0}, %{1}, {2})", RegInfo.getName(BaseReg),
RegInfo.getName(IndexReg), Scale, Disp)
.str();
Result.push_back(std::move(CT));
if (Result.size() >= Opts.MaxConfigsPerOpcode)
return std::move(Result);
}
}
}
}
return std::move(Result);
}
namespace {
class X86SerialSnippetGenerator : public SerialSnippetGenerator {
public:
using SerialSnippetGenerator::SerialSnippetGenerator;
Expected<std::vector<CodeTemplate>>
generateCodeTemplates(InstructionTemplate Variant,
const BitVector &ForbiddenRegisters) const override;
};
} // namespace
Expected<std::vector<CodeTemplate>>
X86SerialSnippetGenerator::generateCodeTemplates(
InstructionTemplate Variant, const BitVector &ForbiddenRegisters) const {
const Instruction &Instr = Variant.getInstr();
if (const auto reason = isInvalidOpcode(Instr))
return make_error<Failure>(reason);
// LEA gets special attention.
const auto Opcode = Instr.Description.getOpcode();
if (Opcode == X86::LEA64r || Opcode == X86::LEA64_32r) {
return generateLEATemplatesCommon(
Instr, ForbiddenRegisters, State, Opts,
[this](unsigned BaseReg, unsigned IndexReg,
BitVector &CandidateDestRegs) {
// We just select a destination register that aliases the base
// register.
CandidateDestRegs &=
State.getRATC().getRegister(BaseReg).aliasedBits();
});
}
if (Instr.hasMemoryOperands())
return make_error<Failure>(
"unsupported memory operand in latency measurements");
switch (getX86FPFlags(Instr)) {
case X86II::NotFP:
return SerialSnippetGenerator::generateCodeTemplates(Variant,
ForbiddenRegisters);
case X86II::ZeroArgFP:
case X86II::OneArgFP:
case X86II::SpecialFP:
case X86II::CompareFP:
case X86II::CondMovFP:
return make_error<Failure>("Unsupported x87 Instruction");
case X86II::OneArgFPRW:
case X86II::TwoArgFP:
// These are instructions like
// - `ST(0) = fsqrt(ST(0))` (OneArgFPRW)
// - `ST(0) = ST(0) + ST(i)` (TwoArgFP)
// They are intrinsically serial and do not modify the state of the stack.
return generateSelfAliasingCodeTemplates(Variant, ForbiddenRegisters);
default:
llvm_unreachable("Unknown FP Type!");
}
}
namespace {
class X86ParallelSnippetGenerator : public ParallelSnippetGenerator {
public:
using ParallelSnippetGenerator::ParallelSnippetGenerator;
Expected<std::vector<CodeTemplate>>
generateCodeTemplates(InstructionTemplate Variant,
const BitVector &ForbiddenRegisters) const override;
};
} // namespace
Expected<std::vector<CodeTemplate>>
X86ParallelSnippetGenerator::generateCodeTemplates(
InstructionTemplate Variant, const BitVector &ForbiddenRegisters) const {
const Instruction &Instr = Variant.getInstr();
if (const auto reason = isInvalidOpcode(Instr))
return make_error<Failure>(reason);
// LEA gets special attention.
const auto Opcode = Instr.Description.getOpcode();
if (Opcode == X86::LEA64r || Opcode == X86::LEA64_32r) {
return generateLEATemplatesCommon(
Instr, ForbiddenRegisters, State, Opts,
[this](unsigned BaseReg, unsigned IndexReg,
BitVector &CandidateDestRegs) {
// Any destination register that is not used for addressing is fine.
remove(CandidateDestRegs,
State.getRATC().getRegister(BaseReg).aliasedBits());
remove(CandidateDestRegs,
State.getRATC().getRegister(IndexReg).aliasedBits());
});
}
switch (getX86FPFlags(Instr)) {
case X86II::NotFP:
return ParallelSnippetGenerator::generateCodeTemplates(Variant,
ForbiddenRegisters);
case X86II::ZeroArgFP:
case X86II::OneArgFP:
case X86II::SpecialFP:
return make_error<Failure>("Unsupported x87 Instruction");
case X86II::OneArgFPRW:
case X86II::TwoArgFP:
// These are instructions like
// - `ST(0) = fsqrt(ST(0))` (OneArgFPRW)
// - `ST(0) = ST(0) + ST(i)` (TwoArgFP)
// They are intrinsically serial and do not modify the state of the stack.
// We generate the same code for latency and uops.
return generateSelfAliasingCodeTemplates(Variant, ForbiddenRegisters);
case X86II::CompareFP:
case X86II::CondMovFP:
// We can compute uops for any FP instruction that does not grow or shrink
// the stack (either do not touch the stack or push as much as they pop).
return generateUnconstrainedCodeTemplates(
Variant, "instruction does not grow/shrink the FP stack");
default:
llvm_unreachable("Unknown FP Type!");
}
}
static unsigned getLoadImmediateOpcode(unsigned RegBitWidth) {
switch (RegBitWidth) {
case 8:
return X86::MOV8ri;
case 16:
return X86::MOV16ri;
case 32:
return X86::MOV32ri;
case 64:
return X86::MOV64ri;
}
llvm_unreachable("Invalid Value Width");
}
// Generates instruction to load an immediate value into a register.
static MCInst loadImmediate(unsigned Reg, unsigned RegBitWidth,
const APInt &Value) {
if (Value.getBitWidth() > RegBitWidth)
llvm_unreachable("Value must fit in the Register");
return MCInstBuilder(getLoadImmediateOpcode(RegBitWidth))
.addReg(Reg)
.addImm(Value.getZExtValue());
}
// Allocates scratch memory on the stack.
static MCInst allocateStackSpace(unsigned Bytes) {
return MCInstBuilder(X86::SUB64ri8)
.addReg(X86::RSP)
.addReg(X86::RSP)
.addImm(Bytes);
}
// Fills scratch memory at offset `OffsetBytes` with value `Imm`.
static MCInst fillStackSpace(unsigned MovOpcode, unsigned OffsetBytes,
uint64_t Imm) {
return MCInstBuilder(MovOpcode)
// Address = ESP
.addReg(X86::RSP) // BaseReg
.addImm(1) // ScaleAmt
.addReg(0) // IndexReg
.addImm(OffsetBytes) // Disp
.addReg(0) // Segment
// Immediate.
.addImm(Imm);
}
// Loads scratch memory into register `Reg` using opcode `RMOpcode`.
static MCInst loadToReg(unsigned Reg, unsigned RMOpcode) {
return MCInstBuilder(RMOpcode)
.addReg(Reg)
// Address = ESP
.addReg(X86::RSP) // BaseReg
.addImm(1) // ScaleAmt
.addReg(0) // IndexReg
.addImm(0) // Disp
.addReg(0); // Segment
}
// Releases scratch memory.
static MCInst releaseStackSpace(unsigned Bytes) {
return MCInstBuilder(X86::ADD64ri8)
.addReg(X86::RSP)
.addReg(X86::RSP)
.addImm(Bytes);
}
// Reserves some space on the stack, fills it with the content of the provided
// constant and provide methods to load the stack value into a register.
namespace {
struct ConstantInliner {
explicit ConstantInliner(const APInt &Constant) : Constant_(Constant) {}
std::vector<MCInst> loadAndFinalize(unsigned Reg, unsigned RegBitWidth,
unsigned Opcode);
std::vector<MCInst> loadX87STAndFinalize(unsigned Reg);
std::vector<MCInst> loadX87FPAndFinalize(unsigned Reg);
std::vector<MCInst> popFlagAndFinalize();
std::vector<MCInst> loadImplicitRegAndFinalize(unsigned Opcode,
unsigned Value);
private:
ConstantInliner &add(const MCInst &Inst) {
Instructions.push_back(Inst);
return *this;
}
void initStack(unsigned Bytes);
static constexpr const unsigned kF80Bytes = 10; // 80 bits.
APInt Constant_;
std::vector<MCInst> Instructions;
};
} // namespace
std::vector<MCInst> ConstantInliner::loadAndFinalize(unsigned Reg,
unsigned RegBitWidth,
unsigned Opcode) {
assert((RegBitWidth & 7) == 0 && "RegBitWidth must be a multiple of 8 bits");
initStack(RegBitWidth / 8);
add(loadToReg(Reg, Opcode));
add(releaseStackSpace(RegBitWidth / 8));
return std::move(Instructions);
}
std::vector<MCInst> ConstantInliner::loadX87STAndFinalize(unsigned Reg) {
initStack(kF80Bytes);
add(MCInstBuilder(X86::LD_F80m)
// Address = ESP
.addReg(X86::RSP) // BaseReg
.addImm(1) // ScaleAmt
.addReg(0) // IndexReg
.addImm(0) // Disp
.addReg(0)); // Segment
if (Reg != X86::ST0)
add(MCInstBuilder(X86::ST_Frr).addReg(Reg));
add(releaseStackSpace(kF80Bytes));
return std::move(Instructions);
}
std::vector<MCInst> ConstantInliner::loadX87FPAndFinalize(unsigned Reg) {
initStack(kF80Bytes);
add(MCInstBuilder(X86::LD_Fp80m)
.addReg(Reg)
// Address = ESP
.addReg(X86::RSP) // BaseReg
.addImm(1) // ScaleAmt
.addReg(0) // IndexReg
.addImm(0) // Disp
.addReg(0)); // Segment
add(releaseStackSpace(kF80Bytes));
return std::move(Instructions);
}
std::vector<MCInst> ConstantInliner::popFlagAndFinalize() {
initStack(8);
add(MCInstBuilder(X86::POPF64));
return std::move(Instructions);
}
std::vector<MCInst>
ConstantInliner::loadImplicitRegAndFinalize(unsigned Opcode, unsigned Value) {
add(allocateStackSpace(4));
add(fillStackSpace(X86::MOV32mi, 0, Value)); // Mask all FP exceptions
add(MCInstBuilder(Opcode)
// Address = ESP
.addReg(X86::RSP) // BaseReg
.addImm(1) // ScaleAmt
.addReg(0) // IndexReg
.addImm(0) // Disp
.addReg(0)); // Segment
add(releaseStackSpace(4));
return std::move(Instructions);
}
void ConstantInliner::initStack(unsigned Bytes) {
assert(Constant_.getBitWidth() <= Bytes * 8 &&
"Value does not have the correct size");
const APInt WideConstant = Constant_.getBitWidth() < Bytes * 8
? Constant_.sext(Bytes * 8)
: Constant_;
add(allocateStackSpace(Bytes));
size_t ByteOffset = 0;
for (; Bytes - ByteOffset >= 4; ByteOffset += 4)
add(fillStackSpace(
X86::MOV32mi, ByteOffset,
WideConstant.extractBits(32, ByteOffset * 8).getZExtValue()));
if (Bytes - ByteOffset >= 2) {
add(fillStackSpace(
X86::MOV16mi, ByteOffset,
WideConstant.extractBits(16, ByteOffset * 8).getZExtValue()));
ByteOffset += 2;
}
if (Bytes - ByteOffset >= 1)
add(fillStackSpace(
X86::MOV8mi, ByteOffset,
WideConstant.extractBits(8, ByteOffset * 8).getZExtValue()));
}
#include "X86GenExegesis.inc"
namespace {
class X86SavedState : public ExegesisTarget::SavedState {
public:
X86SavedState() {
#if defined(_MSC_VER) && defined(_M_X64)
_fxsave64(FPState);
Eflags = __readeflags();
#elif defined(__GNUC__) && defined(__x86_64__)
__builtin_ia32_fxsave64(FPState);
Eflags = __builtin_ia32_readeflags_u64();
#else
report_fatal_error("X86 exegesis running on unsupported target");
#endif
}
~X86SavedState() {
// Restoring the X87 state does not flush pending exceptions, make sure
// these exceptions are flushed now.
#if defined(_MSC_VER) && defined(_M_X64)
_clearfp();
_fxrstor64(FPState);
__writeeflags(Eflags);
#elif defined(__GNUC__) && defined(__x86_64__)
asm volatile("fwait");
__builtin_ia32_fxrstor64(FPState);
__builtin_ia32_writeeflags_u64(Eflags);
#else
report_fatal_error("X86 exegesis running on unsupported target");
#endif
}
private:
#if defined(__x86_64__) || defined(_M_X64)
alignas(16) char FPState[512];
uint64_t Eflags;
#endif
};
class ExegesisX86Target : public ExegesisTarget {
public:
ExegesisX86Target()
: ExegesisTarget(X86CpuPfmCounters, X86_MC::isOpcodeAvailable) {}
Expected<std::unique_ptr<pfm::CounterGroup>>
createCounter(StringRef CounterName, const LLVMState &State,
ArrayRef<const char *> ValidationCounters,
const pid_t ProcessID) const override {
// If LbrSamplingPeriod was provided, then ignore the
// CounterName because we only have one for LBR.
if (LbrSamplingPeriod > 0) {
// Can't use LBR without HAVE_LIBPFM, LIBPFM_HAS_FIELD_CYCLES, or without
// __linux__ (for now)
#if defined(HAVE_LIBPFM) && defined(LIBPFM_HAS_FIELD_CYCLES) && \
defined(__linux__)
// TODO(boomanaiden154): Add in support for using validation counters when
// using LBR counters.
if (ValidationCounters.size() > 0)
return make_error<StringError>(
"Using LBR is not currently supported with validation counters",
errc::invalid_argument);
return std::make_unique<X86LbrCounter>(
X86LbrPerfEvent(LbrSamplingPeriod));
#else
return make_error<StringError>(
"LBR counter requested without HAVE_LIBPFM, LIBPFM_HAS_FIELD_CYCLES, "
"or running on Linux.",
errc::invalid_argument);
#endif
}
return ExegesisTarget::createCounter(CounterName, State, ValidationCounters,
ProcessID);
}
enum ArgumentRegisters { CodeSize = X86::R12, AuxiliaryMemoryFD = X86::R13 };
private:
void addTargetSpecificPasses(PassManagerBase &PM) const override;
unsigned getScratchMemoryRegister(const Triple &TT) const override;
unsigned getDefaultLoopCounterRegister(const Triple &) const override;
unsigned getMaxMemoryAccessSize() const override { return 64; }
Error randomizeTargetMCOperand(const Instruction &Instr, const Variable &Var,
MCOperand &AssignedValue,
const BitVector &ForbiddenRegs) const override;
void fillMemoryOperands(InstructionTemplate &IT, unsigned Reg,
unsigned Offset) const override;
void decrementLoopCounterAndJump(MachineBasicBlock &MBB,
MachineBasicBlock &TargetMBB,
const MCInstrInfo &MII,
unsigned LoopRegister) const override;
std::vector<MCInst> setRegTo(const MCSubtargetInfo &STI, unsigned Reg,
const APInt &Value) const override;
#ifdef __linux__
void generateLowerMunmap(std::vector<MCInst> &GeneratedCode) const override;
void generateUpperMunmap(std::vector<MCInst> &GeneratedCode) const override;
std::vector<MCInst> generateExitSyscall(unsigned ExitCode) const override;
std::vector<MCInst>
generateMmap(intptr_t Address, size_t Length,
intptr_t FileDescriptorAddress) const override;
void generateMmapAuxMem(std::vector<MCInst> &GeneratedCode) const override;
void moveArgumentRegisters(std::vector<MCInst> &GeneratedCode) const override;
std::vector<MCInst> generateMemoryInitialSetup() const override;
std::vector<MCInst> setStackRegisterToAuxMem() const override;
intptr_t getAuxiliaryMemoryStartAddress() const override;
std::vector<MCInst> configurePerfCounter(long Request, bool SaveRegisters) const override;
std::vector<unsigned> getArgumentRegisters() const override;
std::vector<unsigned> getRegistersNeedSaving() const override;
#endif // __linux__
ArrayRef<unsigned> getUnavailableRegisters() const override {
if (DisableUpperSSERegisters)
return ArrayRef(kUnavailableRegistersSSE);
return ArrayRef(kUnavailableRegisters);
}
bool allowAsBackToBack(const Instruction &Instr) const override {
const unsigned Opcode = Instr.Description.Opcode;
return !isInvalidOpcode(Instr) && Opcode != X86::LEA64r &&
Opcode != X86::LEA64_32r && Opcode != X86::LEA16r;
}
std::vector<InstructionTemplate>
generateInstructionVariants(const Instruction &Instr,
unsigned MaxConfigsPerOpcode) const override;
std::unique_ptr<SnippetGenerator> createSerialSnippetGenerator(
const LLVMState &State,
const SnippetGenerator::Options &Opts) const override {
return std::make_unique<X86SerialSnippetGenerator>(State, Opts);
}
std::unique_ptr<SnippetGenerator> createParallelSnippetGenerator(
const LLVMState &State,
const SnippetGenerator::Options &Opts) const override {
return std::make_unique<X86ParallelSnippetGenerator>(State, Opts);
}
bool matchesArch(Triple::ArchType Arch) const override {
return Arch == Triple::x86_64 || Arch == Triple::x86;
}
Error checkFeatureSupport() const override {
// LBR is the only feature we conditionally support now.
// So if LBR is not requested, then we should be able to run the benchmarks.
if (LbrSamplingPeriod == 0)
return Error::success();
#if defined(__linux__) && defined(HAVE_LIBPFM) && \
defined(LIBPFM_HAS_FIELD_CYCLES)
// FIXME: Fix this.
// https://bugs.llvm.org/show_bug.cgi?id=48918
// For now, only do the check if we see an Intel machine because
// the counter uses some intel-specific magic and it could
// be confuse and think an AMD machine actually has LBR support.
#if defined(__i386__) || defined(_M_IX86) || defined(__x86_64__) || \
defined(_M_X64)
using namespace sys::detail::x86;
if (getVendorSignature() == VendorSignatures::GENUINE_INTEL)
// If the kernel supports it, the hardware still may not have it.
return X86LbrCounter::checkLbrSupport();
#else
report_fatal_error("Running X86 exegesis on unsupported target");
#endif
#endif
return make_error<StringError>(
"LBR not supported on this kernel and/or platform",
errc::not_supported);
}
std::unique_ptr<SavedState> withSavedState() const override {
return std::make_unique<X86SavedState>();
}
static const unsigned kUnavailableRegisters[4];
static const unsigned kUnavailableRegistersSSE[12];
};
// We disable a few registers that cannot be encoded on instructions with a REX
// prefix.
const unsigned ExegesisX86Target::kUnavailableRegisters[4] = {X86::AH, X86::BH,
X86::CH, X86::DH};
// Optionally, also disable the upper (x86_64) SSE registers to reduce frontend
// decoder load.
const unsigned ExegesisX86Target::kUnavailableRegistersSSE[12] = {
X86::AH, X86::BH, X86::CH, X86::DH, X86::XMM8, X86::XMM9,
X86::XMM10, X86::XMM11, X86::XMM12, X86::XMM13, X86::XMM14, X86::XMM15};
// We're using one of R8-R15 because these registers are never hardcoded in
// instructions (e.g. MOVS writes to EDI, ESI, EDX), so they have less
// conflicts.
constexpr const unsigned kDefaultLoopCounterReg = X86::R8;
} // namespace
void ExegesisX86Target::addTargetSpecificPasses(PassManagerBase &PM) const {
// Lowers FP pseudo-instructions, e.g. ABS_Fp32 -> ABS_F.
PM.add(createX86FloatingPointStackifierPass());
}
unsigned ExegesisX86Target::getScratchMemoryRegister(const Triple &TT) const {
if (!TT.isArch64Bit()) {
// FIXME: This would require popping from the stack, so we would have to
// add some additional setup code.
return 0;
}
return TT.isOSWindows() ? X86::RCX : X86::RDI;
}
unsigned
ExegesisX86Target::getDefaultLoopCounterRegister(const Triple &TT) const {
if (!TT.isArch64Bit()) {
return 0;
}
return kDefaultLoopCounterReg;
}
Error ExegesisX86Target::randomizeTargetMCOperand(
const Instruction &Instr, const Variable &Var, MCOperand &AssignedValue,
const BitVector &ForbiddenRegs) const {
const Operand &Op = Instr.getPrimaryOperand(Var);
switch (Op.getExplicitOperandInfo().OperandType) {
case X86::OperandType::OPERAND_COND_CODE:
AssignedValue =
MCOperand::createImm(randomIndex(X86::CondCode::LAST_VALID_COND));
return Error::success();
case X86::OperandType::OPERAND_ROUNDING_CONTROL:
AssignedValue =
MCOperand::createImm(randomIndex(X86::STATIC_ROUNDING::TO_ZERO));
return Error::success();
default:
break;
}
return make_error<Failure>(
Twine("unimplemented operand type ")
.concat(Twine(Op.getExplicitOperandInfo().OperandType)));
}
void ExegesisX86Target::fillMemoryOperands(InstructionTemplate &IT,
unsigned Reg,
unsigned Offset) const {
assert(!isInvalidMemoryInstr(IT.getInstr()) &&
"fillMemoryOperands requires a valid memory instruction");
int MemOpIdx = X86II::getMemoryOperandNo(IT.getInstr().Description.TSFlags);
assert(MemOpIdx >= 0 && "invalid memory operand index");
// getMemoryOperandNo() ignores tied operands, so we have to add them back.
MemOpIdx += X86II::getOperandBias(IT.getInstr().Description);
setMemOp(IT, MemOpIdx + 0, MCOperand::createReg(Reg)); // BaseReg
setMemOp(IT, MemOpIdx + 1, MCOperand::createImm(1)); // ScaleAmt
setMemOp(IT, MemOpIdx + 2, MCOperand::createReg(0)); // IndexReg
setMemOp(IT, MemOpIdx + 3, MCOperand::createImm(Offset)); // Disp
setMemOp(IT, MemOpIdx + 4, MCOperand::createReg(0)); // Segment
}
void ExegesisX86Target::decrementLoopCounterAndJump(
MachineBasicBlock &MBB, MachineBasicBlock &TargetMBB,
const MCInstrInfo &MII, unsigned LoopRegister) const {
BuildMI(&MBB, DebugLoc(), MII.get(X86::ADD64ri8))
.addDef(LoopRegister)
.addUse(LoopRegister)
.addImm(-1);
BuildMI(&MBB, DebugLoc(), MII.get(X86::JCC_1))
.addMBB(&TargetMBB)
.addImm(X86::COND_NE);
}
void generateRegisterStackPush(unsigned int Register,
std::vector<MCInst> &GeneratedCode) {
GeneratedCode.push_back(MCInstBuilder(X86::PUSH64r).addReg(Register));
}
void generateRegisterStackPop(unsigned int Register,
std::vector<MCInst> &GeneratedCode) {
GeneratedCode.push_back(MCInstBuilder(X86::POP64r).addReg(Register));
}
void generateSyscall(long SyscallNumber, std::vector<MCInst> &GeneratedCode) {
GeneratedCode.push_back(
loadImmediate(X86::RAX, 64, APInt(64, SyscallNumber)));
GeneratedCode.push_back(MCInstBuilder(X86::SYSCALL));
}
// The functions below for saving and restoring system call registers are only
// used when llvm-exegesis is built on Linux.
#ifdef __linux__
constexpr std::array<unsigned, 6> SyscallArgumentRegisters{
X86::RDI, X86::RSI, X86::RDX, X86::R10, X86::R8, X86::R9};
static void saveSyscallRegisters(std::vector<MCInst> &GeneratedCode,
unsigned ArgumentCount) {
assert(ArgumentCount <= 6 &&
"System calls only X86-64 Linux can only take six arguments");
// Preserve RCX and R11 (Clobbered by the system call).
generateRegisterStackPush(X86::RCX, GeneratedCode);
generateRegisterStackPush(X86::R11, GeneratedCode);
// Preserve RAX (used for the syscall number/return value).
generateRegisterStackPush(X86::RAX, GeneratedCode);
// Preserve the registers used to pass arguments to the system call.
for (unsigned I = 0; I < ArgumentCount; ++I)
generateRegisterStackPush(SyscallArgumentRegisters[I], GeneratedCode);
}
static void restoreSyscallRegisters(std::vector<MCInst> &GeneratedCode,
unsigned ArgumentCount) {
assert(ArgumentCount <= 6 &&
"System calls only X86-64 Linux can only take six arguments");
// Restore the argument registers, in the opposite order of the way they are
// saved.
for (unsigned I = ArgumentCount; I > 0; --I) {
generateRegisterStackPop(SyscallArgumentRegisters[I - 1], GeneratedCode);
}
generateRegisterStackPop(X86::RAX, GeneratedCode);
generateRegisterStackPop(X86::R11, GeneratedCode);
generateRegisterStackPop(X86::RCX, GeneratedCode);
}
#endif // __linux__
static std::vector<MCInst> loadImmediateSegmentRegister(unsigned Reg,
const APInt &Value) {
#if defined(__x86_64__) && defined(__linux__)
assert(Value.getBitWidth() <= 64 && "Value must fit in the register.");
std::vector<MCInst> loadSegmentRegisterCode;
// Preserve the syscall registers here as we don't
// want to make any assumptions about the ordering of what registers are
// loaded in first, and we might have already loaded in registers that we are
// going to be clobbering here.
saveSyscallRegisters(loadSegmentRegisterCode, 2);
// Generate the instructions to make the arch_prctl system call to set
// the registers.
int SyscallCode = 0;
if (Reg == X86::FS)
SyscallCode = ARCH_SET_FS;
else if (Reg == X86::GS)
SyscallCode = ARCH_SET_GS;
else
llvm_unreachable("Only the segment registers GS and FS are supported");
loadSegmentRegisterCode.push_back(
loadImmediate(X86::RDI, 64, APInt(64, SyscallCode)));
loadSegmentRegisterCode.push_back(loadImmediate(X86::RSI, 64, Value));
generateSyscall(SYS_arch_prctl, loadSegmentRegisterCode);
// Restore the registers in reverse order
restoreSyscallRegisters(loadSegmentRegisterCode, 2);
return loadSegmentRegisterCode;
#else
llvm_unreachable("Loading immediate segment registers is only supported with "
"x86-64 llvm-exegesis");
#endif // defined(__x86_64__) && defined(__linux__)
}
std::vector<MCInst> ExegesisX86Target::setRegTo(const MCSubtargetInfo &STI,
unsigned Reg,
const APInt &Value) const {
if (X86::SEGMENT_REGRegClass.contains(Reg))
return loadImmediateSegmentRegister(Reg, Value);
if (X86::GR8RegClass.contains(Reg))
return {loadImmediate(Reg, 8, Value)};
if (X86::GR16RegClass.contains(Reg))
return {loadImmediate(Reg, 16, Value)};
if (X86::GR32RegClass.contains(Reg))
return {loadImmediate(Reg, 32, Value)};
if (X86::GR64RegClass.contains(Reg))
return {loadImmediate(Reg, 64, Value)};
if (X86::VK8RegClass.contains(Reg) || X86::VK16RegClass.contains(Reg) ||
X86::VK32RegClass.contains(Reg) || X86::VK64RegClass.contains(Reg)) {
switch (Value.getBitWidth()) {
case 8:
if (STI.getFeatureBits()[X86::FeatureDQI]) {
ConstantInliner CI(Value);
return CI.loadAndFinalize(Reg, Value.getBitWidth(), X86::KMOVBkm);
}
[[fallthrough]];
case 16:
if (STI.getFeatureBits()[X86::FeatureAVX512]) {
ConstantInliner CI(Value.zextOrTrunc(16));
return CI.loadAndFinalize(Reg, 16, X86::KMOVWkm);
}
break;
case 32:
if (STI.getFeatureBits()[X86::FeatureBWI]) {
ConstantInliner CI(Value);
return CI.loadAndFinalize(Reg, Value.getBitWidth(), X86::KMOVDkm);
}
break;
case 64:
if (STI.getFeatureBits()[X86::FeatureBWI]) {
ConstantInliner CI(Value);
return CI.loadAndFinalize(Reg, Value.getBitWidth(), X86::KMOVQkm);
}
break;
}
}
ConstantInliner CI(Value);
if (X86::VR64RegClass.contains(Reg))
return CI.loadAndFinalize(Reg, 64, X86::MMX_MOVQ64rm);
if (X86::VR128XRegClass.contains(Reg)) {
if (STI.getFeatureBits()[X86::FeatureAVX512])
return CI.loadAndFinalize(Reg, 128, X86::VMOVDQU32Z128rm);
if (STI.getFeatureBits()[X86::FeatureAVX])
return CI.loadAndFinalize(Reg, 128, X86::VMOVDQUrm);
return CI.loadAndFinalize(Reg, 128, X86::MOVDQUrm);
}
if (X86::VR256XRegClass.contains(Reg)) {
if (STI.getFeatureBits()[X86::FeatureAVX512])
return CI.loadAndFinalize(Reg, 256, X86::VMOVDQU32Z256rm);
if (STI.getFeatureBits()[X86::FeatureAVX])
return CI.loadAndFinalize(Reg, 256, X86::VMOVDQUYrm);
}
if (X86::VR512RegClass.contains(Reg))
if (STI.getFeatureBits()[X86::FeatureAVX512])
return CI.loadAndFinalize(Reg, 512, X86::VMOVDQU32Zrm);
if (X86::RSTRegClass.contains(Reg)) {
return CI.loadX87STAndFinalize(Reg);
}
if (X86::RFP32RegClass.contains(Reg) || X86::RFP64RegClass.contains(Reg) ||
X86::RFP80RegClass.contains(Reg)) {
return CI.loadX87FPAndFinalize(Reg);
}
if (Reg == X86::EFLAGS)
return CI.popFlagAndFinalize();
if (Reg == X86::MXCSR)
return CI.loadImplicitRegAndFinalize(
STI.getFeatureBits()[X86::FeatureAVX] ? X86::VLDMXCSR : X86::LDMXCSR,
0x1f80);
if (Reg == X86::FPCW)
return CI.loadImplicitRegAndFinalize(X86::FLDCW16m, 0x37f);
return {}; // Not yet implemented.
}
#ifdef __linux__
#ifdef __arm__
static constexpr const intptr_t VAddressSpaceCeiling = 0xC0000000;
#else
static constexpr const intptr_t VAddressSpaceCeiling = 0x0000800000000000;
#endif
void generateRoundToNearestPage(unsigned int Register,
std::vector<MCInst> &GeneratedCode) {
int PageSizeShift = static_cast<int>(round(log2(getpagesize())));
// Round down to the nearest page by getting rid of the least significant bits
// representing location in the page. Shift right to get rid of this info and
// then shift back left.
GeneratedCode.push_back(MCInstBuilder(X86::SHR64ri)
.addReg(Register)
.addReg(Register)
.addImm(PageSizeShift));
GeneratedCode.push_back(MCInstBuilder(X86::SHL64ri)
.addReg(Register)
.addReg(Register)
.addImm(PageSizeShift));
}
void generateGetInstructionPointer(unsigned int ResultRegister,
std::vector<MCInst> &GeneratedCode) {
// Use a load effective address to get the current instruction pointer and put
// it into the result register.
GeneratedCode.push_back(MCInstBuilder(X86::LEA64r)
.addReg(ResultRegister)
.addReg(X86::RIP)
.addImm(1)
.addReg(0)
.addImm(0)
.addReg(0));
}
void ExegesisX86Target::generateLowerMunmap(
std::vector<MCInst> &GeneratedCode) const {
// Unmap starting at address zero
GeneratedCode.push_back(loadImmediate(X86::RDI, 64, APInt(64, 0)));
// Get the current instruction pointer so we know where to unmap up to.
generateGetInstructionPointer(X86::RSI, GeneratedCode);
generateRoundToNearestPage(X86::RSI, GeneratedCode);
// Subtract a page from the end of the unmap so we don't unmap the currently
// executing section.
GeneratedCode.push_back(MCInstBuilder(X86::SUB64ri32)
.addReg(X86::RSI)
.addReg(X86::RSI)
.addImm(getpagesize()));
generateSyscall(SYS_munmap, GeneratedCode);
}
void ExegesisX86Target::generateUpperMunmap(
std::vector<MCInst> &GeneratedCode) const {
generateGetInstructionPointer(X86::R8, GeneratedCode);
// Load in the size of the snippet to RDI from from the argument register.
GeneratedCode.push_back(MCInstBuilder(X86::MOV64rr)
.addReg(X86::RDI)
.addReg(ArgumentRegisters::CodeSize));
// Add the length of the snippet (in %RDI) to the current instruction pointer
// (%R8) to get the address where we should start unmapping at.
GeneratedCode.push_back(MCInstBuilder(X86::ADD64rr)
.addReg(X86::RDI)
.addReg(X86::RDI)
.addReg(X86::R8));
generateRoundToNearestPage(X86::RDI, GeneratedCode);
// Add a one page to the start address to ensure that we're above the snippet
// since the above function rounds down.
GeneratedCode.push_back(MCInstBuilder(X86::ADD64ri32)
.addReg(X86::RDI)
.addReg(X86::RDI)
.addImm(getpagesize()));
// Unmap to just one page under the ceiling of the address space.
GeneratedCode.push_back(loadImmediate(
X86::RSI, 64, APInt(64, VAddressSpaceCeiling - getpagesize())));
GeneratedCode.push_back(MCInstBuilder(X86::SUB64rr)
.addReg(X86::RSI)
.addReg(X86::RSI)
.addReg(X86::RDI));
generateSyscall(SYS_munmap, GeneratedCode);
}
std::vector<MCInst>
ExegesisX86Target::generateExitSyscall(unsigned ExitCode) const {
std::vector<MCInst> ExitCallCode;
ExitCallCode.push_back(loadImmediate(X86::RDI, 64, APInt(64, ExitCode)));
generateSyscall(SYS_exit, ExitCallCode);
return ExitCallCode;
}
std::vector<MCInst>
ExegesisX86Target::generateMmap(intptr_t Address, size_t Length,
intptr_t FileDescriptorAddress) const {
std::vector<MCInst> MmapCode;
MmapCode.push_back(loadImmediate(X86::RDI, 64, APInt(64, Address)));
MmapCode.push_back(loadImmediate(X86::RSI, 64, APInt(64, Length)));
MmapCode.push_back(
loadImmediate(X86::RDX, 64, APInt(64, PROT_READ | PROT_WRITE)));
MmapCode.push_back(
loadImmediate(X86::R10, 64, APInt(64, MAP_SHARED | MAP_FIXED_NOREPLACE)));
// Copy file descriptor location from aux memory into R8
MmapCode.push_back(
loadImmediate(X86::R8, 64, APInt(64, FileDescriptorAddress)));
// Dereference file descriptor into FD argument register
MmapCode.push_back(MCInstBuilder(X86::MOV32rm)
.addReg(X86::R8D)
.addReg(X86::R8)
.addImm(1)
.addReg(0)
.addImm(0)
.addReg(0));
MmapCode.push_back(loadImmediate(X86::R9, 64, APInt(64, 0)));
generateSyscall(SYS_mmap, MmapCode);
return MmapCode;
}
void ExegesisX86Target::generateMmapAuxMem(
std::vector<MCInst> &GeneratedCode) const {
GeneratedCode.push_back(
loadImmediate(X86::RDI, 64, APInt(64, getAuxiliaryMemoryStartAddress())));
GeneratedCode.push_back(loadImmediate(
X86::RSI, 64, APInt(64, SubprocessMemory::AuxiliaryMemorySize)));
GeneratedCode.push_back(
loadImmediate(X86::RDX, 64, APInt(64, PROT_READ | PROT_WRITE)));
GeneratedCode.push_back(
loadImmediate(X86::R10, 64, APInt(64, MAP_SHARED | MAP_FIXED_NOREPLACE)));
GeneratedCode.push_back(MCInstBuilder(X86::MOV64rr)
.addReg(X86::R8)
.addReg(ArgumentRegisters::AuxiliaryMemoryFD));
GeneratedCode.push_back(loadImmediate(X86::R9, 64, APInt(64, 0)));
generateSyscall(SYS_mmap, GeneratedCode);
}
void ExegesisX86Target::moveArgumentRegisters(
std::vector<MCInst> &GeneratedCode) const {
GeneratedCode.push_back(MCInstBuilder(X86::MOV64rr)
.addReg(ArgumentRegisters::CodeSize)
.addReg(X86::RDI));
GeneratedCode.push_back(MCInstBuilder(X86::MOV64rr)
.addReg(ArgumentRegisters::AuxiliaryMemoryFD)
.addReg(X86::RSI));
}
std::vector<MCInst> ExegesisX86Target::generateMemoryInitialSetup() const {
std::vector<MCInst> MemoryInitialSetupCode;
moveArgumentRegisters(MemoryInitialSetupCode);
generateLowerMunmap(MemoryInitialSetupCode);
generateUpperMunmap(MemoryInitialSetupCode);
generateMmapAuxMem(MemoryInitialSetupCode);
return MemoryInitialSetupCode;
}
std::vector<MCInst> ExegesisX86Target::setStackRegisterToAuxMem() const {
// Moves %rsp to the end of the auxiliary memory
return {MCInstBuilder(X86::MOV64ri)
.addReg(X86::RSP)
.addImm(getAuxiliaryMemoryStartAddress() +
SubprocessMemory::AuxiliaryMemorySize)};
}
intptr_t ExegesisX86Target::getAuxiliaryMemoryStartAddress() const {
// Return the second to last page in the virtual address space to try and
// prevent interference with memory annotations in the snippet
return VAddressSpaceCeiling - 2 * getpagesize();
}
std::vector<MCInst>
ExegesisX86Target::configurePerfCounter(long Request, bool SaveRegisters) const {
std::vector<MCInst> ConfigurePerfCounterCode;
if (SaveRegisters)
saveSyscallRegisters(ConfigurePerfCounterCode, 3);
ConfigurePerfCounterCode.push_back(
loadImmediate(X86::RDI, 64, APInt(64, getAuxiliaryMemoryStartAddress())));
ConfigurePerfCounterCode.push_back(MCInstBuilder(X86::MOV32rm)
.addReg(X86::EDI)
.addReg(X86::RDI)
.addImm(1)
.addReg(0)
.addImm(0)
.addReg(0));
ConfigurePerfCounterCode.push_back(
loadImmediate(X86::RSI, 64, APInt(64, Request)));
#ifdef HAVE_LIBPFM
ConfigurePerfCounterCode.push_back(
loadImmediate(X86::RDX, 64, APInt(64, PERF_IOC_FLAG_GROUP)));
#endif // HAVE_LIBPFM
generateSyscall(SYS_ioctl, ConfigurePerfCounterCode);
if (SaveRegisters)
restoreSyscallRegisters(ConfigurePerfCounterCode, 3);
return ConfigurePerfCounterCode;
}
std::vector<unsigned> ExegesisX86Target::getArgumentRegisters() const {
return {X86::RDI, X86::RSI};
}
std::vector<unsigned> ExegesisX86Target::getRegistersNeedSaving() const {
return {X86::RAX, X86::RDI, X86::RSI, X86::RCX, X86::R11};
}
#endif // __linux__
// Instruction can have some variable operands, and we may want to see how
// different operands affect performance. So for each operand position,
// precompute all the possible choices we might care about,
// and greedily generate all the possible combinations of choices.
std::vector<InstructionTemplate> ExegesisX86Target::generateInstructionVariants(
const Instruction &Instr, unsigned MaxConfigsPerOpcode) const {
bool Exploration = false;
SmallVector<SmallVector<MCOperand, 1>, 4> VariableChoices;
VariableChoices.resize(Instr.Variables.size());
for (auto I : zip(Instr.Variables, VariableChoices)) {
const Variable &Var = std::get<0>(I);
SmallVectorImpl<MCOperand> &Choices = std::get<1>(I);
switch (Instr.getPrimaryOperand(Var).getExplicitOperandInfo().OperandType) {
default:
// We don't wish to explicitly explore this variable.
Choices.emplace_back(); // But add invalid MCOperand to simplify logic.
continue;
case X86::OperandType::OPERAND_COND_CODE: {
Exploration = true;
auto CondCodes = enum_seq_inclusive(X86::CondCode::COND_O,
X86::CondCode::LAST_VALID_COND,
force_iteration_on_noniterable_enum);
Choices.reserve(CondCodes.size());
for (int CondCode : CondCodes)
Choices.emplace_back(MCOperand::createImm(CondCode));
break;
}
}
}
// If we don't wish to explore any variables, defer to the baseline method.
if (!Exploration)
return ExegesisTarget::generateInstructionVariants(Instr,
MaxConfigsPerOpcode);
std::vector<InstructionTemplate> Variants;
size_t NumVariants;
CombinationGenerator<MCOperand, decltype(VariableChoices)::value_type, 4> G(
VariableChoices);
// How many operand combinations can we produce, within the limit?
NumVariants = std::min(G.numCombinations(), (size_t)MaxConfigsPerOpcode);
// And actually produce all the wanted operand combinations.
Variants.reserve(NumVariants);
G.generate([&](ArrayRef<MCOperand> State) -> bool {
Variants.emplace_back(&Instr);
Variants.back().setVariableValues(State);
// Did we run out of space for variants?
return Variants.size() >= NumVariants;
});
assert(Variants.size() == NumVariants &&
Variants.size() <= MaxConfigsPerOpcode &&
"Should not produce too many variants");
return Variants;
}
static ExegesisTarget *getTheExegesisX86Target() {
static ExegesisX86Target Target;
return &Target;
}
void InitializeX86ExegesisTarget() {
ExegesisTarget::registerTarget(getTheExegesisX86Target());
}
} // namespace exegesis
} // namespace llvm
|