1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198
|
//===- bolt/unittest/Core/BinaryContext.cpp -------------------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
#include "bolt/Core/BinaryContext.h"
#include "llvm/BinaryFormat/ELF.h"
#include "llvm/DebugInfo/DWARF/DWARFContext.h"
#include "llvm/Support/TargetSelect.h"
#include "gtest/gtest.h"
using namespace llvm;
using namespace llvm::object;
using namespace llvm::ELF;
using namespace bolt;
namespace {
struct BinaryContextTester : public testing::TestWithParam<Triple::ArchType> {
void SetUp() override {
initalizeLLVM();
prepareElf();
initializeBOLT();
}
protected:
void initalizeLLVM() {
llvm::InitializeAllTargetInfos();
llvm::InitializeAllTargetMCs();
llvm::InitializeAllAsmParsers();
llvm::InitializeAllDisassemblers();
llvm::InitializeAllTargets();
llvm::InitializeAllAsmPrinters();
}
void prepareElf() {
memcpy(ElfBuf, "\177ELF", 4);
ELF64LE::Ehdr *EHdr = reinterpret_cast<typename ELF64LE::Ehdr *>(ElfBuf);
EHdr->e_ident[llvm::ELF::EI_CLASS] = llvm::ELF::ELFCLASS64;
EHdr->e_ident[llvm::ELF::EI_DATA] = llvm::ELF::ELFDATA2LSB;
EHdr->e_machine = GetParam() == Triple::aarch64 ? EM_AARCH64 : EM_X86_64;
MemoryBufferRef Source(StringRef(ElfBuf, sizeof(ElfBuf)), "ELF");
ObjFile = cantFail(ObjectFile::createObjectFile(Source));
}
void initializeBOLT() {
BC = cantFail(BinaryContext::createBinaryContext(
ObjFile->makeTriple(), ObjFile->getFileName(), nullptr, true,
DWARFContext::create(*ObjFile.get()), {llvm::outs(), llvm::errs()}));
ASSERT_FALSE(!BC);
}
char ElfBuf[sizeof(typename ELF64LE::Ehdr)] = {};
std::unique_ptr<ObjectFile> ObjFile;
std::unique_ptr<BinaryContext> BC;
};
} // namespace
#ifdef X86_AVAILABLE
INSTANTIATE_TEST_SUITE_P(X86, BinaryContextTester,
::testing::Values(Triple::x86_64));
#endif
#ifdef AARCH64_AVAILABLE
INSTANTIATE_TEST_SUITE_P(AArch64, BinaryContextTester,
::testing::Values(Triple::aarch64));
TEST_P(BinaryContextTester, FlushPendingRelocCALL26) {
if (GetParam() != Triple::aarch64)
GTEST_SKIP();
// This test checks that encodeValueAArch64 used by flushPendingRelocations
// returns correctly encoded values for CALL26 relocation for both backward
// and forward branches.
//
// The offsets layout is:
// 4: func1
// 8: bl func1
// 12: bl func2
// 16: func2
constexpr size_t DataSize = 20;
uint8_t *Data = new uint8_t[DataSize];
BinarySection &BS = BC->registerOrUpdateSection(
".text", ELF::SHT_PROGBITS, ELF::SHF_EXECINSTR | ELF::SHF_ALLOC, Data,
DataSize, 4);
MCSymbol *RelSymbol1 = BC->getOrCreateGlobalSymbol(4, "Func1");
ASSERT_TRUE(RelSymbol1);
BS.addRelocation(8, RelSymbol1, ELF::R_AARCH64_CALL26, 0, 0, true);
MCSymbol *RelSymbol2 = BC->getOrCreateGlobalSymbol(16, "Func2");
ASSERT_TRUE(RelSymbol2);
BS.addRelocation(12, RelSymbol2, ELF::R_AARCH64_CALL26, 0, 0, true);
std::error_code EC;
SmallVector<char> Vect(DataSize);
raw_svector_ostream OS(Vect);
BS.flushPendingRelocations(OS, [&](const MCSymbol *S) {
return S == RelSymbol1 ? 4 : S == RelSymbol2 ? 16 : 0;
});
const uint8_t Func1Call[4] = {255, 255, 255, 151};
const uint8_t Func2Call[4] = {1, 0, 0, 148};
EXPECT_FALSE(memcmp(Func1Call, &Vect[8], 4)) << "Wrong backward call value\n";
EXPECT_FALSE(memcmp(Func2Call, &Vect[12], 4)) << "Wrong forward call value\n";
}
TEST_P(BinaryContextTester, FlushPendingRelocJUMP26) {
if (GetParam() != Triple::aarch64)
GTEST_SKIP();
// This test checks that encodeValueAArch64 used by flushPendingRelocations
// returns correctly encoded values for R_AARCH64_JUMP26 relocation for both
// backward and forward branches.
//
// The offsets layout is:
// 4: func1
// 8: b func1
// 12: b func2
// 16: func2
const uint64_t Size = 20;
char *Data = new char[Size];
BinarySection &BS = BC->registerOrUpdateSection(
".text", ELF::SHT_PROGBITS, ELF::SHF_EXECINSTR | ELF::SHF_ALLOC,
(uint8_t *)Data, Size, 4);
MCSymbol *RelSymbol1 = BC->getOrCreateGlobalSymbol(4, "Func1");
ASSERT_TRUE(RelSymbol1);
BS.addRelocation(8, RelSymbol1, ELF::R_AARCH64_JUMP26, 0, 0, true);
MCSymbol *RelSymbol2 = BC->getOrCreateGlobalSymbol(16, "Func2");
ASSERT_TRUE(RelSymbol2);
BS.addRelocation(12, RelSymbol2, ELF::R_AARCH64_JUMP26, 0, 0, true);
std::error_code EC;
SmallVector<char> Vect(Size);
raw_svector_ostream OS(Vect);
BS.flushPendingRelocations(OS, [&](const MCSymbol *S) {
return S == RelSymbol1 ? 4 : S == RelSymbol2 ? 16 : 0;
});
const uint8_t Func1Call[4] = {255, 255, 255, 23};
const uint8_t Func2Call[4] = {1, 0, 0, 20};
EXPECT_FALSE(memcmp(Func1Call, &Vect[8], 4))
<< "Wrong backward branch value\n";
EXPECT_FALSE(memcmp(Func2Call, &Vect[12], 4))
<< "Wrong forward branch value\n";
}
#endif
TEST_P(BinaryContextTester, BaseAddress) {
// Check that base address calculation is correct for a binary with the
// following segment layout:
BC->SegmentMapInfo[0] = SegmentInfo{0, 0x10e8c2b4, 0, 0x10e8c2b4, 0x1000};
BC->SegmentMapInfo[0x10e8d2b4] =
SegmentInfo{0x10e8d2b4, 0x3952faec, 0x10e8c2b4, 0x3952faec, 0x1000};
BC->SegmentMapInfo[0x4a3bddc0] =
SegmentInfo{0x4a3bddc0, 0x148e828, 0x4a3bbdc0, 0x148e828, 0x1000};
BC->SegmentMapInfo[0x4b84d5e8] =
SegmentInfo{0x4b84d5e8, 0x294f830, 0x4b84a5e8, 0x3d3820, 0x1000};
std::optional<uint64_t> BaseAddress =
BC->getBaseAddressForMapping(0x7f13f5556000, 0x10e8c000);
ASSERT_TRUE(BaseAddress.has_value());
ASSERT_EQ(*BaseAddress, 0x7f13e46c9000ULL);
BaseAddress = BC->getBaseAddressForMapping(0x7f13f5556000, 0x137a000);
ASSERT_FALSE(BaseAddress.has_value());
}
TEST_P(BinaryContextTester, BaseAddress2) {
// Check that base address calculation is correct for a binary if the
// alignment in ELF file are different from pagesize.
// The segment layout is as follows:
BC->SegmentMapInfo[0] = SegmentInfo{0, 0x2177c, 0, 0x2177c, 0x10000};
BC->SegmentMapInfo[0x31860] =
SegmentInfo{0x31860, 0x370, 0x21860, 0x370, 0x10000};
BC->SegmentMapInfo[0x41c20] =
SegmentInfo{0x41c20, 0x1f8, 0x21c20, 0x1f8, 0x10000};
BC->SegmentMapInfo[0x54e18] =
SegmentInfo{0x54e18, 0x51, 0x24e18, 0x51, 0x10000};
std::optional<uint64_t> BaseAddress =
BC->getBaseAddressForMapping(0xaaaaea444000, 0x21000);
ASSERT_TRUE(BaseAddress.has_value());
ASSERT_EQ(*BaseAddress, 0xaaaaea413000ULL);
BaseAddress = BC->getBaseAddressForMapping(0xaaaaea444000, 0x11000);
ASSERT_FALSE(BaseAddress.has_value());
}
|