1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326
|
//===- CtxInstrProfiling.cpp - contextual instrumented PGO ----------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
#include "CtxInstrProfiling.h"
#include "sanitizer_common/sanitizer_allocator_internal.h"
#include "sanitizer_common/sanitizer_common.h"
#include "sanitizer_common/sanitizer_dense_map.h"
#include "sanitizer_common/sanitizer_libc.h"
#include "sanitizer_common/sanitizer_mutex.h"
#include "sanitizer_common/sanitizer_placement_new.h"
#include "sanitizer_common/sanitizer_thread_safety.h"
#include "sanitizer_common/sanitizer_vector.h"
#include <assert.h>
using namespace __ctx_profile;
namespace {
// Keep track of all the context roots we actually saw, so we can then traverse
// them when the user asks for the profile in __llvm_ctx_profile_fetch
__sanitizer::SpinMutex AllContextsMutex;
SANITIZER_GUARDED_BY(AllContextsMutex)
__sanitizer::Vector<ContextRoot *> AllContextRoots;
// utility to taint a pointer by setting the LSB. There is an assumption
// throughout that the addresses of contexts are even (really, they should be
// align(8), but "even"-ness is the minimum assumption)
// "scratch contexts" are buffers that we return in certain cases - they are
// large enough to allow for memory safe counter access, but they don't link
// subcontexts below them (the runtime recognizes them and enforces that)
ContextNode *markAsScratch(const ContextNode *Ctx) {
return reinterpret_cast<ContextNode *>(reinterpret_cast<uint64_t>(Ctx) | 1);
}
// Used when getting the data from TLS. We don't *really* need to reset, but
// it's a simpler system if we do.
template <typename T> inline T consume(T &V) {
auto R = V;
V = {0};
return R;
}
// We allocate at least kBuffSize Arena pages. The scratch buffer is also that
// large.
constexpr size_t kPower = 20;
constexpr size_t kBuffSize = 1 << kPower;
// Highly unlikely we need more than kBuffSize for a context.
size_t getArenaAllocSize(size_t Needed) {
if (Needed >= kBuffSize)
return 2 * Needed;
return kBuffSize;
}
// verify the structural integrity of the context
bool validate(const ContextRoot *Root) {
// all contexts should be laid out in some arena page. Go over each arena
// allocated for this Root, and jump over contained contexts based on
// self-reported sizes.
__sanitizer::DenseMap<uint64_t, bool> ContextStartAddrs;
for (const auto *Mem = Root->FirstMemBlock; Mem; Mem = Mem->next()) {
const auto *Pos = Mem->start();
while (Pos < Mem->pos()) {
const auto *Ctx = reinterpret_cast<const ContextNode *>(Pos);
if (!ContextStartAddrs.insert({reinterpret_cast<uint64_t>(Ctx), true})
.second)
return false;
Pos += Ctx->size();
}
}
// Now traverse the contexts again the same way, but validate all nonull
// subcontext addresses appear in the set computed above.
for (const auto *Mem = Root->FirstMemBlock; Mem; Mem = Mem->next()) {
const auto *Pos = Mem->start();
while (Pos < Mem->pos()) {
const auto *Ctx = reinterpret_cast<const ContextNode *>(Pos);
for (uint32_t I = 0; I < Ctx->callsites_size(); ++I)
for (auto *Sub = Ctx->subContexts()[I]; Sub; Sub = Sub->next())
if (!ContextStartAddrs.find(reinterpret_cast<uint64_t>(Sub)))
return false;
Pos += Ctx->size();
}
}
return true;
}
inline ContextNode *allocContextNode(char *Place, GUID Guid,
uint32_t NrCounters, uint32_t NrCallsites,
ContextNode *Next = nullptr) {
assert(reinterpret_cast<uint64_t>(Place) % ExpectedAlignment == 0);
return new (Place) ContextNode(Guid, NrCounters, NrCallsites, Next);
}
void resetContextNode(ContextNode &Node) {
// FIXME(mtrofin): this is std::memset, which we can probably use if we
// drop/reduce the dependency on sanitizer_common.
for (uint32_t I = 0; I < Node.counters_size(); ++I)
Node.counters()[I] = 0;
for (uint32_t I = 0; I < Node.callsites_size(); ++I)
for (auto *Next = Node.subContexts()[I]; Next; Next = Next->next())
resetContextNode(*Next);
}
void onContextEnter(ContextNode &Node) { ++Node.counters()[0]; }
} // namespace
// the scratch buffer - what we give when we can't produce a real context (the
// scratch isn't "real" in that it's expected to be clobbered carelessly - we
// don't read it). The other important thing is that the callees from a scratch
// context also get a scratch context.
// Eventually this can be replaced with per-function buffers, a'la the typical
// (flat) instrumented FDO buffers. The clobbering aspect won't apply there, but
// the part about determining the nature of the subcontexts does.
__thread char __Buffer[kBuffSize] = {0};
#define TheScratchContext \
markAsScratch(reinterpret_cast<ContextNode *>(__Buffer))
// init the TLSes
__thread void *volatile __llvm_ctx_profile_expected_callee[2] = {nullptr,
nullptr};
__thread ContextNode **volatile __llvm_ctx_profile_callsite[2] = {0, 0};
__thread ContextRoot *volatile __llvm_ctx_profile_current_context_root =
nullptr;
Arena::Arena(uint32_t Size) : Size(Size) {
__sanitizer::internal_memset(start(), 0, Size);
}
// FIXME(mtrofin): use malloc / mmap instead of sanitizer common APIs to reduce
// the dependency on the latter.
Arena *Arena::allocateNewArena(size_t Size, Arena *Prev) {
assert(!Prev || Prev->Next == nullptr);
Arena *NewArena = new (__sanitizer::InternalAlloc(
Size + sizeof(Arena), /*cache=*/nullptr, /*alignment=*/ExpectedAlignment))
Arena(Size);
if (Prev)
Prev->Next = NewArena;
return NewArena;
}
void Arena::freeArenaList(Arena *&A) {
assert(A);
for (auto *I = A; I != nullptr;) {
auto *Current = I;
I = I->Next;
__sanitizer::InternalFree(Current);
}
A = nullptr;
}
// If this is the first time we hit a callsite with this (Guid) particular
// callee, we need to allocate.
ContextNode *getCallsiteSlow(GUID Guid, ContextNode **InsertionPoint,
uint32_t NrCounters, uint32_t NrCallsites) {
auto AllocSize = ContextNode::getAllocSize(NrCounters, NrCallsites);
auto *Mem = __llvm_ctx_profile_current_context_root->CurrentMem;
char *AllocPlace = Mem->tryBumpAllocate(AllocSize);
if (!AllocPlace) {
// if we failed to allocate on the current arena, allocate a new arena,
// and place it on __llvm_ctx_profile_current_context_root->CurrentMem so we
// find it from now on for other cases when we need to getCallsiteSlow.
// Note that allocateNewArena will link the allocated memory in the list of
// Arenas.
__llvm_ctx_profile_current_context_root->CurrentMem = Mem =
Mem->allocateNewArena(getArenaAllocSize(AllocSize), Mem);
AllocPlace = Mem->tryBumpAllocate(AllocSize);
}
auto *Ret = allocContextNode(AllocPlace, Guid, NrCounters, NrCallsites,
*InsertionPoint);
*InsertionPoint = Ret;
return Ret;
}
ContextNode *__llvm_ctx_profile_get_context(void *Callee, GUID Guid,
uint32_t NrCounters,
uint32_t NrCallsites) {
// fast "out" if we're not even doing contextual collection.
if (!__llvm_ctx_profile_current_context_root)
return TheScratchContext;
// also fast "out" if the caller is scratch. We can see if it's scratch by
// looking at the interior pointer into the subcontexts vector that the caller
// provided, which, if the context is scratch, so is that interior pointer
// (because all the address calculations are using even values. Or more
// precisely, aligned - 8 values)
auto **CallsiteContext = consume(__llvm_ctx_profile_callsite[0]);
if (!CallsiteContext || isScratch(CallsiteContext))
return TheScratchContext;
// if the callee isn't the expected one, return scratch.
// Signal handler(s) could have been invoked at any point in the execution.
// Should that have happened, and had it (the handler) be built with
// instrumentation, its __llvm_ctx_profile_get_context would have failed here.
// Its sub call graph would have then populated
// __llvm_ctx_profile_{expected_callee | callsite} at index 1.
// The normal call graph may be impacted in that, if the signal handler
// happened somewhere before we read the TLS here, we'd see the TLS reset and
// we'd also fail here. That would just mean we would loose counter values for
// the normal subgraph, this time around. That should be very unlikely, but if
// it happens too frequently, we should be able to detect discrepancies in
// entry counts (caller-callee). At the moment, the design goes on the
// assumption that is so unfrequent, though, that it's not worth doing more
// for that case.
auto *ExpectedCallee = consume(__llvm_ctx_profile_expected_callee[0]);
if (ExpectedCallee != Callee)
return TheScratchContext;
auto *Callsite = *CallsiteContext;
// in the case of indirect calls, we will have all seen targets forming a
// linked list here. Find the one corresponding to this callee.
while (Callsite && Callsite->guid() != Guid) {
Callsite = Callsite->next();
}
auto *Ret = Callsite ? Callsite
: getCallsiteSlow(Guid, CallsiteContext, NrCounters,
NrCallsites);
if (Ret->callsites_size() != NrCallsites ||
Ret->counters_size() != NrCounters)
__sanitizer::Printf("[ctxprof] Returned ctx differs from what's asked: "
"Context: %p, Asked: %lu %u %u, Got: %lu %u %u \n",
reinterpret_cast<void *>(Ret), Guid, NrCallsites,
NrCounters, Ret->guid(), Ret->callsites_size(),
Ret->counters_size());
onContextEnter(*Ret);
return Ret;
}
// This should be called once for a Root. Allocate the first arena, set up the
// first context.
void setupContext(ContextRoot *Root, GUID Guid, uint32_t NrCounters,
uint32_t NrCallsites) {
__sanitizer::GenericScopedLock<__sanitizer::SpinMutex> Lock(
&AllContextsMutex);
// Re-check - we got here without having had taken a lock.
if (Root->FirstMemBlock)
return;
const auto Needed = ContextNode::getAllocSize(NrCounters, NrCallsites);
auto *M = Arena::allocateNewArena(getArenaAllocSize(Needed));
Root->FirstMemBlock = M;
Root->CurrentMem = M;
Root->FirstNode = allocContextNode(M->tryBumpAllocate(Needed), Guid,
NrCounters, NrCallsites);
AllContextRoots.PushBack(Root);
}
ContextNode *__llvm_ctx_profile_start_context(
ContextRoot *Root, GUID Guid, uint32_t Counters,
uint32_t Callsites) SANITIZER_NO_THREAD_SAFETY_ANALYSIS {
if (!Root->FirstMemBlock) {
setupContext(Root, Guid, Counters, Callsites);
}
if (Root->Taken.TryLock()) {
__llvm_ctx_profile_current_context_root = Root;
onContextEnter(*Root->FirstNode);
return Root->FirstNode;
}
// If this thread couldn't take the lock, return scratch context.
__llvm_ctx_profile_current_context_root = nullptr;
return TheScratchContext;
}
void __llvm_ctx_profile_release_context(ContextRoot *Root)
SANITIZER_NO_THREAD_SAFETY_ANALYSIS {
if (__llvm_ctx_profile_current_context_root) {
__llvm_ctx_profile_current_context_root = nullptr;
Root->Taken.Unlock();
}
}
void __llvm_ctx_profile_start_collection() {
size_t NrMemUnits = 0;
__sanitizer::GenericScopedLock<__sanitizer::SpinMutex> Lock(
&AllContextsMutex);
for (uint32_t I = 0; I < AllContextRoots.Size(); ++I) {
auto *Root = AllContextRoots[I];
__sanitizer::GenericScopedLock<__sanitizer::StaticSpinMutex> Lock(
&Root->Taken);
for (auto *Mem = Root->FirstMemBlock; Mem; Mem = Mem->next())
++NrMemUnits;
resetContextNode(*Root->FirstNode);
}
__sanitizer::Printf("[ctxprof] Initial NrMemUnits: %zu \n", NrMemUnits);
}
bool __llvm_ctx_profile_fetch(void *Data,
bool (*Writer)(void *W, const ContextNode &)) {
assert(Writer);
__sanitizer::GenericScopedLock<__sanitizer::SpinMutex> Lock(
&AllContextsMutex);
for (int I = 0, E = AllContextRoots.Size(); I < E; ++I) {
auto *Root = AllContextRoots[I];
__sanitizer::GenericScopedLock<__sanitizer::StaticSpinMutex> TakenLock(
&Root->Taken);
if (!validate(Root)) {
__sanitizer::Printf("[ctxprof] Contextual Profile is %s\n", "invalid");
return false;
}
if (!Writer(Data, *Root->FirstNode))
return false;
}
return true;
}
void __llvm_ctx_profile_free() {
__sanitizer::GenericScopedLock<__sanitizer::SpinMutex> Lock(
&AllContextsMutex);
for (int I = 0, E = AllContextRoots.Size(); I < E; ++I)
for (auto *A = AllContextRoots[I]->FirstMemBlock; A;) {
auto *C = A;
A = A->next();
__sanitizer::InternalFree(C);
}
AllContextRoots.Reset();
}
|