File: CtxInstrProfiling.cpp

package info (click to toggle)
llvm-toolchain-19 1%3A19.1.7-19
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid
  • size: 1,999,616 kB
  • sloc: cpp: 6,951,724; ansic: 1,486,157; asm: 913,598; python: 232,059; f90: 80,126; objc: 75,281; lisp: 37,276; pascal: 16,990; sh: 10,079; ml: 5,058; perl: 4,724; awk: 3,523; makefile: 3,430; javascript: 2,504; xml: 892; fortran: 664; cs: 573
file content (326 lines) | stat: -rw-r--r-- 13,239 bytes parent folder | download | duplicates (4)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
//===- CtxInstrProfiling.cpp - contextual instrumented PGO ----------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//

#include "CtxInstrProfiling.h"
#include "sanitizer_common/sanitizer_allocator_internal.h"
#include "sanitizer_common/sanitizer_common.h"
#include "sanitizer_common/sanitizer_dense_map.h"
#include "sanitizer_common/sanitizer_libc.h"
#include "sanitizer_common/sanitizer_mutex.h"
#include "sanitizer_common/sanitizer_placement_new.h"
#include "sanitizer_common/sanitizer_thread_safety.h"
#include "sanitizer_common/sanitizer_vector.h"

#include <assert.h>

using namespace __ctx_profile;

namespace {
// Keep track of all the context roots we actually saw, so we can then traverse
// them when the user asks for the profile in __llvm_ctx_profile_fetch
__sanitizer::SpinMutex AllContextsMutex;
SANITIZER_GUARDED_BY(AllContextsMutex)
__sanitizer::Vector<ContextRoot *> AllContextRoots;

// utility to taint a pointer by setting the LSB. There is an assumption
// throughout that the addresses of contexts are even (really, they should be
// align(8), but "even"-ness is the minimum assumption)
// "scratch contexts" are buffers that we return in certain cases - they are
// large enough to allow for memory safe counter access, but they don't link
// subcontexts below them (the runtime recognizes them and enforces that)
ContextNode *markAsScratch(const ContextNode *Ctx) {
  return reinterpret_cast<ContextNode *>(reinterpret_cast<uint64_t>(Ctx) | 1);
}

// Used when getting the data from TLS. We don't *really* need to reset, but
// it's a simpler system if we do.
template <typename T> inline T consume(T &V) {
  auto R = V;
  V = {0};
  return R;
}

// We allocate at least kBuffSize Arena pages. The scratch buffer is also that
// large.
constexpr size_t kPower = 20;
constexpr size_t kBuffSize = 1 << kPower;

// Highly unlikely we need more than kBuffSize for a context.
size_t getArenaAllocSize(size_t Needed) {
  if (Needed >= kBuffSize)
    return 2 * Needed;
  return kBuffSize;
}

// verify the structural integrity of the context
bool validate(const ContextRoot *Root) {
  // all contexts should be laid out in some arena page. Go over each arena
  // allocated for this Root, and jump over contained contexts based on
  // self-reported sizes.
  __sanitizer::DenseMap<uint64_t, bool> ContextStartAddrs;
  for (const auto *Mem = Root->FirstMemBlock; Mem; Mem = Mem->next()) {
    const auto *Pos = Mem->start();
    while (Pos < Mem->pos()) {
      const auto *Ctx = reinterpret_cast<const ContextNode *>(Pos);
      if (!ContextStartAddrs.insert({reinterpret_cast<uint64_t>(Ctx), true})
               .second)
        return false;
      Pos += Ctx->size();
    }
  }

  // Now traverse the contexts again the same way, but validate all nonull
  // subcontext addresses appear in the set computed above.
  for (const auto *Mem = Root->FirstMemBlock; Mem; Mem = Mem->next()) {
    const auto *Pos = Mem->start();
    while (Pos < Mem->pos()) {
      const auto *Ctx = reinterpret_cast<const ContextNode *>(Pos);
      for (uint32_t I = 0; I < Ctx->callsites_size(); ++I)
        for (auto *Sub = Ctx->subContexts()[I]; Sub; Sub = Sub->next())
          if (!ContextStartAddrs.find(reinterpret_cast<uint64_t>(Sub)))
            return false;

      Pos += Ctx->size();
    }
  }
  return true;
}

inline ContextNode *allocContextNode(char *Place, GUID Guid,
                                     uint32_t NrCounters, uint32_t NrCallsites,
                                     ContextNode *Next = nullptr) {
  assert(reinterpret_cast<uint64_t>(Place) % ExpectedAlignment == 0);
  return new (Place) ContextNode(Guid, NrCounters, NrCallsites, Next);
}

void resetContextNode(ContextNode &Node) {
  // FIXME(mtrofin): this is std::memset, which we can probably use if we
  // drop/reduce the dependency on sanitizer_common.
  for (uint32_t I = 0; I < Node.counters_size(); ++I)
    Node.counters()[I] = 0;
  for (uint32_t I = 0; I < Node.callsites_size(); ++I)
    for (auto *Next = Node.subContexts()[I]; Next; Next = Next->next())
      resetContextNode(*Next);
}

void onContextEnter(ContextNode &Node) { ++Node.counters()[0]; }

} // namespace

// the scratch buffer - what we give when we can't produce a real context (the
// scratch isn't "real" in that it's expected to be clobbered carelessly - we
// don't read it). The other important thing is that the callees from a scratch
// context also get a scratch context.
// Eventually this can be replaced with per-function buffers, a'la the typical
// (flat) instrumented FDO buffers. The clobbering aspect won't apply there, but
// the part about determining the nature of the subcontexts does.
__thread char __Buffer[kBuffSize] = {0};

#define TheScratchContext                                                      \
  markAsScratch(reinterpret_cast<ContextNode *>(__Buffer))

// init the TLSes
__thread void *volatile __llvm_ctx_profile_expected_callee[2] = {nullptr,
                                                                 nullptr};
__thread ContextNode **volatile __llvm_ctx_profile_callsite[2] = {0, 0};

__thread ContextRoot *volatile __llvm_ctx_profile_current_context_root =
    nullptr;

Arena::Arena(uint32_t Size) : Size(Size) {
  __sanitizer::internal_memset(start(), 0, Size);
}

// FIXME(mtrofin): use malloc / mmap instead of sanitizer common APIs to reduce
// the dependency on the latter.
Arena *Arena::allocateNewArena(size_t Size, Arena *Prev) {
  assert(!Prev || Prev->Next == nullptr);
  Arena *NewArena = new (__sanitizer::InternalAlloc(
      Size + sizeof(Arena), /*cache=*/nullptr, /*alignment=*/ExpectedAlignment))
      Arena(Size);
  if (Prev)
    Prev->Next = NewArena;
  return NewArena;
}

void Arena::freeArenaList(Arena *&A) {
  assert(A);
  for (auto *I = A; I != nullptr;) {
    auto *Current = I;
    I = I->Next;
    __sanitizer::InternalFree(Current);
  }
  A = nullptr;
}

// If this is the first time we hit a callsite with this (Guid) particular
// callee, we need to allocate.
ContextNode *getCallsiteSlow(GUID Guid, ContextNode **InsertionPoint,
                             uint32_t NrCounters, uint32_t NrCallsites) {
  auto AllocSize = ContextNode::getAllocSize(NrCounters, NrCallsites);
  auto *Mem = __llvm_ctx_profile_current_context_root->CurrentMem;
  char *AllocPlace = Mem->tryBumpAllocate(AllocSize);
  if (!AllocPlace) {
    // if we failed to allocate on the current arena, allocate a new arena,
    // and place it on __llvm_ctx_profile_current_context_root->CurrentMem so we
    // find it from now on for other cases when we need to getCallsiteSlow.
    // Note that allocateNewArena will link the allocated memory in the list of
    // Arenas.
    __llvm_ctx_profile_current_context_root->CurrentMem = Mem =
        Mem->allocateNewArena(getArenaAllocSize(AllocSize), Mem);
    AllocPlace = Mem->tryBumpAllocate(AllocSize);
  }
  auto *Ret = allocContextNode(AllocPlace, Guid, NrCounters, NrCallsites,
                               *InsertionPoint);
  *InsertionPoint = Ret;
  return Ret;
}

ContextNode *__llvm_ctx_profile_get_context(void *Callee, GUID Guid,
                                            uint32_t NrCounters,
                                            uint32_t NrCallsites) {
  // fast "out" if we're not even doing contextual collection.
  if (!__llvm_ctx_profile_current_context_root)
    return TheScratchContext;

  // also fast "out" if the caller is scratch. We can see if it's scratch by
  // looking at the interior pointer into the subcontexts vector that the caller
  // provided, which, if the context is scratch, so is that interior pointer
  // (because all the address calculations are using even values. Or more
  // precisely, aligned - 8 values)
  auto **CallsiteContext = consume(__llvm_ctx_profile_callsite[0]);
  if (!CallsiteContext || isScratch(CallsiteContext))
    return TheScratchContext;

  // if the callee isn't the expected one, return scratch.
  // Signal handler(s) could have been invoked at any point in the execution.
  // Should that have happened, and had it (the handler) be built with
  // instrumentation, its __llvm_ctx_profile_get_context would have failed here.
  // Its sub call graph would have then populated
  // __llvm_ctx_profile_{expected_callee | callsite} at index 1.
  // The normal call graph may be impacted in that, if the signal handler
  // happened somewhere before we read the TLS here, we'd see the TLS reset and
  // we'd also fail here. That would just mean we would loose counter values for
  // the normal subgraph, this time around. That should be very unlikely, but if
  // it happens too frequently, we should be able to detect discrepancies in
  // entry counts (caller-callee). At the moment, the design goes on the
  // assumption that is so unfrequent, though, that it's not worth doing more
  // for that case.
  auto *ExpectedCallee = consume(__llvm_ctx_profile_expected_callee[0]);
  if (ExpectedCallee != Callee)
    return TheScratchContext;

  auto *Callsite = *CallsiteContext;
  // in the case of indirect calls, we will have all seen targets forming a
  // linked list here. Find the one corresponding to this callee.
  while (Callsite && Callsite->guid() != Guid) {
    Callsite = Callsite->next();
  }
  auto *Ret = Callsite ? Callsite
                       : getCallsiteSlow(Guid, CallsiteContext, NrCounters,
                                         NrCallsites);
  if (Ret->callsites_size() != NrCallsites ||
      Ret->counters_size() != NrCounters)
    __sanitizer::Printf("[ctxprof] Returned ctx differs from what's asked: "
                        "Context: %p, Asked: %lu %u %u, Got: %lu %u %u \n",
                        reinterpret_cast<void *>(Ret), Guid, NrCallsites,
                        NrCounters, Ret->guid(), Ret->callsites_size(),
                        Ret->counters_size());
  onContextEnter(*Ret);
  return Ret;
}

// This should be called once for a Root. Allocate the first arena, set up the
// first context.
void setupContext(ContextRoot *Root, GUID Guid, uint32_t NrCounters,
                  uint32_t NrCallsites) {
  __sanitizer::GenericScopedLock<__sanitizer::SpinMutex> Lock(
      &AllContextsMutex);
  // Re-check - we got here without having had taken a lock.
  if (Root->FirstMemBlock)
    return;
  const auto Needed = ContextNode::getAllocSize(NrCounters, NrCallsites);
  auto *M = Arena::allocateNewArena(getArenaAllocSize(Needed));
  Root->FirstMemBlock = M;
  Root->CurrentMem = M;
  Root->FirstNode = allocContextNode(M->tryBumpAllocate(Needed), Guid,
                                     NrCounters, NrCallsites);
  AllContextRoots.PushBack(Root);
}

ContextNode *__llvm_ctx_profile_start_context(
    ContextRoot *Root, GUID Guid, uint32_t Counters,
    uint32_t Callsites) SANITIZER_NO_THREAD_SAFETY_ANALYSIS {
  if (!Root->FirstMemBlock) {
    setupContext(Root, Guid, Counters, Callsites);
  }
  if (Root->Taken.TryLock()) {
    __llvm_ctx_profile_current_context_root = Root;
    onContextEnter(*Root->FirstNode);
    return Root->FirstNode;
  }
  // If this thread couldn't take the lock, return scratch context.
  __llvm_ctx_profile_current_context_root = nullptr;
  return TheScratchContext;
}

void __llvm_ctx_profile_release_context(ContextRoot *Root)
    SANITIZER_NO_THREAD_SAFETY_ANALYSIS {
  if (__llvm_ctx_profile_current_context_root) {
    __llvm_ctx_profile_current_context_root = nullptr;
    Root->Taken.Unlock();
  }
}

void __llvm_ctx_profile_start_collection() {
  size_t NrMemUnits = 0;
  __sanitizer::GenericScopedLock<__sanitizer::SpinMutex> Lock(
      &AllContextsMutex);
  for (uint32_t I = 0; I < AllContextRoots.Size(); ++I) {
    auto *Root = AllContextRoots[I];
    __sanitizer::GenericScopedLock<__sanitizer::StaticSpinMutex> Lock(
        &Root->Taken);
    for (auto *Mem = Root->FirstMemBlock; Mem; Mem = Mem->next())
      ++NrMemUnits;

    resetContextNode(*Root->FirstNode);
  }
  __sanitizer::Printf("[ctxprof] Initial NrMemUnits: %zu \n", NrMemUnits);
}

bool __llvm_ctx_profile_fetch(void *Data,
                              bool (*Writer)(void *W, const ContextNode &)) {
  assert(Writer);
  __sanitizer::GenericScopedLock<__sanitizer::SpinMutex> Lock(
      &AllContextsMutex);

  for (int I = 0, E = AllContextRoots.Size(); I < E; ++I) {
    auto *Root = AllContextRoots[I];
    __sanitizer::GenericScopedLock<__sanitizer::StaticSpinMutex> TakenLock(
        &Root->Taken);
    if (!validate(Root)) {
      __sanitizer::Printf("[ctxprof] Contextual Profile is %s\n", "invalid");
      return false;
    }
    if (!Writer(Data, *Root->FirstNode))
      return false;
  }
  return true;
}

void __llvm_ctx_profile_free() {
  __sanitizer::GenericScopedLock<__sanitizer::SpinMutex> Lock(
      &AllContextsMutex);
  for (int I = 0, E = AllContextRoots.Size(); I < E; ++I)
    for (auto *A = AllContextRoots[I]->FirstMemBlock; A;) {
      auto *C = A;
      A = A->next();
      __sanitizer::InternalFree(C);
    }
  AllContextRoots.Reset();
}