1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256
|
//===--- AST.h - Utility AST functions -------------------------*- C++ -*-===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// Various code that examines C++ source code using AST.
//
//===----------------------------------------------------------------------===//
#ifndef LLVM_CLANG_TOOLS_EXTRA_CLANGD_AST_H
#define LLVM_CLANG_TOOLS_EXTRA_CLANGD_AST_H
#include "Headers.h"
#include "index/Symbol.h"
#include "index/SymbolID.h"
#include "clang/AST/Decl.h"
#include "clang/AST/DeclObjC.h"
#include "clang/AST/NestedNameSpecifier.h"
#include "clang/AST/TypeLoc.h"
#include "clang/Basic/SourceLocation.h"
#include "clang/Lex/MacroInfo.h"
#include "llvm/ADT/StringRef.h"
#include <optional>
#include <string>
#include <vector>
namespace clang {
class SourceManager;
class Decl;
class DynTypedNode;
namespace clangd {
/// Returns true if the declaration is considered implementation detail based on
/// heuristics. For example, a declaration whose name is not explicitly spelled
/// in code is considered implementation detail.
bool isImplementationDetail(const Decl *D);
/// Find the source location of the identifier for \p D.
/// Transforms macro locations to locations spelled inside files. All code
/// that needs locations of declaration names (e.g. the index) should go through
/// this function.
SourceLocation nameLocation(const clang::Decl &D, const SourceManager &SM);
/// Returns the qualified name of ND. The scope doesn't contain unwritten scopes
/// like inline namespaces.
std::string printQualifiedName(const NamedDecl &ND);
/// Returns the first enclosing namespace scope starting from \p DC.
std::string printNamespaceScope(const DeclContext &DC);
/// Returns the name of the namespace inside the 'using namespace' directive, as
/// written in the code. E.g., passing 'using namespace ::std' will result in
/// '::std'.
std::string printUsingNamespaceName(const ASTContext &Ctx,
const UsingDirectiveDecl &D);
/// Prints unqualified name of the decl for the purpose of displaying it to the
/// user. Anonymous decls return names of the form "(anonymous {kind})", e.g.
/// "(anonymous struct)" or "(anonymous namespace)".
std::string printName(const ASTContext &Ctx, const NamedDecl &ND);
/// Prints template arguments of a decl as written in the source code, including
/// enclosing '<' and '>', e.g for a partial specialization like: template
/// <typename U> struct Foo<int, U> will return '<int, U>'. Returns an empty
/// string if decl is not a template specialization.
std::string printTemplateSpecializationArgs(const NamedDecl &ND);
/// Print the Objective-C method name, including the full container name, e.g.
/// `-[MyClass(Category) method:]`
std::string printObjCMethod(const ObjCMethodDecl &Method);
/// Print the Objective-C container name including categories, e.g. `MyClass`,
// `MyClass()`, `MyClass(Category)`, and `MyProtocol`.
std::string printObjCContainer(const ObjCContainerDecl &C);
/// Returns true if this is a NamedDecl with a reserved name.
bool hasReservedName(const Decl &);
/// Returns true if this scope would be written with a reserved name.
/// This does not include unwritten scope elements like __1 in std::__1::vector.
bool hasReservedScope(const DeclContext &);
/// Gets the symbol ID for a declaration. Returned SymbolID might be null.
SymbolID getSymbolID(const Decl *D);
/// Gets the symbol ID for a macro. Returned SymbolID might be null.
/// Currently, this is an encoded USR of the macro, which incorporates macro
/// locations (e.g. file name, offset in file).
/// FIXME: the USR semantics might not be stable enough as the ID for index
/// macro (e.g. a change in definition offset can result in a different USR). We
/// could change these semantics in the future by reimplementing this funcure
/// (e.g. avoid USR for macros).
SymbolID getSymbolID(const llvm::StringRef MacroName, const MacroInfo *MI,
const SourceManager &SM);
/// Return the corresponding implementation/definition for the given ObjC
/// container if it has one, otherwise, return nullptr.
///
/// Objective-C classes can have three types of declarations:
///
/// - forward declaration: "@class MyClass;"
/// - true declaration (interface definition): "@interface MyClass ... @end"
/// - true definition (implementation): "@implementation MyClass ... @end"
///
/// Objective-C categories are extensions on classes:
///
/// - declaration: "@interface MyClass (Ext) ... @end"
/// - definition: "@implementation MyClass (Ext) ... @end"
///
/// With one special case, a class extension, which is normally used to keep
/// some declarations internal to a file without exposing them in a header.
///
/// - class extension declaration: "@interface MyClass () ... @end"
/// - which really links to class definition: "@implementation MyClass ... @end"
///
/// For Objective-C protocols, e.g. "@protocol MyProtocol ... @end" this will
/// return nullptr as protocols don't have an implementation.
const ObjCImplDecl *getCorrespondingObjCImpl(const ObjCContainerDecl *D);
/// Infer the include directive to use for the given \p FileName. It aims for
/// #import for ObjC files and #include for the rest.
///
/// - For source files we use LangOpts directly to infer ObjC-ness.
/// - For header files we also check for symbols declared by the file and
/// existing include directives, as the language can be set to ObjC++ as a
/// fallback in the absence of compile flags.
Symbol::IncludeDirective
preferredIncludeDirective(llvm::StringRef FileName, const LangOptions &LangOpts,
ArrayRef<Inclusion> MainFileIncludes,
ArrayRef<const Decl *> TopLevelDecls);
/// Returns a QualType as string. The result doesn't contain unwritten scopes
/// like anonymous/inline namespace.
std::string printType(const QualType QT, const DeclContext &CurContext,
llvm::StringRef Placeholder = "");
/// Indicates if \p D is a template instantiation implicitly generated by the
/// compiler, e.g.
/// template <class T> struct vector {};
/// vector<int> v; // 'vector<int>' is an implicit instantiation
bool isImplicitTemplateInstantiation(const NamedDecl *D);
/// Indicates if \p D is an explicit template specialization, e.g.
/// template <class T> struct vector {};
/// template <> struct vector<bool> {}; // <-- explicit specialization
///
/// Note that explicit instantiations are NOT explicit specializations, albeit
/// they look similar.
/// template struct vector<bool>; // <-- explicit instantiation, NOT an
/// explicit specialization.
bool isExplicitTemplateSpecialization(const NamedDecl *D);
/// Returns a nested name specifier loc of \p ND if it was present in the
/// source, e.g.
/// void ns::something::foo() -> returns 'ns::something'
/// void foo() -> returns null
NestedNameSpecifierLoc getQualifierLoc(const NamedDecl &ND);
// Returns a type corresponding to a declaration of that type.
// Unlike the method on ASTContext, attempts to preserve the type as-written
// (i.e. vector<T*> rather than vector<type-parameter-0-0 *>.
QualType declaredType(const TypeDecl *D);
/// Retrieves the deduced type at a given location (auto, decltype).
/// It will return the underlying type.
/// If the type is an undeduced auto, returns the type itself.
std::optional<QualType> getDeducedType(ASTContext &, SourceLocation Loc);
// Find the abbreviated-function-template `auto` within a type, or returns null.
// Similar to getContainedAutoTypeLoc, but these `auto`s are
// TemplateTypeParmTypes for implicit TTPs, instead of AutoTypes.
// Also we don't look very hard, just stripping const, references, pointers.
// FIXME: handle more type patterns.
TemplateTypeParmTypeLoc getContainedAutoParamType(TypeLoc TL);
// If TemplatedDecl is the generic body of a template, and the template has
// exactly one visible instantiation, return the instantiated body.
NamedDecl *getOnlyInstantiation(NamedDecl *TemplatedDecl);
/// Return attributes attached directly to a node.
std::vector<const Attr *> getAttributes(const DynTypedNode &);
/// Gets the nested name specifier necessary for spelling \p ND in \p
/// DestContext, at \p InsertionPoint. It selects the shortest suffix of \p ND
/// such that it is visible in \p DestContext.
/// Returns an empty string if no qualification is necessary. For example, if
/// you want to qualify clang::clangd::bar::foo in clang::clangd::x, this
/// function will return bar. Note that the result might be sub-optimal for
/// classes, e.g. when the \p ND is a member of the base class.
///
/// This version considers all the using namespace directives before \p
/// InsertionPoint. i.e, if you have `using namespace
/// clang::clangd::bar`, this function will return an empty string for the
/// example above since no qualification is necessary in that case.
/// FIXME: Also take using directives and namespace aliases inside function body
/// into account.
std::string getQualification(ASTContext &Context,
const DeclContext *DestContext,
SourceLocation InsertionPoint,
const NamedDecl *ND);
/// This function uses the \p VisibleNamespaces to figure out if a shorter
/// qualification is sufficient for \p ND, and ignores any using namespace
/// directives. It can be useful if there's no AST for the DestContext, but some
/// pseudo-parsing is done. i.e. if \p ND is ns1::ns2::X and \p DestContext is
/// ns1::, users can provide `ns2::` as visible to change the result to be
/// empty.
/// Elements in VisibleNamespaces should be in the form: `ns::`, with trailing
/// "::".
/// Note that this is just textual and might be incorrect. e.g. when there are
/// two namespaces ns1::a and ns2::a, the function will early exit if "a::" is
/// present in \p VisibleNamespaces, no matter whether it is from ns1:: or ns2::
std::string getQualification(ASTContext &Context,
const DeclContext *DestContext,
const NamedDecl *ND,
llvm::ArrayRef<std::string> VisibleNamespaces);
/// Whether we must avoid computing linkage for D during code completion.
/// Clang aggressively caches linkage computation, which is stable after the AST
/// is built. Unfortunately the AST is incomplete during code completion, so
/// linkage may still change.
///
/// Example: `auto x = []{^}` at file scope.
/// During code completion, the initializer for x hasn't been parsed yet.
/// x has type `undeduced auto`, and external linkage.
/// If we compute linkage at this point, the external linkage will be cached.
///
/// After code completion the initializer is attached, and x has a lambda type.
/// This means x has "unique external" linkage. If we computed linkage above,
/// the cached value is incorrect. (clang catches this with an assertion).
bool hasUnstableLinkage(const Decl *D);
/// Checks whether \p D is more than \p MaxDepth away from translation unit
/// scope.
/// This is useful for limiting traversals to keep operation latencies
/// reasonable.
bool isDeeplyNested(const Decl *D, unsigned MaxDepth = 10);
/// Recursively resolves the parameters of a FunctionDecl that forwards its
/// parameters to another function via variadic template parameters. This can
/// for example be used to retrieve the constructor parameter ParmVarDecl for a
/// make_unique or emplace_back call.
llvm::SmallVector<const ParmVarDecl *>
resolveForwardingParameters(const FunctionDecl *D, unsigned MaxDepth = 10);
/// Checks whether D is instantiated from a function parameter pack
/// whose type is a bare type parameter pack (e.g. `Args...`), or a
/// reference to one (e.g. `Args&...` or `Args&&...`).
bool isExpandedFromParameterPack(const ParmVarDecl *D);
} // namespace clangd
} // namespace clang
#endif // LLVM_CLANG_TOOLS_EXTRA_CLANGD_AST_H
|