1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962
|
//===------- Interp.cpp - Interpreter for the constexpr VM ------*- C++ -*-===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
#include "Interp.h"
#include "Function.h"
#include "InterpFrame.h"
#include "InterpShared.h"
#include "InterpStack.h"
#include "Opcode.h"
#include "PrimType.h"
#include "Program.h"
#include "State.h"
#include "clang/AST/ASTContext.h"
#include "clang/AST/ASTDiagnostic.h"
#include "clang/AST/CXXInheritance.h"
#include "clang/AST/DeclObjC.h"
#include "clang/AST/Expr.h"
#include "clang/AST/ExprCXX.h"
#include "llvm/ADT/APSInt.h"
#include "llvm/ADT/StringExtras.h"
#include <limits>
#include <vector>
using namespace clang;
using namespace clang;
using namespace clang::interp;
static bool RetValue(InterpState &S, CodePtr &Pt, APValue &Result) {
llvm::report_fatal_error("Interpreter cannot return values");
}
//===----------------------------------------------------------------------===//
// Jmp, Jt, Jf
//===----------------------------------------------------------------------===//
static bool Jmp(InterpState &S, CodePtr &PC, int32_t Offset) {
PC += Offset;
return true;
}
static bool Jt(InterpState &S, CodePtr &PC, int32_t Offset) {
if (S.Stk.pop<bool>()) {
PC += Offset;
}
return true;
}
static bool Jf(InterpState &S, CodePtr &PC, int32_t Offset) {
if (!S.Stk.pop<bool>()) {
PC += Offset;
}
return true;
}
static void diagnoseMissingInitializer(InterpState &S, CodePtr OpPC,
const ValueDecl *VD) {
const SourceInfo &E = S.Current->getSource(OpPC);
S.FFDiag(E, diag::note_constexpr_var_init_unknown, 1) << VD;
S.Note(VD->getLocation(), diag::note_declared_at) << VD->getSourceRange();
}
static void diagnoseNonConstVariable(InterpState &S, CodePtr OpPC,
const ValueDecl *VD);
static bool diagnoseUnknownDecl(InterpState &S, CodePtr OpPC,
const ValueDecl *D) {
const SourceInfo &E = S.Current->getSource(OpPC);
if (isa<ParmVarDecl>(D)) {
if (S.getLangOpts().CPlusPlus11) {
S.FFDiag(E, diag::note_constexpr_function_param_value_unknown) << D;
S.Note(D->getLocation(), diag::note_declared_at) << D->getSourceRange();
} else {
S.FFDiag(E);
}
return false;
}
if (!D->getType().isConstQualified())
diagnoseNonConstVariable(S, OpPC, D);
else if (const auto *VD = dyn_cast<VarDecl>(D);
VD && !VD->getAnyInitializer())
diagnoseMissingInitializer(S, OpPC, VD);
return false;
}
static void diagnoseNonConstVariable(InterpState &S, CodePtr OpPC,
const ValueDecl *VD) {
if (!S.getLangOpts().CPlusPlus)
return;
const SourceInfo &Loc = S.Current->getSource(OpPC);
if (const auto *VarD = dyn_cast<VarDecl>(VD);
VarD && VarD->getType().isConstQualified() &&
!VarD->getAnyInitializer()) {
diagnoseMissingInitializer(S, OpPC, VD);
return;
}
// Rather random, but this is to match the diagnostic output of the current
// interpreter.
if (isa<ObjCIvarDecl>(VD))
return;
if (VD->getType()->isIntegralOrEnumerationType()) {
S.FFDiag(Loc, diag::note_constexpr_ltor_non_const_int, 1) << VD;
S.Note(VD->getLocation(), diag::note_declared_at);
return;
}
S.FFDiag(Loc,
S.getLangOpts().CPlusPlus11 ? diag::note_constexpr_ltor_non_constexpr
: diag::note_constexpr_ltor_non_integral,
1)
<< VD << VD->getType();
S.Note(VD->getLocation(), diag::note_declared_at);
}
static bool CheckActive(InterpState &S, CodePtr OpPC, const Pointer &Ptr,
AccessKinds AK) {
if (Ptr.isActive())
return true;
// Get the inactive field descriptor.
const FieldDecl *InactiveField = Ptr.getField();
// Walk up the pointer chain to find the union which is not active.
Pointer U = Ptr.getBase();
while (!U.isActive()) {
U = U.getBase();
}
// Find the active field of the union.
const Record *R = U.getRecord();
assert(R && R->isUnion() && "Not a union");
const FieldDecl *ActiveField = nullptr;
for (unsigned I = 0, N = R->getNumFields(); I < N; ++I) {
const Pointer &Field = U.atField(R->getField(I)->Offset);
if (Field.isActive()) {
ActiveField = Field.getField();
break;
}
}
const SourceInfo &Loc = S.Current->getSource(OpPC);
S.FFDiag(Loc, diag::note_constexpr_access_inactive_union_member)
<< AK << InactiveField << !ActiveField << ActiveField;
return false;
}
static bool CheckTemporary(InterpState &S, CodePtr OpPC, const Pointer &Ptr,
AccessKinds AK) {
if (auto ID = Ptr.getDeclID()) {
if (!Ptr.isStaticTemporary())
return true;
if (Ptr.getDeclDesc()->getType().isConstQualified())
return true;
if (S.P.getCurrentDecl() == ID)
return true;
const SourceInfo &E = S.Current->getSource(OpPC);
S.FFDiag(E, diag::note_constexpr_access_static_temporary, 1) << AK;
S.Note(Ptr.getDeclLoc(), diag::note_constexpr_temporary_here);
return false;
}
return true;
}
static bool CheckGlobal(InterpState &S, CodePtr OpPC, const Pointer &Ptr) {
if (auto ID = Ptr.getDeclID()) {
if (!Ptr.isStatic())
return true;
if (S.P.getCurrentDecl() == ID)
return true;
S.FFDiag(S.Current->getLocation(OpPC), diag::note_constexpr_modify_global);
return false;
}
return true;
}
namespace clang {
namespace interp {
static void popArg(InterpState &S, const Expr *Arg) {
PrimType Ty = S.getContext().classify(Arg).value_or(PT_Ptr);
TYPE_SWITCH(Ty, S.Stk.discard<T>());
}
void cleanupAfterFunctionCall(InterpState &S, CodePtr OpPC) {
assert(S.Current);
const Function *CurFunc = S.Current->getFunction();
assert(CurFunc);
if (CurFunc->isUnevaluatedBuiltin())
return;
// Some builtin functions require us to only look at the call site, since
// the classified parameter types do not match.
if (CurFunc->isBuiltin()) {
const auto *CE =
cast<CallExpr>(S.Current->Caller->getExpr(S.Current->getRetPC()));
for (int32_t I = CE->getNumArgs() - 1; I >= 0; --I) {
const Expr *A = CE->getArg(I);
popArg(S, A);
}
return;
}
if (S.Current->Caller && CurFunc->isVariadic()) {
// CallExpr we're look for is at the return PC of the current function, i.e.
// in the caller.
// This code path should be executed very rarely.
unsigned NumVarArgs;
const Expr *const *Args = nullptr;
unsigned NumArgs = 0;
const Expr *CallSite = S.Current->Caller->getExpr(S.Current->getRetPC());
if (const auto *CE = dyn_cast<CallExpr>(CallSite)) {
Args = CE->getArgs();
NumArgs = CE->getNumArgs();
} else if (const auto *CE = dyn_cast<CXXConstructExpr>(CallSite)) {
Args = CE->getArgs();
NumArgs = CE->getNumArgs();
} else
assert(false && "Can't get arguments from that expression type");
assert(NumArgs >= CurFunc->getNumWrittenParams());
NumVarArgs = NumArgs - CurFunc->getNumWrittenParams();
for (unsigned I = 0; I != NumVarArgs; ++I) {
const Expr *A = Args[NumArgs - 1 - I];
popArg(S, A);
}
}
// And in any case, remove the fixed parameters (the non-variadic ones)
// at the end.
S.Current->popArgs();
}
bool CheckExtern(InterpState &S, CodePtr OpPC, const Pointer &Ptr) {
if (!Ptr.isExtern())
return true;
if (Ptr.isInitialized() ||
(Ptr.getDeclDesc()->asVarDecl() == S.EvaluatingDecl))
return true;
if (!S.checkingPotentialConstantExpression() && S.getLangOpts().CPlusPlus) {
const auto *VD = Ptr.getDeclDesc()->asValueDecl();
diagnoseNonConstVariable(S, OpPC, VD);
}
return false;
}
bool CheckArray(InterpState &S, CodePtr OpPC, const Pointer &Ptr) {
if (!Ptr.isUnknownSizeArray())
return true;
const SourceInfo &E = S.Current->getSource(OpPC);
S.FFDiag(E, diag::note_constexpr_unsized_array_indexed);
return false;
}
bool CheckLive(InterpState &S, CodePtr OpPC, const Pointer &Ptr,
AccessKinds AK) {
if (Ptr.isZero()) {
const auto &Src = S.Current->getSource(OpPC);
if (Ptr.isField())
S.FFDiag(Src, diag::note_constexpr_null_subobject) << CSK_Field;
else
S.FFDiag(Src, diag::note_constexpr_access_null) << AK;
return false;
}
if (!Ptr.isLive()) {
const auto &Src = S.Current->getSource(OpPC);
bool IsTemp = Ptr.isTemporary();
S.FFDiag(Src, diag::note_constexpr_lifetime_ended, 1) << AK << !IsTemp;
if (IsTemp)
S.Note(Ptr.getDeclLoc(), diag::note_constexpr_temporary_here);
else
S.Note(Ptr.getDeclLoc(), diag::note_declared_at);
return false;
}
return true;
}
bool CheckConstant(InterpState &S, CodePtr OpPC, const Descriptor *Desc) {
assert(Desc);
auto IsConstType = [&S](const VarDecl *VD) -> bool {
if (VD->isConstexpr())
return true;
QualType T = VD->getType();
if (S.getLangOpts().CPlusPlus && !S.getLangOpts().CPlusPlus11)
return (T->isSignedIntegerOrEnumerationType() ||
T->isUnsignedIntegerOrEnumerationType()) &&
T.isConstQualified();
if (T.isConstQualified())
return true;
if (const auto *RT = T->getAs<ReferenceType>())
return RT->getPointeeType().isConstQualified();
if (const auto *PT = T->getAs<PointerType>())
return PT->getPointeeType().isConstQualified();
return false;
};
if (const auto *D = Desc->asVarDecl();
D && D->hasGlobalStorage() && D != S.EvaluatingDecl && !IsConstType(D)) {
diagnoseNonConstVariable(S, OpPC, D);
return S.inConstantContext();
}
return true;
}
static bool CheckConstant(InterpState &S, CodePtr OpPC, const Pointer &Ptr) {
if (Ptr.isIntegralPointer())
return true;
return CheckConstant(S, OpPC, Ptr.getDeclDesc());
}
bool CheckNull(InterpState &S, CodePtr OpPC, const Pointer &Ptr,
CheckSubobjectKind CSK) {
if (!Ptr.isZero())
return true;
const SourceInfo &Loc = S.Current->getSource(OpPC);
S.FFDiag(Loc, diag::note_constexpr_null_subobject)
<< CSK << S.Current->getRange(OpPC);
return false;
}
bool CheckRange(InterpState &S, CodePtr OpPC, const Pointer &Ptr,
AccessKinds AK) {
if (!Ptr.isOnePastEnd())
return true;
const SourceInfo &Loc = S.Current->getSource(OpPC);
S.FFDiag(Loc, diag::note_constexpr_access_past_end)
<< AK << S.Current->getRange(OpPC);
return false;
}
bool CheckRange(InterpState &S, CodePtr OpPC, const Pointer &Ptr,
CheckSubobjectKind CSK) {
if (!Ptr.isElementPastEnd())
return true;
const SourceInfo &Loc = S.Current->getSource(OpPC);
S.FFDiag(Loc, diag::note_constexpr_past_end_subobject)
<< CSK << S.Current->getRange(OpPC);
return false;
}
bool CheckSubobject(InterpState &S, CodePtr OpPC, const Pointer &Ptr,
CheckSubobjectKind CSK) {
if (!Ptr.isOnePastEnd())
return true;
const SourceInfo &Loc = S.Current->getSource(OpPC);
S.FFDiag(Loc, diag::note_constexpr_past_end_subobject)
<< CSK << S.Current->getRange(OpPC);
return false;
}
bool CheckDowncast(InterpState &S, CodePtr OpPC, const Pointer &Ptr,
uint32_t Offset) {
uint32_t MinOffset = Ptr.getDeclDesc()->getMetadataSize();
uint32_t PtrOffset = Ptr.getByteOffset();
// We subtract Offset from PtrOffset. The result must be at least
// MinOffset.
if (Offset < PtrOffset && (PtrOffset - Offset) >= MinOffset)
return true;
const auto *E = cast<CastExpr>(S.Current->getExpr(OpPC));
QualType TargetQT = E->getType()->getPointeeType();
QualType MostDerivedQT = Ptr.getDeclPtr().getType();
S.CCEDiag(E, diag::note_constexpr_invalid_downcast)
<< MostDerivedQT << TargetQT;
return false;
}
bool CheckConst(InterpState &S, CodePtr OpPC, const Pointer &Ptr) {
assert(Ptr.isLive() && "Pointer is not live");
if (!Ptr.isConst() || Ptr.isMutable())
return true;
// The This pointer is writable in constructors and destructors,
// even if isConst() returns true.
// TODO(perf): We could be hitting this code path quite a lot in complex
// constructors. Is there a better way to do this?
if (S.Current->getFunction()) {
for (const InterpFrame *Frame = S.Current; Frame; Frame = Frame->Caller) {
if (const Function *Func = Frame->getFunction();
Func && (Func->isConstructor() || Func->isDestructor()) &&
Ptr.block() == Frame->getThis().block()) {
return true;
}
}
}
if (!Ptr.isBlockPointer())
return false;
const QualType Ty = Ptr.getType();
const SourceInfo &Loc = S.Current->getSource(OpPC);
S.FFDiag(Loc, diag::note_constexpr_modify_const_type) << Ty;
return false;
}
bool CheckMutable(InterpState &S, CodePtr OpPC, const Pointer &Ptr) {
assert(Ptr.isLive() && "Pointer is not live");
if (!Ptr.isMutable())
return true;
// In C++14 onwards, it is permitted to read a mutable member whose
// lifetime began within the evaluation.
if (S.getLangOpts().CPlusPlus14 &&
Ptr.block()->getEvalID() == S.Ctx.getEvalID())
return true;
const SourceInfo &Loc = S.Current->getSource(OpPC);
const FieldDecl *Field = Ptr.getField();
S.FFDiag(Loc, diag::note_constexpr_access_mutable, 1) << AK_Read << Field;
S.Note(Field->getLocation(), diag::note_declared_at);
return false;
}
bool CheckVolatile(InterpState &S, CodePtr OpPC, const Pointer &Ptr,
AccessKinds AK) {
assert(Ptr.isLive());
// FIXME: This check here might be kinda expensive. Maybe it would be better
// to have another field in InlineDescriptor for this?
if (!Ptr.isBlockPointer())
return true;
QualType PtrType = Ptr.getType();
if (!PtrType.isVolatileQualified())
return true;
const SourceInfo &Loc = S.Current->getSource(OpPC);
if (S.getLangOpts().CPlusPlus)
S.FFDiag(Loc, diag::note_constexpr_access_volatile_type) << AK << PtrType;
else
S.FFDiag(Loc);
return false;
}
bool CheckInitialized(InterpState &S, CodePtr OpPC, const Pointer &Ptr,
AccessKinds AK) {
assert(Ptr.isLive());
if (Ptr.isInitialized())
return true;
if (const auto *VD = Ptr.getDeclDesc()->asVarDecl();
VD && VD->hasGlobalStorage()) {
const SourceInfo &Loc = S.Current->getSource(OpPC);
if (VD->getAnyInitializer()) {
S.FFDiag(Loc, diag::note_constexpr_var_init_non_constant, 1) << VD;
S.Note(VD->getLocation(), diag::note_declared_at);
} else {
diagnoseMissingInitializer(S, OpPC, VD);
}
return false;
}
if (!S.checkingPotentialConstantExpression()) {
S.FFDiag(S.Current->getSource(OpPC), diag::note_constexpr_access_uninit)
<< AK << /*uninitialized=*/true << S.Current->getRange(OpPC);
}
return false;
}
bool CheckGlobalInitialized(InterpState &S, CodePtr OpPC, const Pointer &Ptr) {
if (Ptr.isInitialized())
return true;
assert(S.getLangOpts().CPlusPlus);
const auto *VD = cast<VarDecl>(Ptr.getDeclDesc()->asValueDecl());
if ((!VD->hasConstantInitialization() &&
VD->mightBeUsableInConstantExpressions(S.getCtx())) ||
(S.getLangOpts().OpenCL && !S.getLangOpts().CPlusPlus11 &&
!VD->hasICEInitializer(S.getCtx()))) {
const SourceInfo &Loc = S.Current->getSource(OpPC);
S.FFDiag(Loc, diag::note_constexpr_var_init_non_constant, 1) << VD;
S.Note(VD->getLocation(), diag::note_declared_at);
}
return false;
}
bool CheckLoad(InterpState &S, CodePtr OpPC, const Pointer &Ptr,
AccessKinds AK) {
if (!CheckLive(S, OpPC, Ptr, AK))
return false;
if (!CheckConstant(S, OpPC, Ptr))
return false;
if (!CheckDummy(S, OpPC, Ptr, AK))
return false;
if (!CheckExtern(S, OpPC, Ptr))
return false;
if (!CheckRange(S, OpPC, Ptr, AK))
return false;
if (!CheckActive(S, OpPC, Ptr, AK))
return false;
if (!CheckInitialized(S, OpPC, Ptr, AK))
return false;
if (!CheckTemporary(S, OpPC, Ptr, AK))
return false;
if (!CheckMutable(S, OpPC, Ptr))
return false;
if (!CheckVolatile(S, OpPC, Ptr, AK))
return false;
return true;
}
bool CheckStore(InterpState &S, CodePtr OpPC, const Pointer &Ptr) {
if (!CheckLive(S, OpPC, Ptr, AK_Assign))
return false;
if (!CheckDummy(S, OpPC, Ptr, AK_Assign))
return false;
if (!CheckExtern(S, OpPC, Ptr))
return false;
if (!CheckRange(S, OpPC, Ptr, AK_Assign))
return false;
if (!CheckGlobal(S, OpPC, Ptr))
return false;
if (!CheckConst(S, OpPC, Ptr))
return false;
return true;
}
bool CheckInvoke(InterpState &S, CodePtr OpPC, const Pointer &Ptr) {
if (!CheckLive(S, OpPC, Ptr, AK_MemberCall))
return false;
if (!Ptr.isDummy()) {
if (!CheckExtern(S, OpPC, Ptr))
return false;
if (!CheckRange(S, OpPC, Ptr, AK_MemberCall))
return false;
}
return true;
}
bool CheckInit(InterpState &S, CodePtr OpPC, const Pointer &Ptr) {
if (!CheckLive(S, OpPC, Ptr, AK_Assign))
return false;
if (!CheckRange(S, OpPC, Ptr, AK_Assign))
return false;
return true;
}
bool CheckCallable(InterpState &S, CodePtr OpPC, const Function *F) {
if (F->isVirtual() && !S.getLangOpts().CPlusPlus20) {
const SourceLocation &Loc = S.Current->getLocation(OpPC);
S.CCEDiag(Loc, diag::note_constexpr_virtual_call);
return false;
}
if (F->isConstexpr() && F->hasBody() &&
(F->getDecl()->isConstexpr() || F->getDecl()->hasAttr<MSConstexprAttr>()))
return true;
// Implicitly constexpr.
if (F->isLambdaStaticInvoker())
return true;
const SourceLocation &Loc = S.Current->getLocation(OpPC);
if (S.getLangOpts().CPlusPlus11) {
const FunctionDecl *DiagDecl = F->getDecl();
// Invalid decls have been diagnosed before.
if (DiagDecl->isInvalidDecl())
return false;
// If this function is not constexpr because it is an inherited
// non-constexpr constructor, diagnose that directly.
const auto *CD = dyn_cast<CXXConstructorDecl>(DiagDecl);
if (CD && CD->isInheritingConstructor()) {
const auto *Inherited = CD->getInheritedConstructor().getConstructor();
if (!Inherited->isConstexpr())
DiagDecl = CD = Inherited;
}
// FIXME: If DiagDecl is an implicitly-declared special member function
// or an inheriting constructor, we should be much more explicit about why
// it's not constexpr.
if (CD && CD->isInheritingConstructor()) {
S.FFDiag(Loc, diag::note_constexpr_invalid_inhctor, 1)
<< CD->getInheritedConstructor().getConstructor()->getParent();
S.Note(DiagDecl->getLocation(), diag::note_declared_at);
} else {
// Don't emit anything if the function isn't defined and we're checking
// for a constant expression. It might be defined at the point we're
// actually calling it.
bool IsExtern = DiagDecl->getStorageClass() == SC_Extern;
if (!DiagDecl->isDefined() && !IsExtern && DiagDecl->isConstexpr() &&
S.checkingPotentialConstantExpression())
return false;
// If the declaration is defined, declared 'constexpr' _and_ has a body,
// the below diagnostic doesn't add anything useful.
if (DiagDecl->isDefined() && DiagDecl->isConstexpr() &&
DiagDecl->hasBody())
return false;
S.FFDiag(Loc, diag::note_constexpr_invalid_function, 1)
<< DiagDecl->isConstexpr() << (bool)CD << DiagDecl;
S.Note(DiagDecl->getLocation(), diag::note_declared_at);
}
} else {
S.FFDiag(Loc, diag::note_invalid_subexpr_in_const_expr);
}
return false;
}
bool CheckCallDepth(InterpState &S, CodePtr OpPC) {
if ((S.Current->getDepth() + 1) > S.getLangOpts().ConstexprCallDepth) {
S.FFDiag(S.Current->getSource(OpPC),
diag::note_constexpr_depth_limit_exceeded)
<< S.getLangOpts().ConstexprCallDepth;
return false;
}
return true;
}
bool CheckThis(InterpState &S, CodePtr OpPC, const Pointer &This) {
if (!This.isZero())
return true;
const SourceInfo &Loc = S.Current->getSource(OpPC);
bool IsImplicit = false;
if (const auto *E = dyn_cast_if_present<CXXThisExpr>(Loc.asExpr()))
IsImplicit = E->isImplicit();
if (S.getLangOpts().CPlusPlus11)
S.FFDiag(Loc, diag::note_constexpr_this) << IsImplicit;
else
S.FFDiag(Loc);
return false;
}
bool CheckPure(InterpState &S, CodePtr OpPC, const CXXMethodDecl *MD) {
if (!MD->isPureVirtual())
return true;
const SourceInfo &E = S.Current->getSource(OpPC);
S.FFDiag(E, diag::note_constexpr_pure_virtual_call, 1) << MD;
S.Note(MD->getLocation(), diag::note_declared_at);
return false;
}
bool CheckFloatResult(InterpState &S, CodePtr OpPC, const Floating &Result,
APFloat::opStatus Status) {
const SourceInfo &E = S.Current->getSource(OpPC);
// [expr.pre]p4:
// If during the evaluation of an expression, the result is not
// mathematically defined [...], the behavior is undefined.
// FIXME: C++ rules require us to not conform to IEEE 754 here.
if (Result.isNan()) {
S.CCEDiag(E, diag::note_constexpr_float_arithmetic)
<< /*NaN=*/true << S.Current->getRange(OpPC);
return S.noteUndefinedBehavior();
}
// In a constant context, assume that any dynamic rounding mode or FP
// exception state matches the default floating-point environment.
if (S.inConstantContext())
return true;
FPOptions FPO = E.asExpr()->getFPFeaturesInEffect(S.Ctx.getLangOpts());
if ((Status & APFloat::opInexact) &&
FPO.getRoundingMode() == llvm::RoundingMode::Dynamic) {
// Inexact result means that it depends on rounding mode. If the requested
// mode is dynamic, the evaluation cannot be made in compile time.
S.FFDiag(E, diag::note_constexpr_dynamic_rounding);
return false;
}
if ((Status != APFloat::opOK) &&
(FPO.getRoundingMode() == llvm::RoundingMode::Dynamic ||
FPO.getExceptionMode() != LangOptions::FPE_Ignore ||
FPO.getAllowFEnvAccess())) {
S.FFDiag(E, diag::note_constexpr_float_arithmetic_strict);
return false;
}
if ((Status & APFloat::opStatus::opInvalidOp) &&
FPO.getExceptionMode() != LangOptions::FPE_Ignore) {
// There is no usefully definable result.
S.FFDiag(E);
return false;
}
return true;
}
bool CheckDynamicMemoryAllocation(InterpState &S, CodePtr OpPC) {
if (S.getLangOpts().CPlusPlus20)
return true;
const SourceInfo &E = S.Current->getSource(OpPC);
S.CCEDiag(E, diag::note_constexpr_new);
return true;
}
bool CheckNewDeleteForms(InterpState &S, CodePtr OpPC, bool NewWasArray,
bool DeleteIsArray, const Descriptor *D,
const Expr *NewExpr) {
if (NewWasArray == DeleteIsArray)
return true;
QualType TypeToDiagnose;
// We need to shuffle things around a bit here to get a better diagnostic,
// because the expression we allocated the block for was of type int*,
// but we want to get the array size right.
if (D->isArray()) {
QualType ElemQT = D->getType()->getPointeeType();
TypeToDiagnose = S.getCtx().getConstantArrayType(
ElemQT, APInt(64, static_cast<uint64_t>(D->getNumElems()), false),
nullptr, ArraySizeModifier::Normal, 0);
} else
TypeToDiagnose = D->getType()->getPointeeType();
const SourceInfo &E = S.Current->getSource(OpPC);
S.FFDiag(E, diag::note_constexpr_new_delete_mismatch)
<< DeleteIsArray << 0 << TypeToDiagnose;
S.Note(NewExpr->getExprLoc(), diag::note_constexpr_dynamic_alloc_here)
<< NewExpr->getSourceRange();
return false;
}
bool CheckDeleteSource(InterpState &S, CodePtr OpPC, const Expr *Source,
const Pointer &Ptr) {
if (Source && isa<CXXNewExpr>(Source))
return true;
// Whatever this is, we didn't heap allocate it.
const SourceInfo &Loc = S.Current->getSource(OpPC);
S.FFDiag(Loc, diag::note_constexpr_delete_not_heap_alloc)
<< Ptr.toDiagnosticString(S.getCtx());
if (Ptr.isTemporary())
S.Note(Ptr.getDeclLoc(), diag::note_constexpr_temporary_here);
else
S.Note(Ptr.getDeclLoc(), diag::note_declared_at);
return false;
}
/// We aleady know the given DeclRefExpr is invalid for some reason,
/// now figure out why and print appropriate diagnostics.
bool CheckDeclRef(InterpState &S, CodePtr OpPC, const DeclRefExpr *DR) {
const ValueDecl *D = DR->getDecl();
return diagnoseUnknownDecl(S, OpPC, D);
}
bool CheckDummy(InterpState &S, CodePtr OpPC, const Pointer &Ptr,
AccessKinds AK) {
if (!Ptr.isDummy())
return true;
const Descriptor *Desc = Ptr.getDeclDesc();
const ValueDecl *D = Desc->asValueDecl();
if (!D)
return false;
if (AK == AK_Read || AK == AK_Increment || AK == AK_Decrement)
return diagnoseUnknownDecl(S, OpPC, D);
assert(AK == AK_Assign);
if (S.getLangOpts().CPlusPlus11) {
const SourceInfo &E = S.Current->getSource(OpPC);
S.FFDiag(E, diag::note_constexpr_modify_global);
}
return false;
}
bool CheckNonNullArgs(InterpState &S, CodePtr OpPC, const Function *F,
const CallExpr *CE, unsigned ArgSize) {
auto Args = llvm::ArrayRef(CE->getArgs(), CE->getNumArgs());
auto NonNullArgs = collectNonNullArgs(F->getDecl(), Args);
unsigned Offset = 0;
unsigned Index = 0;
for (const Expr *Arg : Args) {
if (NonNullArgs[Index] && Arg->getType()->isPointerType()) {
const Pointer &ArgPtr = S.Stk.peek<Pointer>(ArgSize - Offset);
if (ArgPtr.isZero()) {
const SourceLocation &Loc = S.Current->getLocation(OpPC);
S.CCEDiag(Loc, diag::note_non_null_attribute_failed);
return false;
}
}
Offset += align(primSize(S.Ctx.classify(Arg).value_or(PT_Ptr)));
++Index;
}
return true;
}
// FIXME: This is similar to code we already have in Compiler.cpp.
// I think it makes sense to instead add the field and base destruction stuff
// to the destructor Function itself. Then destroying a record would really
// _just_ be calling its destructor. That would also help with the diagnostic
// difference when the destructor or a field/base fails.
static bool runRecordDestructor(InterpState &S, CodePtr OpPC,
const Pointer &BasePtr,
const Descriptor *Desc) {
assert(Desc->isRecord());
const Record *R = Desc->ElemRecord;
assert(R);
// Fields.
for (const Record::Field &Field : llvm::reverse(R->fields())) {
const Descriptor *D = Field.Desc;
if (D->isRecord()) {
if (!runRecordDestructor(S, OpPC, BasePtr.atField(Field.Offset), D))
return false;
} else if (D->isCompositeArray()) {
const Descriptor *ElemDesc = Desc->ElemDesc;
assert(ElemDesc->isRecord());
for (unsigned I = 0; I != Desc->getNumElems(); ++I) {
if (!runRecordDestructor(S, OpPC, BasePtr.atIndex(I).narrow(),
ElemDesc))
return false;
}
}
}
// Destructor of this record.
if (const CXXDestructorDecl *Dtor = R->getDestructor();
Dtor && !Dtor->isTrivial()) {
const Function *DtorFunc = S.getContext().getOrCreateFunction(Dtor);
if (!DtorFunc)
return false;
S.Stk.push<Pointer>(BasePtr);
if (!Call(S, OpPC, DtorFunc, 0))
return false;
}
// Bases.
for (const Record::Base &Base : llvm::reverse(R->bases())) {
if (!runRecordDestructor(S, OpPC, BasePtr.atField(Base.Offset), Base.Desc))
return false;
}
return true;
}
bool RunDestructors(InterpState &S, CodePtr OpPC, const Block *B) {
assert(B);
const Descriptor *Desc = B->getDescriptor();
if (Desc->isPrimitive() || Desc->isPrimitiveArray())
return true;
assert(Desc->isRecord() || Desc->isCompositeArray());
if (Desc->isCompositeArray()) {
const Descriptor *ElemDesc = Desc->ElemDesc;
assert(ElemDesc->isRecord());
Pointer RP(const_cast<Block *>(B));
for (unsigned I = 0; I != Desc->getNumElems(); ++I) {
if (!runRecordDestructor(S, OpPC, RP.atIndex(I).narrow(), ElemDesc))
return false;
}
return true;
}
assert(Desc->isRecord());
return runRecordDestructor(S, OpPC, Pointer(const_cast<Block *>(B)), Desc);
}
void diagnoseEnumValue(InterpState &S, CodePtr OpPC, const EnumDecl *ED,
const APSInt &Value) {
llvm::APInt Min;
llvm::APInt Max;
if (S.EvaluatingDecl && !S.EvaluatingDecl->isConstexpr())
return;
ED->getValueRange(Max, Min);
--Max;
if (ED->getNumNegativeBits() &&
(Max.slt(Value.getSExtValue()) || Min.sgt(Value.getSExtValue()))) {
const SourceLocation &Loc = S.Current->getLocation(OpPC);
S.report(Loc, diag::warn_constexpr_unscoped_enum_out_of_range)
<< llvm::toString(Value, 10) << Min.getSExtValue() << Max.getSExtValue()
<< ED;
} else if (!ED->getNumNegativeBits() && Max.ult(Value.getZExtValue())) {
const SourceLocation &Loc = S.Current->getLocation(OpPC);
S.report(Loc, diag::warn_constexpr_unscoped_enum_out_of_range)
<< llvm::toString(Value, 10) << Min.getZExtValue() << Max.getZExtValue()
<< ED;
}
}
// https://github.com/llvm/llvm-project/issues/102513
#if defined(_WIN32) && !defined(__clang__) && !defined(NDEBUG)
#pragma optimize("", off)
#endif
bool Interpret(InterpState &S, APValue &Result) {
// The current stack frame when we started Interpret().
// This is being used by the ops to determine wheter
// to return from this function and thus terminate
// interpretation.
const InterpFrame *StartFrame = S.Current;
assert(!S.Current->isRoot());
CodePtr PC = S.Current->getPC();
// Empty program.
if (!PC)
return true;
for (;;) {
auto Op = PC.read<Opcode>();
CodePtr OpPC = PC;
switch (Op) {
#define GET_INTERP
#include "Opcodes.inc"
#undef GET_INTERP
}
}
}
// https://github.com/llvm/llvm-project/issues/102513
#if defined(_WIN32) && !defined(__clang__) && !defined(NDEBUG)
#pragma optimize("", on)
#endif
} // namespace interp
} // namespace clang
|