1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593
|
//===--- InterpBuiltin.cpp - Interpreter for the constexpr VM ---*- C++ -*-===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
#include "../ExprConstShared.h"
#include "Boolean.h"
#include "Interp.h"
#include "PrimType.h"
#include "clang/AST/OSLog.h"
#include "clang/AST/RecordLayout.h"
#include "clang/Basic/Builtins.h"
#include "clang/Basic/TargetInfo.h"
#include "llvm/Support/SipHash.h"
namespace clang {
namespace interp {
static unsigned callArgSize(const InterpState &S, const CallExpr *C) {
unsigned O = 0;
for (const Expr *E : C->arguments()) {
O += align(primSize(*S.getContext().classify(E)));
}
return O;
}
template <typename T>
static T getParam(const InterpFrame *Frame, unsigned Index) {
assert(Frame->getFunction()->getNumParams() > Index);
unsigned Offset = Frame->getFunction()->getParamOffset(Index);
return Frame->getParam<T>(Offset);
}
PrimType getIntPrimType(const InterpState &S) {
const TargetInfo &TI = S.getCtx().getTargetInfo();
unsigned IntWidth = TI.getIntWidth();
if (IntWidth == 32)
return PT_Sint32;
else if (IntWidth == 16)
return PT_Sint16;
llvm_unreachable("Int isn't 16 or 32 bit?");
}
PrimType getLongPrimType(const InterpState &S) {
const TargetInfo &TI = S.getCtx().getTargetInfo();
unsigned LongWidth = TI.getLongWidth();
if (LongWidth == 64)
return PT_Sint64;
else if (LongWidth == 32)
return PT_Sint32;
else if (LongWidth == 16)
return PT_Sint16;
llvm_unreachable("long isn't 16, 32 or 64 bit?");
}
/// Peek an integer value from the stack into an APSInt.
static APSInt peekToAPSInt(InterpStack &Stk, PrimType T, size_t Offset = 0) {
if (Offset == 0)
Offset = align(primSize(T));
APSInt R;
INT_TYPE_SWITCH(T, R = Stk.peek<T>(Offset).toAPSInt());
return R;
}
/// Pushes \p Val on the stack as the type given by \p QT.
static void pushInteger(InterpState &S, const APSInt &Val, QualType QT) {
assert(QT->isSignedIntegerOrEnumerationType() ||
QT->isUnsignedIntegerOrEnumerationType());
std::optional<PrimType> T = S.getContext().classify(QT);
assert(T);
if (QT->isSignedIntegerOrEnumerationType()) {
int64_t V = Val.getSExtValue();
INT_TYPE_SWITCH(*T, { S.Stk.push<T>(T::from(V)); });
} else {
assert(QT->isUnsignedIntegerOrEnumerationType());
uint64_t V = Val.getZExtValue();
INT_TYPE_SWITCH(*T, { S.Stk.push<T>(T::from(V)); });
}
}
template <typename T>
static void pushInteger(InterpState &S, T Val, QualType QT) {
if constexpr (std::is_same_v<T, APInt>)
pushInteger(S, APSInt(Val, !std::is_signed_v<T>), QT);
else
pushInteger(S,
APSInt(APInt(sizeof(T) * 8, static_cast<uint64_t>(Val),
std::is_signed_v<T>),
!std::is_signed_v<T>),
QT);
}
static void assignInteger(Pointer &Dest, PrimType ValueT, const APSInt &Value) {
INT_TYPE_SWITCH_NO_BOOL(
ValueT, { Dest.deref<T>() = T::from(static_cast<T>(Value)); });
}
static bool retPrimValue(InterpState &S, CodePtr OpPC, APValue &Result,
std::optional<PrimType> &T) {
if (!T)
return RetVoid(S, OpPC, Result);
#define RET_CASE(X) \
case X: \
return Ret<X>(S, OpPC, Result);
switch (*T) {
RET_CASE(PT_Ptr);
RET_CASE(PT_FnPtr);
RET_CASE(PT_Float);
RET_CASE(PT_Bool);
RET_CASE(PT_Sint8);
RET_CASE(PT_Uint8);
RET_CASE(PT_Sint16);
RET_CASE(PT_Uint16);
RET_CASE(PT_Sint32);
RET_CASE(PT_Uint32);
RET_CASE(PT_Sint64);
RET_CASE(PT_Uint64);
default:
llvm_unreachable("Unsupported return type for builtin function");
}
#undef RET_CASE
}
static bool interp__builtin_is_constant_evaluated(InterpState &S, CodePtr OpPC,
const InterpFrame *Frame,
const CallExpr *Call) {
// The current frame is the one for __builtin_is_constant_evaluated.
// The one above that, potentially the one for std::is_constant_evaluated().
if (S.inConstantContext() && !S.checkingPotentialConstantExpression() &&
Frame->Caller && S.getEvalStatus().Diag) {
auto isStdCall = [](const FunctionDecl *F) -> bool {
return F && F->isInStdNamespace() && F->getIdentifier() &&
F->getIdentifier()->isStr("is_constant_evaluated");
};
const InterpFrame *Caller = Frame->Caller;
if (Caller->Caller && isStdCall(Caller->getCallee())) {
const Expr *E = Caller->Caller->getExpr(Caller->getRetPC());
S.report(E->getExprLoc(),
diag::warn_is_constant_evaluated_always_true_constexpr)
<< "std::is_constant_evaluated" << E->getSourceRange();
} else {
const Expr *E = Frame->Caller->getExpr(Frame->getRetPC());
S.report(E->getExprLoc(),
diag::warn_is_constant_evaluated_always_true_constexpr)
<< "__builtin_is_constant_evaluated" << E->getSourceRange();
}
}
S.Stk.push<Boolean>(Boolean::from(S.inConstantContext()));
return true;
}
static bool interp__builtin_strcmp(InterpState &S, CodePtr OpPC,
const InterpFrame *Frame,
const CallExpr *Call) {
const Pointer &A = getParam<Pointer>(Frame, 0);
const Pointer &B = getParam<Pointer>(Frame, 1);
if (!CheckLive(S, OpPC, A, AK_Read) || !CheckLive(S, OpPC, B, AK_Read))
return false;
if (A.isDummy() || B.isDummy())
return false;
assert(A.getFieldDesc()->isPrimitiveArray());
assert(B.getFieldDesc()->isPrimitiveArray());
unsigned IndexA = A.getIndex();
unsigned IndexB = B.getIndex();
int32_t Result = 0;
for (;; ++IndexA, ++IndexB) {
const Pointer &PA = A.atIndex(IndexA);
const Pointer &PB = B.atIndex(IndexB);
if (!CheckRange(S, OpPC, PA, AK_Read) ||
!CheckRange(S, OpPC, PB, AK_Read)) {
return false;
}
uint8_t CA = PA.deref<uint8_t>();
uint8_t CB = PB.deref<uint8_t>();
if (CA > CB) {
Result = 1;
break;
} else if (CA < CB) {
Result = -1;
break;
}
if (CA == 0 || CB == 0)
break;
}
pushInteger(S, Result, Call->getType());
return true;
}
static bool interp__builtin_strlen(InterpState &S, CodePtr OpPC,
const InterpFrame *Frame,
const CallExpr *Call) {
const Pointer &StrPtr = getParam<Pointer>(Frame, 0);
if (!CheckArray(S, OpPC, StrPtr))
return false;
if (!CheckLive(S, OpPC, StrPtr, AK_Read))
return false;
if (!CheckDummy(S, OpPC, StrPtr, AK_Read))
return false;
assert(StrPtr.getFieldDesc()->isPrimitiveArray());
size_t Len = 0;
for (size_t I = StrPtr.getIndex();; ++I, ++Len) {
const Pointer &ElemPtr = StrPtr.atIndex(I);
if (!CheckRange(S, OpPC, ElemPtr, AK_Read))
return false;
uint8_t Val = ElemPtr.deref<uint8_t>();
if (Val == 0)
break;
}
pushInteger(S, Len, Call->getType());
return true;
}
static bool interp__builtin_nan(InterpState &S, CodePtr OpPC,
const InterpFrame *Frame, const Function *F,
bool Signaling) {
const Pointer &Arg = getParam<Pointer>(Frame, 0);
if (!CheckLoad(S, OpPC, Arg))
return false;
assert(Arg.getFieldDesc()->isPrimitiveArray());
// Convert the given string to an integer using StringRef's API.
llvm::APInt Fill;
std::string Str;
assert(Arg.getNumElems() >= 1);
for (unsigned I = 0;; ++I) {
const Pointer &Elem = Arg.atIndex(I);
if (!CheckLoad(S, OpPC, Elem))
return false;
if (Elem.deref<int8_t>() == 0)
break;
Str += Elem.deref<char>();
}
// Treat empty strings as if they were zero.
if (Str.empty())
Fill = llvm::APInt(32, 0);
else if (StringRef(Str).getAsInteger(0, Fill))
return false;
const llvm::fltSemantics &TargetSemantics =
S.getCtx().getFloatTypeSemantics(F->getDecl()->getReturnType());
Floating Result;
if (S.getCtx().getTargetInfo().isNan2008()) {
if (Signaling)
Result = Floating(
llvm::APFloat::getSNaN(TargetSemantics, /*Negative=*/false, &Fill));
else
Result = Floating(
llvm::APFloat::getQNaN(TargetSemantics, /*Negative=*/false, &Fill));
} else {
// Prior to IEEE 754-2008, architectures were allowed to choose whether
// the first bit of their significand was set for qNaN or sNaN. MIPS chose
// a different encoding to what became a standard in 2008, and for pre-
// 2008 revisions, MIPS interpreted sNaN-2008 as qNan and qNaN-2008 as
// sNaN. This is now known as "legacy NaN" encoding.
if (Signaling)
Result = Floating(
llvm::APFloat::getQNaN(TargetSemantics, /*Negative=*/false, &Fill));
else
Result = Floating(
llvm::APFloat::getSNaN(TargetSemantics, /*Negative=*/false, &Fill));
}
S.Stk.push<Floating>(Result);
return true;
}
static bool interp__builtin_inf(InterpState &S, CodePtr OpPC,
const InterpFrame *Frame, const Function *F) {
const llvm::fltSemantics &TargetSemantics =
S.getCtx().getFloatTypeSemantics(F->getDecl()->getReturnType());
S.Stk.push<Floating>(Floating::getInf(TargetSemantics));
return true;
}
static bool interp__builtin_copysign(InterpState &S, CodePtr OpPC,
const InterpFrame *Frame,
const Function *F) {
const Floating &Arg1 = getParam<Floating>(Frame, 0);
const Floating &Arg2 = getParam<Floating>(Frame, 1);
APFloat Copy = Arg1.getAPFloat();
Copy.copySign(Arg2.getAPFloat());
S.Stk.push<Floating>(Floating(Copy));
return true;
}
static bool interp__builtin_fmin(InterpState &S, CodePtr OpPC,
const InterpFrame *Frame, const Function *F) {
const Floating &LHS = getParam<Floating>(Frame, 0);
const Floating &RHS = getParam<Floating>(Frame, 1);
Floating Result;
// When comparing zeroes, return -0.0 if one of the zeroes is negative.
if (LHS.isZero() && RHS.isZero() && RHS.isNegative())
Result = RHS;
else if (LHS.isNan() || RHS < LHS)
Result = RHS;
else
Result = LHS;
S.Stk.push<Floating>(Result);
return true;
}
static bool interp__builtin_fmax(InterpState &S, CodePtr OpPC,
const InterpFrame *Frame,
const Function *Func) {
const Floating &LHS = getParam<Floating>(Frame, 0);
const Floating &RHS = getParam<Floating>(Frame, 1);
Floating Result;
// When comparing zeroes, return +0.0 if one of the zeroes is positive.
if (LHS.isZero() && RHS.isZero() && LHS.isNegative())
Result = RHS;
else if (LHS.isNan() || RHS > LHS)
Result = RHS;
else
Result = LHS;
S.Stk.push<Floating>(Result);
return true;
}
/// Defined as __builtin_isnan(...), to accommodate the fact that it can
/// take a float, double, long double, etc.
/// But for us, that's all a Floating anyway.
static bool interp__builtin_isnan(InterpState &S, CodePtr OpPC,
const InterpFrame *Frame, const Function *F,
const CallExpr *Call) {
const Floating &Arg = S.Stk.peek<Floating>();
pushInteger(S, Arg.isNan(), Call->getType());
return true;
}
static bool interp__builtin_issignaling(InterpState &S, CodePtr OpPC,
const InterpFrame *Frame,
const Function *F,
const CallExpr *Call) {
const Floating &Arg = S.Stk.peek<Floating>();
pushInteger(S, Arg.isSignaling(), Call->getType());
return true;
}
static bool interp__builtin_isinf(InterpState &S, CodePtr OpPC,
const InterpFrame *Frame, const Function *F,
bool CheckSign, const CallExpr *Call) {
const Floating &Arg = S.Stk.peek<Floating>();
bool IsInf = Arg.isInf();
if (CheckSign)
pushInteger(S, IsInf ? (Arg.isNegative() ? -1 : 1) : 0, Call->getType());
else
pushInteger(S, Arg.isInf(), Call->getType());
return true;
}
static bool interp__builtin_isfinite(InterpState &S, CodePtr OpPC,
const InterpFrame *Frame,
const Function *F, const CallExpr *Call) {
const Floating &Arg = S.Stk.peek<Floating>();
pushInteger(S, Arg.isFinite(), Call->getType());
return true;
}
static bool interp__builtin_isnormal(InterpState &S, CodePtr OpPC,
const InterpFrame *Frame,
const Function *F, const CallExpr *Call) {
const Floating &Arg = S.Stk.peek<Floating>();
pushInteger(S, Arg.isNormal(), Call->getType());
return true;
}
static bool interp__builtin_issubnormal(InterpState &S, CodePtr OpPC,
const InterpFrame *Frame,
const Function *F,
const CallExpr *Call) {
const Floating &Arg = S.Stk.peek<Floating>();
pushInteger(S, Arg.isDenormal(), Call->getType());
return true;
}
static bool interp__builtin_iszero(InterpState &S, CodePtr OpPC,
const InterpFrame *Frame, const Function *F,
const CallExpr *Call) {
const Floating &Arg = S.Stk.peek<Floating>();
pushInteger(S, Arg.isZero(), Call->getType());
return true;
}
/// First parameter to __builtin_isfpclass is the floating value, the
/// second one is an integral value.
static bool interp__builtin_isfpclass(InterpState &S, CodePtr OpPC,
const InterpFrame *Frame,
const Function *Func,
const CallExpr *Call) {
PrimType FPClassArgT = *S.getContext().classify(Call->getArg(1)->getType());
APSInt FPClassArg = peekToAPSInt(S.Stk, FPClassArgT);
const Floating &F =
S.Stk.peek<Floating>(align(primSize(FPClassArgT) + primSize(PT_Float)));
int32_t Result =
static_cast<int32_t>((F.classify() & FPClassArg).getZExtValue());
pushInteger(S, Result, Call->getType());
return true;
}
/// Five int values followed by one floating value.
static bool interp__builtin_fpclassify(InterpState &S, CodePtr OpPC,
const InterpFrame *Frame,
const Function *Func,
const CallExpr *Call) {
const Floating &Val = S.Stk.peek<Floating>();
unsigned Index;
switch (Val.getCategory()) {
case APFloat::fcNaN:
Index = 0;
break;
case APFloat::fcInfinity:
Index = 1;
break;
case APFloat::fcNormal:
Index = Val.isDenormal() ? 3 : 2;
break;
case APFloat::fcZero:
Index = 4;
break;
}
// The last argument is first on the stack.
assert(Index <= 4);
unsigned IntSize = primSize(getIntPrimType(S));
unsigned Offset =
align(primSize(PT_Float)) + ((1 + (4 - Index)) * align(IntSize));
APSInt I = peekToAPSInt(S.Stk, getIntPrimType(S), Offset);
pushInteger(S, I, Call->getType());
return true;
}
// The C standard says "fabs raises no floating-point exceptions,
// even if x is a signaling NaN. The returned value is independent of
// the current rounding direction mode." Therefore constant folding can
// proceed without regard to the floating point settings.
// Reference, WG14 N2478 F.10.4.3
static bool interp__builtin_fabs(InterpState &S, CodePtr OpPC,
const InterpFrame *Frame,
const Function *Func) {
const Floating &Val = getParam<Floating>(Frame, 0);
S.Stk.push<Floating>(Floating::abs(Val));
return true;
}
static bool interp__builtin_popcount(InterpState &S, CodePtr OpPC,
const InterpFrame *Frame,
const Function *Func,
const CallExpr *Call) {
PrimType ArgT = *S.getContext().classify(Call->getArg(0)->getType());
APSInt Val = peekToAPSInt(S.Stk, ArgT);
pushInteger(S, Val.popcount(), Call->getType());
return true;
}
static bool interp__builtin_parity(InterpState &S, CodePtr OpPC,
const InterpFrame *Frame,
const Function *Func, const CallExpr *Call) {
PrimType ArgT = *S.getContext().classify(Call->getArg(0)->getType());
APSInt Val = peekToAPSInt(S.Stk, ArgT);
pushInteger(S, Val.popcount() % 2, Call->getType());
return true;
}
static bool interp__builtin_clrsb(InterpState &S, CodePtr OpPC,
const InterpFrame *Frame,
const Function *Func, const CallExpr *Call) {
PrimType ArgT = *S.getContext().classify(Call->getArg(0)->getType());
APSInt Val = peekToAPSInt(S.Stk, ArgT);
pushInteger(S, Val.getBitWidth() - Val.getSignificantBits(), Call->getType());
return true;
}
static bool interp__builtin_bitreverse(InterpState &S, CodePtr OpPC,
const InterpFrame *Frame,
const Function *Func,
const CallExpr *Call) {
PrimType ArgT = *S.getContext().classify(Call->getArg(0)->getType());
APSInt Val = peekToAPSInt(S.Stk, ArgT);
pushInteger(S, Val.reverseBits(), Call->getType());
return true;
}
static bool interp__builtin_classify_type(InterpState &S, CodePtr OpPC,
const InterpFrame *Frame,
const Function *Func,
const CallExpr *Call) {
// This is an unevaluated call, so there are no arguments on the stack.
assert(Call->getNumArgs() == 1);
const Expr *Arg = Call->getArg(0);
GCCTypeClass ResultClass =
EvaluateBuiltinClassifyType(Arg->getType(), S.getLangOpts());
int32_t ReturnVal = static_cast<int32_t>(ResultClass);
pushInteger(S, ReturnVal, Call->getType());
return true;
}
// __builtin_expect(long, long)
// __builtin_expect_with_probability(long, long, double)
static bool interp__builtin_expect(InterpState &S, CodePtr OpPC,
const InterpFrame *Frame,
const Function *Func, const CallExpr *Call) {
// The return value is simply the value of the first parameter.
// We ignore the probability.
unsigned NumArgs = Call->getNumArgs();
assert(NumArgs == 2 || NumArgs == 3);
PrimType ArgT = *S.getContext().classify(Call->getArg(0)->getType());
unsigned Offset = align(primSize(getLongPrimType(S))) * 2;
if (NumArgs == 3)
Offset += align(primSize(PT_Float));
APSInt Val = peekToAPSInt(S.Stk, ArgT, Offset);
pushInteger(S, Val, Call->getType());
return true;
}
/// rotateleft(value, amount)
static bool interp__builtin_rotate(InterpState &S, CodePtr OpPC,
const InterpFrame *Frame,
const Function *Func, const CallExpr *Call,
bool Right) {
PrimType AmountT = *S.getContext().classify(Call->getArg(1)->getType());
PrimType ValueT = *S.getContext().classify(Call->getArg(0)->getType());
APSInt Amount = peekToAPSInt(S.Stk, AmountT);
APSInt Value = peekToAPSInt(
S.Stk, ValueT, align(primSize(AmountT)) + align(primSize(ValueT)));
APSInt Result;
if (Right)
Result = APSInt(Value.rotr(Amount.urem(Value.getBitWidth())),
/*IsUnsigned=*/true);
else // Left.
Result = APSInt(Value.rotl(Amount.urem(Value.getBitWidth())),
/*IsUnsigned=*/true);
pushInteger(S, Result, Call->getType());
return true;
}
static bool interp__builtin_ffs(InterpState &S, CodePtr OpPC,
const InterpFrame *Frame, const Function *Func,
const CallExpr *Call) {
PrimType ArgT = *S.getContext().classify(Call->getArg(0)->getType());
APSInt Value = peekToAPSInt(S.Stk, ArgT);
uint64_t N = Value.countr_zero();
pushInteger(S, N == Value.getBitWidth() ? 0 : N + 1, Call->getType());
return true;
}
static bool interp__builtin_addressof(InterpState &S, CodePtr OpPC,
const InterpFrame *Frame,
const Function *Func,
const CallExpr *Call) {
assert(Call->getArg(0)->isLValue());
PrimType PtrT = S.getContext().classify(Call->getArg(0)).value_or(PT_Ptr);
if (PtrT == PT_FnPtr) {
const FunctionPointer &Arg = S.Stk.peek<FunctionPointer>();
S.Stk.push<FunctionPointer>(Arg);
} else if (PtrT == PT_Ptr) {
const Pointer &Arg = S.Stk.peek<Pointer>();
S.Stk.push<Pointer>(Arg);
} else {
assert(false && "Unsupported pointer type passed to __builtin_addressof()");
}
return true;
}
static bool interp__builtin_move(InterpState &S, CodePtr OpPC,
const InterpFrame *Frame, const Function *Func,
const CallExpr *Call) {
PrimType ArgT = S.getContext().classify(Call->getArg(0)).value_or(PT_Ptr);
TYPE_SWITCH(ArgT, const T &Arg = S.Stk.peek<T>(); S.Stk.push<T>(Arg););
return Func->getDecl()->isConstexpr();
}
static bool interp__builtin_eh_return_data_regno(InterpState &S, CodePtr OpPC,
const InterpFrame *Frame,
const Function *Func,
const CallExpr *Call) {
PrimType ArgT = *S.getContext().classify(Call->getArg(0)->getType());
APSInt Arg = peekToAPSInt(S.Stk, ArgT);
int Result =
S.getCtx().getTargetInfo().getEHDataRegisterNumber(Arg.getZExtValue());
pushInteger(S, Result, Call->getType());
return true;
}
/// Just takes the first Argument to the call and puts it on the stack.
static bool noopPointer(InterpState &S, CodePtr OpPC, const InterpFrame *Frame,
const Function *Func, const CallExpr *Call) {
const Pointer &Arg = S.Stk.peek<Pointer>();
S.Stk.push<Pointer>(Arg);
return true;
}
// Two integral values followed by a pointer (lhs, rhs, resultOut)
static bool interp__builtin_overflowop(InterpState &S, CodePtr OpPC,
const InterpFrame *Frame,
const Function *Func,
const CallExpr *Call) {
Pointer &ResultPtr = S.Stk.peek<Pointer>();
if (ResultPtr.isDummy())
return false;
unsigned BuiltinOp = Func->getBuiltinID();
PrimType RHST = *S.getContext().classify(Call->getArg(1)->getType());
PrimType LHST = *S.getContext().classify(Call->getArg(0)->getType());
APSInt RHS = peekToAPSInt(S.Stk, RHST,
align(primSize(PT_Ptr)) + align(primSize(RHST)));
APSInt LHS = peekToAPSInt(S.Stk, LHST,
align(primSize(PT_Ptr)) + align(primSize(RHST)) +
align(primSize(LHST)));
QualType ResultType = Call->getArg(2)->getType()->getPointeeType();
PrimType ResultT = *S.getContext().classify(ResultType);
bool Overflow;
APSInt Result;
if (BuiltinOp == Builtin::BI__builtin_add_overflow ||
BuiltinOp == Builtin::BI__builtin_sub_overflow ||
BuiltinOp == Builtin::BI__builtin_mul_overflow) {
bool IsSigned = LHS.isSigned() || RHS.isSigned() ||
ResultType->isSignedIntegerOrEnumerationType();
bool AllSigned = LHS.isSigned() && RHS.isSigned() &&
ResultType->isSignedIntegerOrEnumerationType();
uint64_t LHSSize = LHS.getBitWidth();
uint64_t RHSSize = RHS.getBitWidth();
uint64_t ResultSize = S.getCtx().getTypeSize(ResultType);
uint64_t MaxBits = std::max(std::max(LHSSize, RHSSize), ResultSize);
// Add an additional bit if the signedness isn't uniformly agreed to. We
// could do this ONLY if there is a signed and an unsigned that both have
// MaxBits, but the code to check that is pretty nasty. The issue will be
// caught in the shrink-to-result later anyway.
if (IsSigned && !AllSigned)
++MaxBits;
LHS = APSInt(LHS.extOrTrunc(MaxBits), !IsSigned);
RHS = APSInt(RHS.extOrTrunc(MaxBits), !IsSigned);
Result = APSInt(MaxBits, !IsSigned);
}
// Find largest int.
switch (BuiltinOp) {
default:
llvm_unreachable("Invalid value for BuiltinOp");
case Builtin::BI__builtin_add_overflow:
case Builtin::BI__builtin_sadd_overflow:
case Builtin::BI__builtin_saddl_overflow:
case Builtin::BI__builtin_saddll_overflow:
case Builtin::BI__builtin_uadd_overflow:
case Builtin::BI__builtin_uaddl_overflow:
case Builtin::BI__builtin_uaddll_overflow:
Result = LHS.isSigned() ? LHS.sadd_ov(RHS, Overflow)
: LHS.uadd_ov(RHS, Overflow);
break;
case Builtin::BI__builtin_sub_overflow:
case Builtin::BI__builtin_ssub_overflow:
case Builtin::BI__builtin_ssubl_overflow:
case Builtin::BI__builtin_ssubll_overflow:
case Builtin::BI__builtin_usub_overflow:
case Builtin::BI__builtin_usubl_overflow:
case Builtin::BI__builtin_usubll_overflow:
Result = LHS.isSigned() ? LHS.ssub_ov(RHS, Overflow)
: LHS.usub_ov(RHS, Overflow);
break;
case Builtin::BI__builtin_mul_overflow:
case Builtin::BI__builtin_smul_overflow:
case Builtin::BI__builtin_smull_overflow:
case Builtin::BI__builtin_smulll_overflow:
case Builtin::BI__builtin_umul_overflow:
case Builtin::BI__builtin_umull_overflow:
case Builtin::BI__builtin_umulll_overflow:
Result = LHS.isSigned() ? LHS.smul_ov(RHS, Overflow)
: LHS.umul_ov(RHS, Overflow);
break;
}
// In the case where multiple sizes are allowed, truncate and see if
// the values are the same.
if (BuiltinOp == Builtin::BI__builtin_add_overflow ||
BuiltinOp == Builtin::BI__builtin_sub_overflow ||
BuiltinOp == Builtin::BI__builtin_mul_overflow) {
// APSInt doesn't have a TruncOrSelf, so we use extOrTrunc instead,
// since it will give us the behavior of a TruncOrSelf in the case where
// its parameter <= its size. We previously set Result to be at least the
// type-size of the result, so getTypeSize(ResultType) <= Resu
APSInt Temp = Result.extOrTrunc(S.getCtx().getTypeSize(ResultType));
Temp.setIsSigned(ResultType->isSignedIntegerOrEnumerationType());
if (!APSInt::isSameValue(Temp, Result))
Overflow = true;
Result = Temp;
}
// Write Result to ResultPtr and put Overflow on the stacl.
assignInteger(ResultPtr, ResultT, Result);
ResultPtr.initialize();
assert(Func->getDecl()->getReturnType()->isBooleanType());
S.Stk.push<Boolean>(Overflow);
return true;
}
/// Three integral values followed by a pointer (lhs, rhs, carry, carryOut).
static bool interp__builtin_carryop(InterpState &S, CodePtr OpPC,
const InterpFrame *Frame,
const Function *Func,
const CallExpr *Call) {
unsigned BuiltinOp = Func->getBuiltinID();
PrimType LHST = *S.getContext().classify(Call->getArg(0)->getType());
PrimType RHST = *S.getContext().classify(Call->getArg(1)->getType());
PrimType CarryT = *S.getContext().classify(Call->getArg(2)->getType());
APSInt RHS = peekToAPSInt(S.Stk, RHST,
align(primSize(PT_Ptr)) + align(primSize(CarryT)) +
align(primSize(RHST)));
APSInt LHS =
peekToAPSInt(S.Stk, LHST,
align(primSize(PT_Ptr)) + align(primSize(RHST)) +
align(primSize(CarryT)) + align(primSize(LHST)));
APSInt CarryIn = peekToAPSInt(
S.Stk, LHST, align(primSize(PT_Ptr)) + align(primSize(CarryT)));
APSInt CarryOut;
APSInt Result;
// Copy the number of bits and sign.
Result = LHS;
CarryOut = LHS;
bool FirstOverflowed = false;
bool SecondOverflowed = false;
switch (BuiltinOp) {
default:
llvm_unreachable("Invalid value for BuiltinOp");
case Builtin::BI__builtin_addcb:
case Builtin::BI__builtin_addcs:
case Builtin::BI__builtin_addc:
case Builtin::BI__builtin_addcl:
case Builtin::BI__builtin_addcll:
Result =
LHS.uadd_ov(RHS, FirstOverflowed).uadd_ov(CarryIn, SecondOverflowed);
break;
case Builtin::BI__builtin_subcb:
case Builtin::BI__builtin_subcs:
case Builtin::BI__builtin_subc:
case Builtin::BI__builtin_subcl:
case Builtin::BI__builtin_subcll:
Result =
LHS.usub_ov(RHS, FirstOverflowed).usub_ov(CarryIn, SecondOverflowed);
break;
}
// It is possible for both overflows to happen but CGBuiltin uses an OR so
// this is consistent.
CarryOut = (uint64_t)(FirstOverflowed | SecondOverflowed);
Pointer &CarryOutPtr = S.Stk.peek<Pointer>();
QualType CarryOutType = Call->getArg(3)->getType()->getPointeeType();
PrimType CarryOutT = *S.getContext().classify(CarryOutType);
assignInteger(CarryOutPtr, CarryOutT, CarryOut);
CarryOutPtr.initialize();
assert(Call->getType() == Call->getArg(0)->getType());
pushInteger(S, Result, Call->getType());
return true;
}
static bool interp__builtin_clz(InterpState &S, CodePtr OpPC,
const InterpFrame *Frame, const Function *Func,
const CallExpr *Call) {
unsigned CallSize = callArgSize(S, Call);
unsigned BuiltinOp = Func->getBuiltinID();
PrimType ValT = *S.getContext().classify(Call->getArg(0));
const APSInt &Val = peekToAPSInt(S.Stk, ValT, CallSize);
// When the argument is 0, the result of GCC builtins is undefined, whereas
// for Microsoft intrinsics, the result is the bit-width of the argument.
bool ZeroIsUndefined = BuiltinOp != Builtin::BI__lzcnt16 &&
BuiltinOp != Builtin::BI__lzcnt &&
BuiltinOp != Builtin::BI__lzcnt64;
if (Val == 0) {
if (Func->getBuiltinID() == Builtin::BI__builtin_clzg &&
Call->getNumArgs() == 2) {
// We have a fallback parameter.
PrimType FallbackT = *S.getContext().classify(Call->getArg(1));
const APSInt &Fallback = peekToAPSInt(S.Stk, FallbackT);
pushInteger(S, Fallback, Call->getType());
return true;
}
if (ZeroIsUndefined)
return false;
}
pushInteger(S, Val.countl_zero(), Call->getType());
return true;
}
static bool interp__builtin_ctz(InterpState &S, CodePtr OpPC,
const InterpFrame *Frame, const Function *Func,
const CallExpr *Call) {
unsigned CallSize = callArgSize(S, Call);
PrimType ValT = *S.getContext().classify(Call->getArg(0));
const APSInt &Val = peekToAPSInt(S.Stk, ValT, CallSize);
if (Val == 0) {
if (Func->getBuiltinID() == Builtin::BI__builtin_ctzg &&
Call->getNumArgs() == 2) {
// We have a fallback parameter.
PrimType FallbackT = *S.getContext().classify(Call->getArg(1));
const APSInt &Fallback = peekToAPSInt(S.Stk, FallbackT);
pushInteger(S, Fallback, Call->getType());
return true;
}
return false;
}
pushInteger(S, Val.countr_zero(), Call->getType());
return true;
}
static bool interp__builtin_bswap(InterpState &S, CodePtr OpPC,
const InterpFrame *Frame,
const Function *Func, const CallExpr *Call) {
PrimType ReturnT = *S.getContext().classify(Call->getType());
PrimType ValT = *S.getContext().classify(Call->getArg(0));
const APSInt &Val = peekToAPSInt(S.Stk, ValT);
assert(Val.getActiveBits() <= 64);
INT_TYPE_SWITCH(ReturnT,
{ S.Stk.push<T>(T::from(Val.byteSwap().getZExtValue())); });
return true;
}
/// bool __atomic_always_lock_free(size_t, void const volatile*)
/// bool __atomic_is_lock_free(size_t, void const volatile*)
/// bool __c11_atomic_is_lock_free(size_t)
static bool interp__builtin_atomic_lock_free(InterpState &S, CodePtr OpPC,
const InterpFrame *Frame,
const Function *Func,
const CallExpr *Call) {
unsigned BuiltinOp = Func->getBuiltinID();
PrimType ValT = *S.getContext().classify(Call->getArg(0));
unsigned SizeValOffset = 0;
if (BuiltinOp != Builtin::BI__c11_atomic_is_lock_free)
SizeValOffset = align(primSize(ValT)) + align(primSize(PT_Ptr));
const APSInt &SizeVal = peekToAPSInt(S.Stk, ValT, SizeValOffset);
auto returnBool = [&S](bool Value) -> bool {
S.Stk.push<Boolean>(Value);
return true;
};
// For __atomic_is_lock_free(sizeof(_Atomic(T))), if the size is a power
// of two less than or equal to the maximum inline atomic width, we know it
// is lock-free. If the size isn't a power of two, or greater than the
// maximum alignment where we promote atomics, we know it is not lock-free
// (at least not in the sense of atomic_is_lock_free). Otherwise,
// the answer can only be determined at runtime; for example, 16-byte
// atomics have lock-free implementations on some, but not all,
// x86-64 processors.
// Check power-of-two.
CharUnits Size = CharUnits::fromQuantity(SizeVal.getZExtValue());
if (Size.isPowerOfTwo()) {
// Check against inlining width.
unsigned InlineWidthBits =
S.getCtx().getTargetInfo().getMaxAtomicInlineWidth();
if (Size <= S.getCtx().toCharUnitsFromBits(InlineWidthBits)) {
// OK, we will inline appropriately-aligned operations of this size,
// and _Atomic(T) is appropriately-aligned.
if (BuiltinOp == Builtin::BI__c11_atomic_is_lock_free ||
Size == CharUnits::One())
return returnBool(true);
// Same for null pointers.
assert(BuiltinOp != Builtin::BI__c11_atomic_is_lock_free);
const Pointer &Ptr = S.Stk.peek<Pointer>();
if (Ptr.isZero())
return returnBool(true);
QualType PointeeType = Call->getArg(1)
->IgnoreImpCasts()
->getType()
->castAs<PointerType>()
->getPointeeType();
// OK, we will inline operations on this object.
if (!PointeeType->isIncompleteType() &&
S.getCtx().getTypeAlignInChars(PointeeType) >= Size)
return returnBool(true);
}
}
if (BuiltinOp == Builtin::BI__atomic_always_lock_free)
return returnBool(false);
return false;
}
/// __builtin_complex(Float A, float B);
static bool interp__builtin_complex(InterpState &S, CodePtr OpPC,
const InterpFrame *Frame,
const Function *Func,
const CallExpr *Call) {
const Floating &Arg2 = S.Stk.peek<Floating>();
const Floating &Arg1 = S.Stk.peek<Floating>(align(primSize(PT_Float)) * 2);
Pointer &Result = S.Stk.peek<Pointer>(align(primSize(PT_Float)) * 2 +
align(primSize(PT_Ptr)));
Result.atIndex(0).deref<Floating>() = Arg1;
Result.atIndex(0).initialize();
Result.atIndex(1).deref<Floating>() = Arg2;
Result.atIndex(1).initialize();
Result.initialize();
return true;
}
/// __builtin_is_aligned()
/// __builtin_align_up()
/// __builtin_align_down()
/// The first parameter is either an integer or a pointer.
/// The second parameter is the requested alignment as an integer.
static bool interp__builtin_is_aligned_up_down(InterpState &S, CodePtr OpPC,
const InterpFrame *Frame,
const Function *Func,
const CallExpr *Call) {
unsigned BuiltinOp = Func->getBuiltinID();
unsigned CallSize = callArgSize(S, Call);
PrimType AlignmentT = *S.Ctx.classify(Call->getArg(1));
const APSInt &Alignment = peekToAPSInt(S.Stk, AlignmentT);
if (Alignment < 0 || !Alignment.isPowerOf2()) {
S.FFDiag(Call, diag::note_constexpr_invalid_alignment) << Alignment;
return false;
}
unsigned SrcWidth = S.getCtx().getIntWidth(Call->getArg(0)->getType());
APSInt MaxValue(APInt::getOneBitSet(SrcWidth, SrcWidth - 1));
if (APSInt::compareValues(Alignment, MaxValue) > 0) {
S.FFDiag(Call, diag::note_constexpr_alignment_too_big)
<< MaxValue << Call->getArg(0)->getType() << Alignment;
return false;
}
// The first parameter is either an integer or a pointer (but not a function
// pointer).
PrimType FirstArgT = *S.Ctx.classify(Call->getArg(0));
if (isIntegralType(FirstArgT)) {
const APSInt &Src = peekToAPSInt(S.Stk, FirstArgT, CallSize);
APSInt Align = Alignment.extOrTrunc(Src.getBitWidth());
if (BuiltinOp == Builtin::BI__builtin_align_up) {
APSInt AlignedVal =
APSInt((Src + (Align - 1)) & ~(Align - 1), Src.isUnsigned());
pushInteger(S, AlignedVal, Call->getType());
} else if (BuiltinOp == Builtin::BI__builtin_align_down) {
APSInt AlignedVal = APSInt(Src & ~(Align - 1), Src.isUnsigned());
pushInteger(S, AlignedVal, Call->getType());
} else {
assert(*S.Ctx.classify(Call->getType()) == PT_Bool);
S.Stk.push<Boolean>((Src & (Align - 1)) == 0);
}
return true;
}
assert(FirstArgT == PT_Ptr);
const Pointer &Ptr = S.Stk.peek<Pointer>(CallSize);
unsigned PtrOffset = Ptr.getByteOffset();
PtrOffset = Ptr.getIndex();
CharUnits BaseAlignment =
S.getCtx().getDeclAlign(Ptr.getDeclDesc()->asValueDecl());
CharUnits PtrAlign =
BaseAlignment.alignmentAtOffset(CharUnits::fromQuantity(PtrOffset));
if (BuiltinOp == Builtin::BI__builtin_is_aligned) {
if (PtrAlign.getQuantity() >= Alignment) {
S.Stk.push<Boolean>(true);
return true;
}
// If the alignment is not known to be sufficient, some cases could still
// be aligned at run time. However, if the requested alignment is less or
// equal to the base alignment and the offset is not aligned, we know that
// the run-time value can never be aligned.
if (BaseAlignment.getQuantity() >= Alignment &&
PtrAlign.getQuantity() < Alignment) {
S.Stk.push<Boolean>(false);
return true;
}
S.FFDiag(Call->getArg(0), diag::note_constexpr_alignment_compute)
<< Alignment;
return false;
}
assert(BuiltinOp == Builtin::BI__builtin_align_down ||
BuiltinOp == Builtin::BI__builtin_align_up);
// For align_up/align_down, we can return the same value if the alignment
// is known to be greater or equal to the requested value.
if (PtrAlign.getQuantity() >= Alignment) {
S.Stk.push<Pointer>(Ptr);
return true;
}
// The alignment could be greater than the minimum at run-time, so we cannot
// infer much about the resulting pointer value. One case is possible:
// For `_Alignas(32) char buf[N]; __builtin_align_down(&buf[idx], 32)` we
// can infer the correct index if the requested alignment is smaller than
// the base alignment so we can perform the computation on the offset.
if (BaseAlignment.getQuantity() >= Alignment) {
assert(Alignment.getBitWidth() <= 64 &&
"Cannot handle > 64-bit address-space");
uint64_t Alignment64 = Alignment.getZExtValue();
CharUnits NewOffset =
CharUnits::fromQuantity(BuiltinOp == Builtin::BI__builtin_align_down
? llvm::alignDown(PtrOffset, Alignment64)
: llvm::alignTo(PtrOffset, Alignment64));
S.Stk.push<Pointer>(Ptr.atIndex(NewOffset.getQuantity()));
return true;
}
// Otherwise, we cannot constant-evaluate the result.
S.FFDiag(Call->getArg(0), diag::note_constexpr_alignment_adjust) << Alignment;
return false;
}
static bool interp__builtin_os_log_format_buffer_size(InterpState &S,
CodePtr OpPC,
const InterpFrame *Frame,
const Function *Func,
const CallExpr *Call) {
analyze_os_log::OSLogBufferLayout Layout;
analyze_os_log::computeOSLogBufferLayout(S.getCtx(), Call, Layout);
pushInteger(S, Layout.size().getQuantity(), Call->getType());
return true;
}
static bool interp__builtin_ptrauth_string_discriminator(
InterpState &S, CodePtr OpPC, const InterpFrame *Frame,
const Function *Func, const CallExpr *Call) {
const auto &Ptr = S.Stk.peek<Pointer>();
assert(Ptr.getFieldDesc()->isPrimitiveArray());
StringRef R(&Ptr.deref<char>(), Ptr.getFieldDesc()->getNumElems() - 1);
uint64_t Result = getPointerAuthStableSipHash(R);
pushInteger(S, Result, Call->getType());
return true;
}
bool InterpretBuiltin(InterpState &S, CodePtr OpPC, const Function *F,
const CallExpr *Call) {
const InterpFrame *Frame = S.Current;
APValue Dummy;
std::optional<PrimType> ReturnT = S.getContext().classify(Call);
switch (F->getBuiltinID()) {
case Builtin::BI__builtin_is_constant_evaluated:
if (!interp__builtin_is_constant_evaluated(S, OpPC, Frame, Call))
return false;
break;
case Builtin::BI__builtin_assume:
case Builtin::BI__assume:
break;
case Builtin::BI__builtin_strcmp:
if (!interp__builtin_strcmp(S, OpPC, Frame, Call))
return false;
break;
case Builtin::BI__builtin_strlen:
if (!interp__builtin_strlen(S, OpPC, Frame, Call))
return false;
break;
case Builtin::BI__builtin_nan:
case Builtin::BI__builtin_nanf:
case Builtin::BI__builtin_nanl:
case Builtin::BI__builtin_nanf16:
case Builtin::BI__builtin_nanf128:
if (!interp__builtin_nan(S, OpPC, Frame, F, /*Signaling=*/false))
return false;
break;
case Builtin::BI__builtin_nans:
case Builtin::BI__builtin_nansf:
case Builtin::BI__builtin_nansl:
case Builtin::BI__builtin_nansf16:
case Builtin::BI__builtin_nansf128:
if (!interp__builtin_nan(S, OpPC, Frame, F, /*Signaling=*/true))
return false;
break;
case Builtin::BI__builtin_huge_val:
case Builtin::BI__builtin_huge_valf:
case Builtin::BI__builtin_huge_vall:
case Builtin::BI__builtin_huge_valf16:
case Builtin::BI__builtin_huge_valf128:
case Builtin::BI__builtin_inf:
case Builtin::BI__builtin_inff:
case Builtin::BI__builtin_infl:
case Builtin::BI__builtin_inff16:
case Builtin::BI__builtin_inff128:
if (!interp__builtin_inf(S, OpPC, Frame, F))
return false;
break;
case Builtin::BI__builtin_copysign:
case Builtin::BI__builtin_copysignf:
case Builtin::BI__builtin_copysignl:
case Builtin::BI__builtin_copysignf128:
if (!interp__builtin_copysign(S, OpPC, Frame, F))
return false;
break;
case Builtin::BI__builtin_fmin:
case Builtin::BI__builtin_fminf:
case Builtin::BI__builtin_fminl:
case Builtin::BI__builtin_fminf16:
case Builtin::BI__builtin_fminf128:
if (!interp__builtin_fmin(S, OpPC, Frame, F))
return false;
break;
case Builtin::BI__builtin_fmax:
case Builtin::BI__builtin_fmaxf:
case Builtin::BI__builtin_fmaxl:
case Builtin::BI__builtin_fmaxf16:
case Builtin::BI__builtin_fmaxf128:
if (!interp__builtin_fmax(S, OpPC, Frame, F))
return false;
break;
case Builtin::BI__builtin_isnan:
if (!interp__builtin_isnan(S, OpPC, Frame, F, Call))
return false;
break;
case Builtin::BI__builtin_issignaling:
if (!interp__builtin_issignaling(S, OpPC, Frame, F, Call))
return false;
break;
case Builtin::BI__builtin_isinf:
if (!interp__builtin_isinf(S, OpPC, Frame, F, /*Sign=*/false, Call))
return false;
break;
case Builtin::BI__builtin_isinf_sign:
if (!interp__builtin_isinf(S, OpPC, Frame, F, /*Sign=*/true, Call))
return false;
break;
case Builtin::BI__builtin_isfinite:
if (!interp__builtin_isfinite(S, OpPC, Frame, F, Call))
return false;
break;
case Builtin::BI__builtin_isnormal:
if (!interp__builtin_isnormal(S, OpPC, Frame, F, Call))
return false;
break;
case Builtin::BI__builtin_issubnormal:
if (!interp__builtin_issubnormal(S, OpPC, Frame, F, Call))
return false;
break;
case Builtin::BI__builtin_iszero:
if (!interp__builtin_iszero(S, OpPC, Frame, F, Call))
return false;
break;
case Builtin::BI__builtin_isfpclass:
if (!interp__builtin_isfpclass(S, OpPC, Frame, F, Call))
return false;
break;
case Builtin::BI__builtin_fpclassify:
if (!interp__builtin_fpclassify(S, OpPC, Frame, F, Call))
return false;
break;
case Builtin::BI__builtin_fabs:
case Builtin::BI__builtin_fabsf:
case Builtin::BI__builtin_fabsl:
case Builtin::BI__builtin_fabsf128:
if (!interp__builtin_fabs(S, OpPC, Frame, F))
return false;
break;
case Builtin::BI__builtin_popcount:
case Builtin::BI__builtin_popcountl:
case Builtin::BI__builtin_popcountll:
case Builtin::BI__builtin_popcountg:
case Builtin::BI__popcnt16: // Microsoft variants of popcount
case Builtin::BI__popcnt:
case Builtin::BI__popcnt64:
if (!interp__builtin_popcount(S, OpPC, Frame, F, Call))
return false;
break;
case Builtin::BI__builtin_parity:
case Builtin::BI__builtin_parityl:
case Builtin::BI__builtin_parityll:
if (!interp__builtin_parity(S, OpPC, Frame, F, Call))
return false;
break;
case Builtin::BI__builtin_clrsb:
case Builtin::BI__builtin_clrsbl:
case Builtin::BI__builtin_clrsbll:
if (!interp__builtin_clrsb(S, OpPC, Frame, F, Call))
return false;
break;
case Builtin::BI__builtin_bitreverse8:
case Builtin::BI__builtin_bitreverse16:
case Builtin::BI__builtin_bitreverse32:
case Builtin::BI__builtin_bitreverse64:
if (!interp__builtin_bitreverse(S, OpPC, Frame, F, Call))
return false;
break;
case Builtin::BI__builtin_classify_type:
if (!interp__builtin_classify_type(S, OpPC, Frame, F, Call))
return false;
break;
case Builtin::BI__builtin_expect:
case Builtin::BI__builtin_expect_with_probability:
if (!interp__builtin_expect(S, OpPC, Frame, F, Call))
return false;
break;
case Builtin::BI__builtin_rotateleft8:
case Builtin::BI__builtin_rotateleft16:
case Builtin::BI__builtin_rotateleft32:
case Builtin::BI__builtin_rotateleft64:
case Builtin::BI_rotl8: // Microsoft variants of rotate left
case Builtin::BI_rotl16:
case Builtin::BI_rotl:
case Builtin::BI_lrotl:
case Builtin::BI_rotl64:
if (!interp__builtin_rotate(S, OpPC, Frame, F, Call, /*Right=*/false))
return false;
break;
case Builtin::BI__builtin_rotateright8:
case Builtin::BI__builtin_rotateright16:
case Builtin::BI__builtin_rotateright32:
case Builtin::BI__builtin_rotateright64:
case Builtin::BI_rotr8: // Microsoft variants of rotate right
case Builtin::BI_rotr16:
case Builtin::BI_rotr:
case Builtin::BI_lrotr:
case Builtin::BI_rotr64:
if (!interp__builtin_rotate(S, OpPC, Frame, F, Call, /*Right=*/true))
return false;
break;
case Builtin::BI__builtin_ffs:
case Builtin::BI__builtin_ffsl:
case Builtin::BI__builtin_ffsll:
if (!interp__builtin_ffs(S, OpPC, Frame, F, Call))
return false;
break;
case Builtin::BIaddressof:
case Builtin::BI__addressof:
case Builtin::BI__builtin_addressof:
if (!interp__builtin_addressof(S, OpPC, Frame, F, Call))
return false;
break;
case Builtin::BIas_const:
case Builtin::BIforward:
case Builtin::BIforward_like:
case Builtin::BImove:
case Builtin::BImove_if_noexcept:
if (!interp__builtin_move(S, OpPC, Frame, F, Call))
return false;
break;
case Builtin::BI__builtin_eh_return_data_regno:
if (!interp__builtin_eh_return_data_regno(S, OpPC, Frame, F, Call))
return false;
break;
case Builtin::BI__builtin_launder:
if (!noopPointer(S, OpPC, Frame, F, Call))
return false;
break;
case Builtin::BI__builtin_add_overflow:
case Builtin::BI__builtin_sub_overflow:
case Builtin::BI__builtin_mul_overflow:
case Builtin::BI__builtin_sadd_overflow:
case Builtin::BI__builtin_uadd_overflow:
case Builtin::BI__builtin_uaddl_overflow:
case Builtin::BI__builtin_uaddll_overflow:
case Builtin::BI__builtin_usub_overflow:
case Builtin::BI__builtin_usubl_overflow:
case Builtin::BI__builtin_usubll_overflow:
case Builtin::BI__builtin_umul_overflow:
case Builtin::BI__builtin_umull_overflow:
case Builtin::BI__builtin_umulll_overflow:
case Builtin::BI__builtin_saddl_overflow:
case Builtin::BI__builtin_saddll_overflow:
case Builtin::BI__builtin_ssub_overflow:
case Builtin::BI__builtin_ssubl_overflow:
case Builtin::BI__builtin_ssubll_overflow:
case Builtin::BI__builtin_smul_overflow:
case Builtin::BI__builtin_smull_overflow:
case Builtin::BI__builtin_smulll_overflow:
if (!interp__builtin_overflowop(S, OpPC, Frame, F, Call))
return false;
break;
case Builtin::BI__builtin_addcb:
case Builtin::BI__builtin_addcs:
case Builtin::BI__builtin_addc:
case Builtin::BI__builtin_addcl:
case Builtin::BI__builtin_addcll:
case Builtin::BI__builtin_subcb:
case Builtin::BI__builtin_subcs:
case Builtin::BI__builtin_subc:
case Builtin::BI__builtin_subcl:
case Builtin::BI__builtin_subcll:
if (!interp__builtin_carryop(S, OpPC, Frame, F, Call))
return false;
break;
case Builtin::BI__builtin_clz:
case Builtin::BI__builtin_clzl:
case Builtin::BI__builtin_clzll:
case Builtin::BI__builtin_clzs:
case Builtin::BI__builtin_clzg:
case Builtin::BI__lzcnt16: // Microsoft variants of count leading-zeroes
case Builtin::BI__lzcnt:
case Builtin::BI__lzcnt64:
if (!interp__builtin_clz(S, OpPC, Frame, F, Call))
return false;
break;
case Builtin::BI__builtin_ctz:
case Builtin::BI__builtin_ctzl:
case Builtin::BI__builtin_ctzll:
case Builtin::BI__builtin_ctzs:
case Builtin::BI__builtin_ctzg:
if (!interp__builtin_ctz(S, OpPC, Frame, F, Call))
return false;
break;
case Builtin::BI__builtin_bswap16:
case Builtin::BI__builtin_bswap32:
case Builtin::BI__builtin_bswap64:
if (!interp__builtin_bswap(S, OpPC, Frame, F, Call))
return false;
break;
case Builtin::BI__atomic_always_lock_free:
case Builtin::BI__atomic_is_lock_free:
case Builtin::BI__c11_atomic_is_lock_free:
if (!interp__builtin_atomic_lock_free(S, OpPC, Frame, F, Call))
return false;
break;
case Builtin::BI__builtin_complex:
if (!interp__builtin_complex(S, OpPC, Frame, F, Call))
return false;
break;
case Builtin::BI__builtin_is_aligned:
case Builtin::BI__builtin_align_up:
case Builtin::BI__builtin_align_down:
if (!interp__builtin_is_aligned_up_down(S, OpPC, Frame, F, Call))
return false;
break;
case Builtin::BI__builtin_os_log_format_buffer_size:
if (!interp__builtin_os_log_format_buffer_size(S, OpPC, Frame, F, Call))
return false;
break;
case Builtin::BI__builtin_ptrauth_string_discriminator:
if (!interp__builtin_ptrauth_string_discriminator(S, OpPC, Frame, F, Call))
return false;
break;
default:
S.FFDiag(S.Current->getLocation(OpPC),
diag::note_invalid_subexpr_in_const_expr)
<< S.Current->getRange(OpPC);
return false;
}
return retPrimValue(S, OpPC, Dummy, ReturnT);
}
bool InterpretOffsetOf(InterpState &S, CodePtr OpPC, const OffsetOfExpr *E,
llvm::ArrayRef<int64_t> ArrayIndices,
int64_t &IntResult) {
CharUnits Result;
unsigned N = E->getNumComponents();
assert(N > 0);
unsigned ArrayIndex = 0;
QualType CurrentType = E->getTypeSourceInfo()->getType();
for (unsigned I = 0; I != N; ++I) {
const OffsetOfNode &Node = E->getComponent(I);
switch (Node.getKind()) {
case OffsetOfNode::Field: {
const FieldDecl *MemberDecl = Node.getField();
const RecordType *RT = CurrentType->getAs<RecordType>();
if (!RT)
return false;
const RecordDecl *RD = RT->getDecl();
if (RD->isInvalidDecl())
return false;
const ASTRecordLayout &RL = S.getCtx().getASTRecordLayout(RD);
unsigned FieldIndex = MemberDecl->getFieldIndex();
assert(FieldIndex < RL.getFieldCount() && "offsetof field in wrong type");
Result += S.getCtx().toCharUnitsFromBits(RL.getFieldOffset(FieldIndex));
CurrentType = MemberDecl->getType().getNonReferenceType();
break;
}
case OffsetOfNode::Array: {
// When generating bytecode, we put all the index expressions as Sint64 on
// the stack.
int64_t Index = ArrayIndices[ArrayIndex];
const ArrayType *AT = S.getCtx().getAsArrayType(CurrentType);
if (!AT)
return false;
CurrentType = AT->getElementType();
CharUnits ElementSize = S.getCtx().getTypeSizeInChars(CurrentType);
Result += Index * ElementSize;
++ArrayIndex;
break;
}
case OffsetOfNode::Base: {
const CXXBaseSpecifier *BaseSpec = Node.getBase();
if (BaseSpec->isVirtual())
return false;
// Find the layout of the class whose base we are looking into.
const RecordType *RT = CurrentType->getAs<RecordType>();
if (!RT)
return false;
const RecordDecl *RD = RT->getDecl();
if (RD->isInvalidDecl())
return false;
const ASTRecordLayout &RL = S.getCtx().getASTRecordLayout(RD);
// Find the base class itself.
CurrentType = BaseSpec->getType();
const RecordType *BaseRT = CurrentType->getAs<RecordType>();
if (!BaseRT)
return false;
// Add the offset to the base.
Result += RL.getBaseClassOffset(cast<CXXRecordDecl>(BaseRT->getDecl()));
break;
}
case OffsetOfNode::Identifier:
llvm_unreachable("Dependent OffsetOfExpr?");
}
}
IntResult = Result.getQuantity();
return true;
}
bool SetThreeWayComparisonField(InterpState &S, CodePtr OpPC,
const Pointer &Ptr, const APSInt &IntValue) {
const Record *R = Ptr.getRecord();
assert(R);
assert(R->getNumFields() == 1);
unsigned FieldOffset = R->getField(0u)->Offset;
const Pointer &FieldPtr = Ptr.atField(FieldOffset);
PrimType FieldT = *S.getContext().classify(FieldPtr.getType());
INT_TYPE_SWITCH(FieldT,
FieldPtr.deref<T>() = T::from(IntValue.getSExtValue()));
FieldPtr.initialize();
return true;
}
bool DoMemcpy(InterpState &S, CodePtr OpPC, const Pointer &Src, Pointer &Dest) {
assert(Src.isLive() && Dest.isLive());
[[maybe_unused]] const Descriptor *SrcDesc = Src.getFieldDesc();
const Descriptor *DestDesc = Dest.getFieldDesc();
assert(!DestDesc->isPrimitive() && !SrcDesc->isPrimitive());
if (DestDesc->isPrimitiveArray()) {
assert(SrcDesc->isPrimitiveArray());
assert(SrcDesc->getNumElems() == DestDesc->getNumElems());
PrimType ET = DestDesc->getPrimType();
for (unsigned I = 0, N = DestDesc->getNumElems(); I != N; ++I) {
Pointer DestElem = Dest.atIndex(I);
TYPE_SWITCH(ET, {
DestElem.deref<T>() = Src.atIndex(I).deref<T>();
DestElem.initialize();
});
}
return true;
}
if (DestDesc->isRecord()) {
assert(SrcDesc->isRecord());
assert(SrcDesc->ElemRecord == DestDesc->ElemRecord);
const Record *R = DestDesc->ElemRecord;
for (const Record::Field &F : R->fields()) {
Pointer DestField = Dest.atField(F.Offset);
if (std::optional<PrimType> FT = S.Ctx.classify(F.Decl->getType())) {
TYPE_SWITCH(*FT, {
DestField.deref<T>() = Src.atField(F.Offset).deref<T>();
DestField.initialize();
});
} else {
return Invalid(S, OpPC);
}
}
return true;
}
// FIXME: Composite types.
return Invalid(S, OpPC);
}
} // namespace interp
} // namespace clang
|