1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213
|
//===-- Arena.cpp ---------------------------------------------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
#include "clang/Analysis/FlowSensitive/Arena.h"
#include "clang/Analysis/FlowSensitive/Formula.h"
#include "clang/Analysis/FlowSensitive/Value.h"
#include "llvm/Support/Error.h"
#include <string>
namespace clang::dataflow {
static std::pair<const Formula *, const Formula *>
canonicalFormulaPair(const Formula &LHS, const Formula &RHS) {
auto Res = std::make_pair(&LHS, &RHS);
if (&RHS < &LHS) // FIXME: use a deterministic order instead
std::swap(Res.first, Res.second);
return Res;
}
template <class Key, class ComputeFunc>
const Formula &cached(llvm::DenseMap<Key, const Formula *> &Cache, Key K,
ComputeFunc &&Compute) {
auto [It, Inserted] = Cache.try_emplace(std::forward<Key>(K));
if (Inserted)
It->second = Compute();
return *It->second;
}
const Formula &Arena::makeAtomRef(Atom A) {
return cached(AtomRefs, A, [&] {
return &Formula::create(Alloc, Formula::AtomRef, {},
static_cast<unsigned>(A));
});
}
const Formula &Arena::makeAnd(const Formula &LHS, const Formula &RHS) {
return cached(Ands, canonicalFormulaPair(LHS, RHS), [&] {
if (&LHS == &RHS)
return &LHS;
if (LHS.kind() == Formula::Literal)
return LHS.literal() ? &RHS : &LHS;
if (RHS.kind() == Formula::Literal)
return RHS.literal() ? &LHS : &RHS;
return &Formula::create(Alloc, Formula::And, {&LHS, &RHS});
});
}
const Formula &Arena::makeOr(const Formula &LHS, const Formula &RHS) {
return cached(Ors, canonicalFormulaPair(LHS, RHS), [&] {
if (&LHS == &RHS)
return &LHS;
if (LHS.kind() == Formula::Literal)
return LHS.literal() ? &LHS : &RHS;
if (RHS.kind() == Formula::Literal)
return RHS.literal() ? &RHS : &LHS;
return &Formula::create(Alloc, Formula::Or, {&LHS, &RHS});
});
}
const Formula &Arena::makeNot(const Formula &Val) {
return cached(Nots, &Val, [&] {
if (Val.kind() == Formula::Not)
return Val.operands()[0];
if (Val.kind() == Formula::Literal)
return &makeLiteral(!Val.literal());
return &Formula::create(Alloc, Formula::Not, {&Val});
});
}
const Formula &Arena::makeImplies(const Formula &LHS, const Formula &RHS) {
return cached(Implies, std::make_pair(&LHS, &RHS), [&] {
if (&LHS == &RHS)
return &makeLiteral(true);
if (LHS.kind() == Formula::Literal)
return LHS.literal() ? &RHS : &makeLiteral(true);
if (RHS.kind() == Formula::Literal)
return RHS.literal() ? &RHS : &makeNot(LHS);
return &Formula::create(Alloc, Formula::Implies, {&LHS, &RHS});
});
}
const Formula &Arena::makeEquals(const Formula &LHS, const Formula &RHS) {
return cached(Equals, canonicalFormulaPair(LHS, RHS), [&] {
if (&LHS == &RHS)
return &makeLiteral(true);
if (LHS.kind() == Formula::Literal)
return LHS.literal() ? &RHS : &makeNot(RHS);
if (RHS.kind() == Formula::Literal)
return RHS.literal() ? &LHS : &makeNot(LHS);
return &Formula::create(Alloc, Formula::Equal, {&LHS, &RHS});
});
}
IntegerValue &Arena::makeIntLiteral(llvm::APInt Value) {
auto [It, Inserted] = IntegerLiterals.try_emplace(Value, nullptr);
if (Inserted)
It->second = &create<IntegerValue>();
return *It->second;
}
BoolValue &Arena::makeBoolValue(const Formula &F) {
auto [It, Inserted] = FormulaValues.try_emplace(&F);
if (Inserted)
It->second = (F.kind() == Formula::AtomRef)
? (BoolValue *)&create<AtomicBoolValue>(F)
: &create<FormulaBoolValue>(F);
return *It->second;
}
namespace {
const Formula *parse(Arena &A, llvm::StringRef &In) {
auto EatSpaces = [&] { In = In.ltrim(' '); };
EatSpaces();
if (In.consume_front("!")) {
if (auto *Arg = parse(A, In))
return &A.makeNot(*Arg);
return nullptr;
}
if (In.consume_front("(")) {
auto *Arg1 = parse(A, In);
if (!Arg1)
return nullptr;
EatSpaces();
decltype(&Arena::makeOr) Op;
if (In.consume_front("|"))
Op = &Arena::makeOr;
else if (In.consume_front("&"))
Op = &Arena::makeAnd;
else if (In.consume_front("=>"))
Op = &Arena::makeImplies;
else if (In.consume_front("="))
Op = &Arena::makeEquals;
else
return nullptr;
auto *Arg2 = parse(A, In);
if (!Arg2)
return nullptr;
EatSpaces();
if (!In.consume_front(")"))
return nullptr;
return &(A.*Op)(*Arg1, *Arg2);
}
// For now, only support unnamed variables V0, V1 etc.
// FIXME: parse e.g. "X" by allocating an atom and storing a name somewhere.
if (In.consume_front("V")) {
std::underlying_type_t<Atom> At;
if (In.consumeInteger(10, At))
return nullptr;
return &A.makeAtomRef(static_cast<Atom>(At));
}
if (In.consume_front("true"))
return &A.makeLiteral(true);
if (In.consume_front("false"))
return &A.makeLiteral(false);
return nullptr;
}
class FormulaParseError : public llvm::ErrorInfo<FormulaParseError> {
std::string Formula;
unsigned Offset;
public:
static char ID;
FormulaParseError(llvm::StringRef Formula, unsigned Offset)
: Formula(Formula), Offset(Offset) {}
void log(raw_ostream &OS) const override {
OS << "bad formula at offset " << Offset << "\n";
OS << Formula << "\n";
OS.indent(Offset) << "^";
}
std::error_code convertToErrorCode() const override {
return std::make_error_code(std::errc::invalid_argument);
}
};
char FormulaParseError::ID = 0;
} // namespace
llvm::Expected<const Formula &> Arena::parseFormula(llvm::StringRef In) {
llvm::StringRef Rest = In;
auto *Result = parse(*this, Rest);
if (!Result) // parse() hit something unparseable
return llvm::make_error<FormulaParseError>(In, In.size() - Rest.size());
Rest = Rest.ltrim();
if (!Rest.empty()) // parse didn't consume all the input
return llvm::make_error<FormulaParseError>(In, In.size() - Rest.size());
return *Result;
}
} // namespace clang::dataflow
|