1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362
|
//===-- DataflowAnalysisContext.cpp -----------------------------*- C++ -*-===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This file defines a DataflowAnalysisContext class that owns objects that
// encompass the state of a program and stores context that is used during
// dataflow analysis.
//
//===----------------------------------------------------------------------===//
#include "clang/Analysis/FlowSensitive/DataflowAnalysisContext.h"
#include "clang/AST/ExprCXX.h"
#include "clang/Analysis/FlowSensitive/ASTOps.h"
#include "clang/Analysis/FlowSensitive/DebugSupport.h"
#include "clang/Analysis/FlowSensitive/Formula.h"
#include "clang/Analysis/FlowSensitive/Logger.h"
#include "clang/Analysis/FlowSensitive/SimplifyConstraints.h"
#include "clang/Analysis/FlowSensitive/Value.h"
#include "llvm/ADT/SetOperations.h"
#include "llvm/ADT/SetVector.h"
#include "llvm/Support/CommandLine.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/FileSystem.h"
#include "llvm/Support/Path.h"
#include "llvm/Support/raw_ostream.h"
#include <cassert>
#include <memory>
#include <string>
#include <utility>
#include <vector>
static llvm::cl::opt<std::string> DataflowLog(
"dataflow-log", llvm::cl::Hidden, llvm::cl::ValueOptional,
llvm::cl::desc("Emit log of dataflow analysis. With no arg, writes textual "
"log to stderr. With an arg, writes HTML logs under the "
"specified directory (one per analyzed function)."));
namespace clang {
namespace dataflow {
FieldSet DataflowAnalysisContext::getModeledFields(QualType Type) {
// During context-sensitive analysis, a struct may be allocated in one
// function, but its field accessed in a function lower in the stack than
// the allocation. Since we only collect fields used in the function where
// the allocation occurs, we can't apply that filter when performing
// context-sensitive analysis. But, this only applies to storage locations,
// since field access it not allowed to fail. In contrast, field *values*
// don't need this allowance, since the API allows for uninitialized fields.
if (Opts.ContextSensitiveOpts)
return getObjectFields(Type);
return llvm::set_intersection(getObjectFields(Type), ModeledFields);
}
void DataflowAnalysisContext::addModeledFields(const FieldSet &Fields) {
ModeledFields.set_union(Fields);
}
StorageLocation &DataflowAnalysisContext::createStorageLocation(QualType Type) {
if (!Type.isNull() && Type->isRecordType()) {
llvm::DenseMap<const ValueDecl *, StorageLocation *> FieldLocs;
for (const FieldDecl *Field : getModeledFields(Type))
if (Field->getType()->isReferenceType())
FieldLocs.insert({Field, nullptr});
else
FieldLocs.insert({Field, &createStorageLocation(
Field->getType().getNonReferenceType())});
RecordStorageLocation::SyntheticFieldMap SyntheticFields;
for (const auto &Entry : getSyntheticFields(Type))
SyntheticFields.insert(
{Entry.getKey(),
&createStorageLocation(Entry.getValue().getNonReferenceType())});
return createRecordStorageLocation(Type, std::move(FieldLocs),
std::move(SyntheticFields));
}
return arena().create<ScalarStorageLocation>(Type);
}
// Returns the keys for a given `StringMap`.
// Can't use `StringSet` as the return type as it doesn't support `operator==`.
template <typename T>
static llvm::DenseSet<llvm::StringRef> getKeys(const llvm::StringMap<T> &Map) {
return llvm::DenseSet<llvm::StringRef>(Map.keys().begin(), Map.keys().end());
}
RecordStorageLocation &DataflowAnalysisContext::createRecordStorageLocation(
QualType Type, RecordStorageLocation::FieldToLoc FieldLocs,
RecordStorageLocation::SyntheticFieldMap SyntheticFields) {
assert(Type->isRecordType());
assert(containsSameFields(getModeledFields(Type), FieldLocs));
assert(getKeys(getSyntheticFields(Type)) == getKeys(SyntheticFields));
RecordStorageLocationCreated = true;
return arena().create<RecordStorageLocation>(Type, std::move(FieldLocs),
std::move(SyntheticFields));
}
StorageLocation &
DataflowAnalysisContext::getStableStorageLocation(const ValueDecl &D) {
if (auto *Loc = DeclToLoc.lookup(&D))
return *Loc;
auto &Loc = createStorageLocation(D.getType().getNonReferenceType());
DeclToLoc[&D] = &Loc;
return Loc;
}
StorageLocation &
DataflowAnalysisContext::getStableStorageLocation(const Expr &E) {
const Expr &CanonE = ignoreCFGOmittedNodes(E);
if (auto *Loc = ExprToLoc.lookup(&CanonE))
return *Loc;
auto &Loc = createStorageLocation(CanonE.getType());
ExprToLoc[&CanonE] = &Loc;
return Loc;
}
PointerValue &
DataflowAnalysisContext::getOrCreateNullPointerValue(QualType PointeeType) {
auto CanonicalPointeeType =
PointeeType.isNull() ? PointeeType : PointeeType.getCanonicalType();
auto Res = NullPointerVals.try_emplace(CanonicalPointeeType, nullptr);
if (Res.second) {
auto &PointeeLoc = createStorageLocation(CanonicalPointeeType);
Res.first->second = &arena().create<PointerValue>(PointeeLoc);
}
return *Res.first->second;
}
void DataflowAnalysisContext::addInvariant(const Formula &Constraint) {
if (Invariant == nullptr)
Invariant = &Constraint;
else
Invariant = &arena().makeAnd(*Invariant, Constraint);
}
void DataflowAnalysisContext::addFlowConditionConstraint(
Atom Token, const Formula &Constraint) {
auto Res = FlowConditionConstraints.try_emplace(Token, &Constraint);
if (!Res.second) {
Res.first->second =
&arena().makeAnd(*Res.first->second, Constraint);
}
}
Atom DataflowAnalysisContext::forkFlowCondition(Atom Token) {
Atom ForkToken = arena().makeFlowConditionToken();
FlowConditionDeps[ForkToken].insert(Token);
addFlowConditionConstraint(ForkToken, arena().makeAtomRef(Token));
return ForkToken;
}
Atom
DataflowAnalysisContext::joinFlowConditions(Atom FirstToken,
Atom SecondToken) {
Atom Token = arena().makeFlowConditionToken();
FlowConditionDeps[Token].insert(FirstToken);
FlowConditionDeps[Token].insert(SecondToken);
addFlowConditionConstraint(Token,
arena().makeOr(arena().makeAtomRef(FirstToken),
arena().makeAtomRef(SecondToken)));
return Token;
}
Solver::Result DataflowAnalysisContext::querySolver(
llvm::SetVector<const Formula *> Constraints) {
return S.solve(Constraints.getArrayRef());
}
bool DataflowAnalysisContext::flowConditionImplies(Atom Token,
const Formula &F) {
if (F.isLiteral(true))
return true;
// Returns true if and only if truth assignment of the flow condition implies
// that `F` is also true. We prove whether or not this property holds by
// reducing the problem to satisfiability checking. In other words, we attempt
// to show that assuming `F` is false makes the constraints induced by the
// flow condition unsatisfiable.
llvm::SetVector<const Formula *> Constraints;
Constraints.insert(&arena().makeAtomRef(Token));
Constraints.insert(&arena().makeNot(F));
addTransitiveFlowConditionConstraints(Token, Constraints);
return isUnsatisfiable(std::move(Constraints));
}
bool DataflowAnalysisContext::flowConditionAllows(Atom Token,
const Formula &F) {
if (F.isLiteral(false))
return false;
llvm::SetVector<const Formula *> Constraints;
Constraints.insert(&arena().makeAtomRef(Token));
Constraints.insert(&F);
addTransitiveFlowConditionConstraints(Token, Constraints);
return isSatisfiable(std::move(Constraints));
}
bool DataflowAnalysisContext::equivalentFormulas(const Formula &Val1,
const Formula &Val2) {
llvm::SetVector<const Formula *> Constraints;
Constraints.insert(&arena().makeNot(arena().makeEquals(Val1, Val2)));
return isUnsatisfiable(std::move(Constraints));
}
void DataflowAnalysisContext::addTransitiveFlowConditionConstraints(
Atom Token, llvm::SetVector<const Formula *> &Constraints) {
llvm::DenseSet<Atom> AddedTokens;
std::vector<Atom> Remaining = {Token};
if (Invariant)
Constraints.insert(Invariant);
// Define all the flow conditions that might be referenced in constraints.
while (!Remaining.empty()) {
auto Token = Remaining.back();
Remaining.pop_back();
if (!AddedTokens.insert(Token).second)
continue;
auto ConstraintsIt = FlowConditionConstraints.find(Token);
if (ConstraintsIt == FlowConditionConstraints.end()) {
Constraints.insert(&arena().makeAtomRef(Token));
} else {
// Bind flow condition token via `iff` to its set of constraints:
// FC <=> (C1 ^ C2 ^ ...), where Ci are constraints
Constraints.insert(&arena().makeEquals(arena().makeAtomRef(Token),
*ConstraintsIt->second));
}
if (auto DepsIt = FlowConditionDeps.find(Token);
DepsIt != FlowConditionDeps.end())
for (Atom A : DepsIt->second)
Remaining.push_back(A);
}
}
static void printAtomList(const llvm::SmallVector<Atom> &Atoms,
llvm::raw_ostream &OS) {
OS << "(";
for (size_t i = 0; i < Atoms.size(); ++i) {
OS << Atoms[i];
if (i + 1 < Atoms.size())
OS << ", ";
}
OS << ")\n";
}
void DataflowAnalysisContext::dumpFlowCondition(Atom Token,
llvm::raw_ostream &OS) {
llvm::SetVector<const Formula *> Constraints;
Constraints.insert(&arena().makeAtomRef(Token));
addTransitiveFlowConditionConstraints(Token, Constraints);
OS << "Flow condition token: " << Token << "\n";
SimplifyConstraintsInfo Info;
llvm::SetVector<const Formula *> OriginalConstraints = Constraints;
simplifyConstraints(Constraints, arena(), &Info);
if (!Constraints.empty()) {
OS << "Constraints:\n";
for (const auto *Constraint : Constraints) {
Constraint->print(OS);
OS << "\n";
}
}
if (!Info.TrueAtoms.empty()) {
OS << "True atoms: ";
printAtomList(Info.TrueAtoms, OS);
}
if (!Info.FalseAtoms.empty()) {
OS << "False atoms: ";
printAtomList(Info.FalseAtoms, OS);
}
if (!Info.EquivalentAtoms.empty()) {
OS << "Equivalent atoms:\n";
for (const llvm::SmallVector<Atom> &Class : Info.EquivalentAtoms)
printAtomList(Class, OS);
}
OS << "\nFlow condition constraints before simplification:\n";
for (const auto *Constraint : OriginalConstraints) {
Constraint->print(OS);
OS << "\n";
}
}
const AdornedCFG *
DataflowAnalysisContext::getAdornedCFG(const FunctionDecl *F) {
// Canonicalize the key:
F = F->getDefinition();
if (F == nullptr)
return nullptr;
auto It = FunctionContexts.find(F);
if (It != FunctionContexts.end())
return &It->second;
if (F->doesThisDeclarationHaveABody()) {
auto ACFG = AdornedCFG::build(*F);
// FIXME: Handle errors.
assert(ACFG);
auto Result = FunctionContexts.insert({F, std::move(*ACFG)});
return &Result.first->second;
}
return nullptr;
}
static std::unique_ptr<Logger> makeLoggerFromCommandLine() {
if (DataflowLog.empty())
return Logger::textual(llvm::errs());
llvm::StringRef Dir = DataflowLog;
if (auto EC = llvm::sys::fs::create_directories(Dir))
llvm::errs() << "Failed to create log dir: " << EC.message() << "\n";
// All analysis runs within a process will log to the same directory.
// Share a counter so they don't all overwrite each other's 0.html.
// (Don't share a logger, it's not threadsafe).
static std::atomic<unsigned> Counter = {0};
auto StreamFactory =
[Dir(Dir.str())]() mutable -> std::unique_ptr<llvm::raw_ostream> {
llvm::SmallString<256> File(Dir);
llvm::sys::path::append(File,
std::to_string(Counter.fetch_add(1)) + ".html");
std::error_code EC;
auto OS = std::make_unique<llvm::raw_fd_ostream>(File, EC);
if (EC) {
llvm::errs() << "Failed to create log " << File << ": " << EC.message()
<< "\n";
return std::make_unique<llvm::raw_null_ostream>();
}
return OS;
};
return Logger::html(std::move(StreamFactory));
}
DataflowAnalysisContext::DataflowAnalysisContext(
Solver &S, std::unique_ptr<Solver> &&OwnedSolver, Options Opts)
: S(S), OwnedSolver(std::move(OwnedSolver)), A(std::make_unique<Arena>()),
Opts(Opts) {
// If the -dataflow-log command-line flag was set, synthesize a logger.
// This is ugly but provides a uniform method for ad-hoc debugging dataflow-
// based tools.
if (Opts.Log == nullptr) {
if (DataflowLog.getNumOccurrences() > 0) {
LogOwner = makeLoggerFromCommandLine();
this->Opts.Log = LogOwner.get();
// FIXME: if the flag is given a value, write an HTML log to a file.
} else {
this->Opts.Log = &Logger::null();
}
}
}
DataflowAnalysisContext::~DataflowAnalysisContext() = default;
} // namespace dataflow
} // namespace clang
|