1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257
|
//===-- DataflowEnvironment.cpp ---------------------------------*- C++ -*-===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This file defines an Environment class that is used by dataflow analyses
// that run over Control-Flow Graphs (CFGs) to keep track of the state of the
// program at given program points.
//
//===----------------------------------------------------------------------===//
#include "clang/Analysis/FlowSensitive/DataflowEnvironment.h"
#include "clang/AST/Decl.h"
#include "clang/AST/DeclCXX.h"
#include "clang/AST/ExprCXX.h"
#include "clang/AST/RecursiveASTVisitor.h"
#include "clang/AST/Stmt.h"
#include "clang/AST/Type.h"
#include "clang/Analysis/FlowSensitive/ASTOps.h"
#include "clang/Analysis/FlowSensitive/DataflowAnalysisContext.h"
#include "clang/Analysis/FlowSensitive/DataflowLattice.h"
#include "clang/Analysis/FlowSensitive/Value.h"
#include "llvm/ADT/DenseMap.h"
#include "llvm/ADT/DenseSet.h"
#include "llvm/ADT/MapVector.h"
#include "llvm/ADT/PointerUnion.h"
#include "llvm/ADT/STLExtras.h"
#include "llvm/ADT/ScopeExit.h"
#include "llvm/Support/ErrorHandling.h"
#include <algorithm>
#include <cassert>
#include <memory>
#include <utility>
#define DEBUG_TYPE "dataflow"
namespace clang {
namespace dataflow {
// FIXME: convert these to parameters of the analysis or environment. Current
// settings have been experimentaly validated, but only for a particular
// analysis.
static constexpr int MaxCompositeValueDepth = 3;
static constexpr int MaxCompositeValueSize = 1000;
/// Returns a map consisting of key-value entries that are present in both maps.
static llvm::DenseMap<const ValueDecl *, StorageLocation *> intersectDeclToLoc(
const llvm::DenseMap<const ValueDecl *, StorageLocation *> &DeclToLoc1,
const llvm::DenseMap<const ValueDecl *, StorageLocation *> &DeclToLoc2) {
llvm::DenseMap<const ValueDecl *, StorageLocation *> Result;
for (auto &Entry : DeclToLoc1) {
auto It = DeclToLoc2.find(Entry.first);
if (It != DeclToLoc2.end() && Entry.second == It->second)
Result.insert({Entry.first, Entry.second});
}
return Result;
}
// Performs a join on either `ExprToLoc` or `ExprToVal`.
// The maps must be consistent in the sense that any entries for the same
// expression must map to the same location / value. This is the case if we are
// performing a join for control flow within a full-expression (which is the
// only case when this function should be used).
template <typename MapT> MapT joinExprMaps(const MapT &Map1, const MapT &Map2) {
MapT Result = Map1;
for (const auto &Entry : Map2) {
[[maybe_unused]] auto [It, Inserted] = Result.insert(Entry);
// If there was an existing entry, its value should be the same as for the
// entry we were trying to insert.
assert(It->second == Entry.second);
}
return Result;
}
// Whether to consider equivalent two values with an unknown relation.
//
// FIXME: this function is a hack enabling unsoundness to support
// convergence. Once we have widening support for the reference/pointer and
// struct built-in models, this should be unconditionally `false` (and inlined
// as such at its call sites).
static bool equateUnknownValues(Value::Kind K) {
switch (K) {
case Value::Kind::Integer:
case Value::Kind::Pointer:
return true;
default:
return false;
}
}
static bool compareDistinctValues(QualType Type, Value &Val1,
const Environment &Env1, Value &Val2,
const Environment &Env2,
Environment::ValueModel &Model) {
// Note: Potentially costly, but, for booleans, we could check whether both
// can be proven equivalent in their respective environments.
// FIXME: move the reference/pointers logic from `areEquivalentValues` to here
// and implement separate, join/widen specific handling for
// reference/pointers.
switch (Model.compare(Type, Val1, Env1, Val2, Env2)) {
case ComparisonResult::Same:
return true;
case ComparisonResult::Different:
return false;
case ComparisonResult::Unknown:
return equateUnknownValues(Val1.getKind());
}
llvm_unreachable("All cases covered in switch");
}
/// Attempts to join distinct values `Val1` and `Val2` in `Env1` and `Env2`,
/// respectively, of the same type `Type`. Joining generally produces a single
/// value that (soundly) approximates the two inputs, although the actual
/// meaning depends on `Model`.
static Value *joinDistinctValues(QualType Type, Value &Val1,
const Environment &Env1, Value &Val2,
const Environment &Env2,
Environment &JoinedEnv,
Environment::ValueModel &Model) {
// Join distinct boolean values preserving information about the constraints
// in the respective path conditions.
if (isa<BoolValue>(&Val1) && isa<BoolValue>(&Val2)) {
// FIXME: Checking both values should be unnecessary, since they should have
// a consistent shape. However, right now we can end up with BoolValue's in
// integer-typed variables due to our incorrect handling of
// boolean-to-integer casts (we just propagate the BoolValue to the result
// of the cast). So, a join can encounter an integer in one branch but a
// bool in the other.
// For example:
// ```
// std::optional<bool> o;
// int x;
// if (o.has_value())
// x = o.value();
// ```
auto &Expr1 = cast<BoolValue>(Val1).formula();
auto &Expr2 = cast<BoolValue>(Val2).formula();
auto &A = JoinedEnv.arena();
auto &JoinedVal = A.makeAtomRef(A.makeAtom());
JoinedEnv.assume(
A.makeOr(A.makeAnd(A.makeAtomRef(Env1.getFlowConditionToken()),
A.makeEquals(JoinedVal, Expr1)),
A.makeAnd(A.makeAtomRef(Env2.getFlowConditionToken()),
A.makeEquals(JoinedVal, Expr2))));
return &A.makeBoolValue(JoinedVal);
}
Value *JoinedVal = JoinedEnv.createValue(Type);
if (JoinedVal)
Model.join(Type, Val1, Env1, Val2, Env2, *JoinedVal, JoinedEnv);
return JoinedVal;
}
static WidenResult widenDistinctValues(QualType Type, Value &Prev,
const Environment &PrevEnv,
Value &Current, Environment &CurrentEnv,
Environment::ValueModel &Model) {
// Boolean-model widening.
if (isa<BoolValue>(Prev) && isa<BoolValue>(Current)) {
// FIXME: Checking both values should be unnecessary, but we can currently
// end up with `BoolValue`s in integer-typed variables. See comment in
// `joinDistinctValues()` for details.
auto &PrevBool = cast<BoolValue>(Prev);
auto &CurBool = cast<BoolValue>(Current);
if (isa<TopBoolValue>(Prev))
// Safe to return `Prev` here, because Top is never dependent on the
// environment.
return {&Prev, LatticeEffect::Unchanged};
// We may need to widen to Top, but before we do so, check whether both
// values are implied to be either true or false in the current environment.
// In that case, we can simply return a literal instead.
bool TruePrev = PrevEnv.proves(PrevBool.formula());
bool TrueCur = CurrentEnv.proves(CurBool.formula());
if (TruePrev && TrueCur)
return {&CurrentEnv.getBoolLiteralValue(true), LatticeEffect::Unchanged};
if (!TruePrev && !TrueCur &&
PrevEnv.proves(PrevEnv.arena().makeNot(PrevBool.formula())) &&
CurrentEnv.proves(CurrentEnv.arena().makeNot(CurBool.formula())))
return {&CurrentEnv.getBoolLiteralValue(false), LatticeEffect::Unchanged};
return {&CurrentEnv.makeTopBoolValue(), LatticeEffect::Changed};
}
// FIXME: Add other built-in model widening.
// Custom-model widening.
if (auto Result = Model.widen(Type, Prev, PrevEnv, Current, CurrentEnv))
return *Result;
return {&Current, equateUnknownValues(Prev.getKind())
? LatticeEffect::Unchanged
: LatticeEffect::Changed};
}
// Returns whether the values in `Map1` and `Map2` compare equal for those
// keys that `Map1` and `Map2` have in common.
template <typename Key>
bool compareKeyToValueMaps(const llvm::MapVector<Key, Value *> &Map1,
const llvm::MapVector<Key, Value *> &Map2,
const Environment &Env1, const Environment &Env2,
Environment::ValueModel &Model) {
for (auto &Entry : Map1) {
Key K = Entry.first;
assert(K != nullptr);
Value *Val = Entry.second;
assert(Val != nullptr);
auto It = Map2.find(K);
if (It == Map2.end())
continue;
assert(It->second != nullptr);
if (!areEquivalentValues(*Val, *It->second) &&
!compareDistinctValues(K->getType(), *Val, Env1, *It->second, Env2,
Model))
return false;
}
return true;
}
// Perform a join on two `LocToVal` maps.
static llvm::MapVector<const StorageLocation *, Value *>
joinLocToVal(const llvm::MapVector<const StorageLocation *, Value *> &LocToVal,
const llvm::MapVector<const StorageLocation *, Value *> &LocToVal2,
const Environment &Env1, const Environment &Env2,
Environment &JoinedEnv, Environment::ValueModel &Model) {
llvm::MapVector<const StorageLocation *, Value *> Result;
for (auto &Entry : LocToVal) {
const StorageLocation *Loc = Entry.first;
assert(Loc != nullptr);
Value *Val = Entry.second;
assert(Val != nullptr);
auto It = LocToVal2.find(Loc);
if (It == LocToVal2.end())
continue;
assert(It->second != nullptr);
if (Value *JoinedVal = Environment::joinValues(
Loc->getType(), Val, Env1, It->second, Env2, JoinedEnv, Model)) {
Result.insert({Loc, JoinedVal});
}
}
return Result;
}
// Perform widening on either `LocToVal` or `ExprToVal`. `Key` must be either
// `const StorageLocation *` or `const Expr *`.
template <typename Key>
llvm::MapVector<Key, Value *>
widenKeyToValueMap(const llvm::MapVector<Key, Value *> &CurMap,
const llvm::MapVector<Key, Value *> &PrevMap,
Environment &CurEnv, const Environment &PrevEnv,
Environment::ValueModel &Model, LatticeEffect &Effect) {
llvm::MapVector<Key, Value *> WidenedMap;
for (auto &Entry : CurMap) {
Key K = Entry.first;
assert(K != nullptr);
Value *Val = Entry.second;
assert(Val != nullptr);
auto PrevIt = PrevMap.find(K);
if (PrevIt == PrevMap.end())
continue;
assert(PrevIt->second != nullptr);
if (areEquivalentValues(*Val, *PrevIt->second)) {
WidenedMap.insert({K, Val});
continue;
}
auto [WidenedVal, ValEffect] = widenDistinctValues(
K->getType(), *PrevIt->second, PrevEnv, *Val, CurEnv, Model);
WidenedMap.insert({K, WidenedVal});
if (ValEffect == LatticeEffect::Changed)
Effect = LatticeEffect::Changed;
}
return WidenedMap;
}
namespace {
// Visitor that builds a map from record prvalues to result objects.
// For each result object that it encounters, it propagates the storage location
// of the result object to all record prvalues that can initialize it.
class ResultObjectVisitor : public AnalysisASTVisitor<ResultObjectVisitor> {
public:
// `ResultObjectMap` will be filled with a map from record prvalues to result
// object. If this visitor will traverse a function that returns a record by
// value, `LocForRecordReturnVal` is the location to which this record should
// be written; otherwise, it is null.
explicit ResultObjectVisitor(
llvm::DenseMap<const Expr *, RecordStorageLocation *> &ResultObjectMap,
RecordStorageLocation *LocForRecordReturnVal,
DataflowAnalysisContext &DACtx)
: ResultObjectMap(ResultObjectMap),
LocForRecordReturnVal(LocForRecordReturnVal), DACtx(DACtx) {}
// Traverse all member and base initializers of `Ctor`. This function is not
// called by `RecursiveASTVisitor`; it should be called manually if we are
// analyzing a constructor. `ThisPointeeLoc` is the storage location that
// `this` points to.
void TraverseConstructorInits(const CXXConstructorDecl *Ctor,
RecordStorageLocation *ThisPointeeLoc) {
assert(ThisPointeeLoc != nullptr);
for (const CXXCtorInitializer *Init : Ctor->inits()) {
Expr *InitExpr = Init->getInit();
if (FieldDecl *Field = Init->getMember();
Field != nullptr && Field->getType()->isRecordType()) {
PropagateResultObject(InitExpr, cast<RecordStorageLocation>(
ThisPointeeLoc->getChild(*Field)));
} else if (Init->getBaseClass()) {
PropagateResultObject(InitExpr, ThisPointeeLoc);
}
// Ensure that any result objects within `InitExpr` (e.g. temporaries)
// are also propagated to the prvalues that initialize them.
TraverseStmt(InitExpr);
// If this is a `CXXDefaultInitExpr`, also propagate any result objects
// within the default expression.
if (auto *DefaultInit = dyn_cast<CXXDefaultInitExpr>(InitExpr))
TraverseStmt(DefaultInit->getExpr());
}
}
bool VisitVarDecl(VarDecl *VD) {
if (VD->getType()->isRecordType() && VD->hasInit())
PropagateResultObject(
VD->getInit(),
&cast<RecordStorageLocation>(DACtx.getStableStorageLocation(*VD)));
return true;
}
bool VisitMaterializeTemporaryExpr(MaterializeTemporaryExpr *MTE) {
if (MTE->getType()->isRecordType())
PropagateResultObject(
MTE->getSubExpr(),
&cast<RecordStorageLocation>(DACtx.getStableStorageLocation(*MTE)));
return true;
}
bool VisitReturnStmt(ReturnStmt *Return) {
Expr *RetValue = Return->getRetValue();
if (RetValue != nullptr && RetValue->getType()->isRecordType() &&
RetValue->isPRValue())
PropagateResultObject(RetValue, LocForRecordReturnVal);
return true;
}
bool VisitExpr(Expr *E) {
// Clang's AST can have record-type prvalues without a result object -- for
// example as full-expressions contained in a compound statement or as
// arguments of call expressions. We notice this if we get here and a
// storage location has not yet been associated with `E`. In this case,
// treat this as if it was a `MaterializeTemporaryExpr`.
if (E->isPRValue() && E->getType()->isRecordType() &&
!ResultObjectMap.contains(E))
PropagateResultObject(
E, &cast<RecordStorageLocation>(DACtx.getStableStorageLocation(*E)));
return true;
}
void
PropagateResultObjectToRecordInitList(const RecordInitListHelper &InitList,
RecordStorageLocation *Loc) {
for (auto [Base, Init] : InitList.base_inits()) {
assert(Base->getType().getCanonicalType() ==
Init->getType().getCanonicalType());
// Storage location for the base class is the same as that of the
// derived class because we "flatten" the object hierarchy and put all
// fields in `RecordStorageLocation` of the derived class.
PropagateResultObject(Init, Loc);
}
for (auto [Field, Init] : InitList.field_inits()) {
// Fields of non-record type are handled in
// `TransferVisitor::VisitInitListExpr()`.
if (Field->getType()->isRecordType())
PropagateResultObject(
Init, cast<RecordStorageLocation>(Loc->getChild(*Field)));
}
}
// Assigns `Loc` as the result object location of `E`, then propagates the
// location to all lower-level prvalues that initialize the same object as
// `E` (or one of its base classes or member variables).
void PropagateResultObject(Expr *E, RecordStorageLocation *Loc) {
if (!E->isPRValue() || !E->getType()->isRecordType()) {
assert(false);
// Ensure we don't propagate the result object if we hit this in a
// release build.
return;
}
ResultObjectMap[E] = Loc;
// The following AST node kinds are "original initializers": They are the
// lowest-level AST node that initializes a given object, and nothing
// below them can initialize the same object (or part of it).
if (isa<CXXConstructExpr>(E) || isa<CallExpr>(E) || isa<LambdaExpr>(E) ||
isa<CXXDefaultArgExpr>(E) || isa<CXXStdInitializerListExpr>(E) ||
isa<AtomicExpr>(E) ||
// We treat `BuiltinBitCastExpr` as an "original initializer" too as
// it may not even be casting from a record type -- and even if it is,
// the two objects are in general of unrelated type.
isa<BuiltinBitCastExpr>(E)) {
return;
}
if (auto *Op = dyn_cast<BinaryOperator>(E);
Op && Op->getOpcode() == BO_Cmp) {
// Builtin `<=>` returns a `std::strong_ordering` object.
return;
}
if (auto *InitList = dyn_cast<InitListExpr>(E)) {
if (!InitList->isSemanticForm())
return;
if (InitList->isTransparent()) {
PropagateResultObject(InitList->getInit(0), Loc);
return;
}
PropagateResultObjectToRecordInitList(RecordInitListHelper(InitList),
Loc);
return;
}
if (auto *ParenInitList = dyn_cast<CXXParenListInitExpr>(E)) {
PropagateResultObjectToRecordInitList(RecordInitListHelper(ParenInitList),
Loc);
return;
}
if (auto *Op = dyn_cast<BinaryOperator>(E); Op && Op->isCommaOp()) {
PropagateResultObject(Op->getRHS(), Loc);
return;
}
if (auto *Cond = dyn_cast<AbstractConditionalOperator>(E)) {
PropagateResultObject(Cond->getTrueExpr(), Loc);
PropagateResultObject(Cond->getFalseExpr(), Loc);
return;
}
if (auto *SE = dyn_cast<StmtExpr>(E)) {
PropagateResultObject(cast<Expr>(SE->getSubStmt()->body_back()), Loc);
return;
}
if (auto *DIE = dyn_cast<CXXDefaultInitExpr>(E)) {
PropagateResultObject(DIE->getExpr(), Loc);
return;
}
// All other expression nodes that propagate a record prvalue should have
// exactly one child.
SmallVector<Stmt *, 1> Children(E->child_begin(), E->child_end());
LLVM_DEBUG({
if (Children.size() != 1)
E->dump();
});
assert(Children.size() == 1);
for (Stmt *S : Children)
PropagateResultObject(cast<Expr>(S), Loc);
}
private:
llvm::DenseMap<const Expr *, RecordStorageLocation *> &ResultObjectMap;
RecordStorageLocation *LocForRecordReturnVal;
DataflowAnalysisContext &DACtx;
};
} // namespace
void Environment::initialize() {
if (InitialTargetStmt == nullptr)
return;
if (InitialTargetFunc == nullptr) {
initFieldsGlobalsAndFuncs(getReferencedDecls(*InitialTargetStmt));
ResultObjectMap =
std::make_shared<PrValueToResultObject>(buildResultObjectMap(
DACtx, InitialTargetStmt, getThisPointeeStorageLocation(),
/*LocForRecordReturnValue=*/nullptr));
return;
}
initFieldsGlobalsAndFuncs(getReferencedDecls(*InitialTargetFunc));
for (const auto *ParamDecl : InitialTargetFunc->parameters()) {
assert(ParamDecl != nullptr);
setStorageLocation(*ParamDecl, createObject(*ParamDecl, nullptr));
}
if (InitialTargetFunc->getReturnType()->isRecordType())
LocForRecordReturnVal = &cast<RecordStorageLocation>(
createStorageLocation(InitialTargetFunc->getReturnType()));
if (const auto *MethodDecl = dyn_cast<CXXMethodDecl>(InitialTargetFunc)) {
auto *Parent = MethodDecl->getParent();
assert(Parent != nullptr);
if (Parent->isLambda()) {
for (const auto &Capture : Parent->captures()) {
if (Capture.capturesVariable()) {
const auto *VarDecl = Capture.getCapturedVar();
assert(VarDecl != nullptr);
setStorageLocation(*VarDecl, createObject(*VarDecl, nullptr));
} else if (Capture.capturesThis()) {
if (auto *Ancestor = InitialTargetFunc->getNonClosureAncestor()) {
const auto *SurroundingMethodDecl = cast<CXXMethodDecl>(Ancestor);
QualType ThisPointeeType =
SurroundingMethodDecl->getFunctionObjectParameterType();
setThisPointeeStorageLocation(
cast<RecordStorageLocation>(createObject(ThisPointeeType)));
} else if (auto *FieldBeingInitialized =
dyn_cast<FieldDecl>(Parent->getLambdaContextDecl())) {
// This is in a field initializer, rather than a method.
setThisPointeeStorageLocation(
cast<RecordStorageLocation>(createObject(QualType(
FieldBeingInitialized->getParent()->getTypeForDecl(), 0))));
} else {
assert(false && "Unexpected this-capturing lambda context.");
}
}
}
} else if (MethodDecl->isImplicitObjectMemberFunction()) {
QualType ThisPointeeType = MethodDecl->getFunctionObjectParameterType();
auto &ThisLoc =
cast<RecordStorageLocation>(createStorageLocation(ThisPointeeType));
setThisPointeeStorageLocation(ThisLoc);
// Initialize fields of `*this` with values, but only if we're not
// analyzing a constructor; after all, it's the constructor's job to do
// this (and we want to be able to test that).
if (!isa<CXXConstructorDecl>(MethodDecl))
initializeFieldsWithValues(ThisLoc);
}
}
// We do this below the handling of `CXXMethodDecl` above so that we can
// be sure that the storage location for `this` has been set.
ResultObjectMap =
std::make_shared<PrValueToResultObject>(buildResultObjectMap(
DACtx, InitialTargetFunc, getThisPointeeStorageLocation(),
LocForRecordReturnVal));
}
// FIXME: Add support for resetting globals after function calls to enable the
// implementation of sound analyses.
void Environment::initFieldsGlobalsAndFuncs(const ReferencedDecls &Referenced) {
// These have to be added before the lines that follow to ensure that
// `create*` work correctly for structs.
DACtx->addModeledFields(Referenced.Fields);
for (const VarDecl *D : Referenced.Globals) {
if (getStorageLocation(*D) != nullptr)
continue;
// We don't run transfer functions on the initializers of global variables,
// so they won't be associated with a value or storage location. We
// therefore intentionally don't pass an initializer to `createObject()`; in
// particular, this ensures that `createObject()` will initialize the fields
// of record-type variables with values.
setStorageLocation(*D, createObject(*D, nullptr));
}
for (const FunctionDecl *FD : Referenced.Functions) {
if (getStorageLocation(*FD) != nullptr)
continue;
auto &Loc = createStorageLocation(*FD);
setStorageLocation(*FD, Loc);
}
}
Environment Environment::fork() const {
Environment Copy(*this);
Copy.FlowConditionToken = DACtx->forkFlowCondition(FlowConditionToken);
return Copy;
}
bool Environment::canDescend(unsigned MaxDepth,
const FunctionDecl *Callee) const {
return CallStack.size() < MaxDepth && !llvm::is_contained(CallStack, Callee);
}
Environment Environment::pushCall(const CallExpr *Call) const {
Environment Env(*this);
if (const auto *MethodCall = dyn_cast<CXXMemberCallExpr>(Call)) {
if (const Expr *Arg = MethodCall->getImplicitObjectArgument()) {
if (!isa<CXXThisExpr>(Arg))
Env.ThisPointeeLoc =
cast<RecordStorageLocation>(getStorageLocation(*Arg));
// Otherwise (when the argument is `this`), retain the current
// environment's `ThisPointeeLoc`.
}
}
if (Call->getType()->isRecordType() && Call->isPRValue())
Env.LocForRecordReturnVal = &Env.getResultObjectLocation(*Call);
Env.pushCallInternal(Call->getDirectCallee(),
llvm::ArrayRef(Call->getArgs(), Call->getNumArgs()));
return Env;
}
Environment Environment::pushCall(const CXXConstructExpr *Call) const {
Environment Env(*this);
Env.ThisPointeeLoc = &Env.getResultObjectLocation(*Call);
Env.LocForRecordReturnVal = &Env.getResultObjectLocation(*Call);
Env.pushCallInternal(Call->getConstructor(),
llvm::ArrayRef(Call->getArgs(), Call->getNumArgs()));
return Env;
}
void Environment::pushCallInternal(const FunctionDecl *FuncDecl,
ArrayRef<const Expr *> Args) {
// Canonicalize to the definition of the function. This ensures that we're
// putting arguments into the same `ParamVarDecl`s` that the callee will later
// be retrieving them from.
assert(FuncDecl->getDefinition() != nullptr);
FuncDecl = FuncDecl->getDefinition();
CallStack.push_back(FuncDecl);
initFieldsGlobalsAndFuncs(getReferencedDecls(*FuncDecl));
const auto *ParamIt = FuncDecl->param_begin();
// FIXME: Parameters don't always map to arguments 1:1; examples include
// overloaded operators implemented as member functions, and parameter packs.
for (unsigned ArgIndex = 0; ArgIndex < Args.size(); ++ParamIt, ++ArgIndex) {
assert(ParamIt != FuncDecl->param_end());
const VarDecl *Param = *ParamIt;
setStorageLocation(*Param, createObject(*Param, Args[ArgIndex]));
}
ResultObjectMap = std::make_shared<PrValueToResultObject>(
buildResultObjectMap(DACtx, FuncDecl, getThisPointeeStorageLocation(),
LocForRecordReturnVal));
}
void Environment::popCall(const CallExpr *Call, const Environment &CalleeEnv) {
// We ignore some entries of `CalleeEnv`:
// - `DACtx` because is already the same in both
// - We don't want the callee's `DeclCtx`, `ReturnVal`, `ReturnLoc` or
// `ThisPointeeLoc` because they don't apply to us.
// - `DeclToLoc`, `ExprToLoc`, and `ExprToVal` capture information from the
// callee's local scope, so when popping that scope, we do not propagate
// the maps.
this->LocToVal = std::move(CalleeEnv.LocToVal);
this->FlowConditionToken = std::move(CalleeEnv.FlowConditionToken);
if (Call->isGLValue()) {
if (CalleeEnv.ReturnLoc != nullptr)
setStorageLocation(*Call, *CalleeEnv.ReturnLoc);
} else if (!Call->getType()->isVoidType()) {
if (CalleeEnv.ReturnVal != nullptr)
setValue(*Call, *CalleeEnv.ReturnVal);
}
}
void Environment::popCall(const CXXConstructExpr *Call,
const Environment &CalleeEnv) {
// See also comment in `popCall(const CallExpr *, const Environment &)` above.
this->LocToVal = std::move(CalleeEnv.LocToVal);
this->FlowConditionToken = std::move(CalleeEnv.FlowConditionToken);
}
bool Environment::equivalentTo(const Environment &Other,
Environment::ValueModel &Model) const {
assert(DACtx == Other.DACtx);
if (ReturnVal != Other.ReturnVal)
return false;
if (ReturnLoc != Other.ReturnLoc)
return false;
if (LocForRecordReturnVal != Other.LocForRecordReturnVal)
return false;
if (ThisPointeeLoc != Other.ThisPointeeLoc)
return false;
if (DeclToLoc != Other.DeclToLoc)
return false;
if (ExprToLoc != Other.ExprToLoc)
return false;
if (!compareKeyToValueMaps(ExprToVal, Other.ExprToVal, *this, Other, Model))
return false;
if (!compareKeyToValueMaps(LocToVal, Other.LocToVal, *this, Other, Model))
return false;
return true;
}
LatticeEffect Environment::widen(const Environment &PrevEnv,
Environment::ValueModel &Model) {
assert(DACtx == PrevEnv.DACtx);
assert(ReturnVal == PrevEnv.ReturnVal);
assert(ReturnLoc == PrevEnv.ReturnLoc);
assert(LocForRecordReturnVal == PrevEnv.LocForRecordReturnVal);
assert(ThisPointeeLoc == PrevEnv.ThisPointeeLoc);
assert(CallStack == PrevEnv.CallStack);
assert(ResultObjectMap == PrevEnv.ResultObjectMap);
assert(InitialTargetFunc == PrevEnv.InitialTargetFunc);
assert(InitialTargetStmt == PrevEnv.InitialTargetStmt);
auto Effect = LatticeEffect::Unchanged;
// By the API, `PrevEnv` is a previous version of the environment for the same
// block, so we have some guarantees about its shape. In particular, it will
// be the result of a join or widen operation on previous values for this
// block. For `DeclToLoc`, `ExprToVal`, and `ExprToLoc`, join guarantees that
// these maps are subsets of the maps in `PrevEnv`. So, as long as we maintain
// this property here, we don't need change their current values to widen.
assert(DeclToLoc.size() <= PrevEnv.DeclToLoc.size());
assert(ExprToVal.size() <= PrevEnv.ExprToVal.size());
assert(ExprToLoc.size() <= PrevEnv.ExprToLoc.size());
ExprToVal = widenKeyToValueMap(ExprToVal, PrevEnv.ExprToVal, *this, PrevEnv,
Model, Effect);
LocToVal = widenKeyToValueMap(LocToVal, PrevEnv.LocToVal, *this, PrevEnv,
Model, Effect);
if (DeclToLoc.size() != PrevEnv.DeclToLoc.size() ||
ExprToLoc.size() != PrevEnv.ExprToLoc.size() ||
ExprToVal.size() != PrevEnv.ExprToVal.size() ||
LocToVal.size() != PrevEnv.LocToVal.size())
Effect = LatticeEffect::Changed;
return Effect;
}
Environment Environment::join(const Environment &EnvA, const Environment &EnvB,
Environment::ValueModel &Model,
ExprJoinBehavior ExprBehavior) {
assert(EnvA.DACtx == EnvB.DACtx);
assert(EnvA.LocForRecordReturnVal == EnvB.LocForRecordReturnVal);
assert(EnvA.ThisPointeeLoc == EnvB.ThisPointeeLoc);
assert(EnvA.CallStack == EnvB.CallStack);
assert(EnvA.ResultObjectMap == EnvB.ResultObjectMap);
assert(EnvA.InitialTargetFunc == EnvB.InitialTargetFunc);
assert(EnvA.InitialTargetStmt == EnvB.InitialTargetStmt);
Environment JoinedEnv(*EnvA.DACtx);
JoinedEnv.CallStack = EnvA.CallStack;
JoinedEnv.ResultObjectMap = EnvA.ResultObjectMap;
JoinedEnv.LocForRecordReturnVal = EnvA.LocForRecordReturnVal;
JoinedEnv.ThisPointeeLoc = EnvA.ThisPointeeLoc;
JoinedEnv.InitialTargetFunc = EnvA.InitialTargetFunc;
JoinedEnv.InitialTargetStmt = EnvA.InitialTargetStmt;
const FunctionDecl *Func = EnvA.getCurrentFunc();
if (!Func) {
JoinedEnv.ReturnVal = nullptr;
} else {
JoinedEnv.ReturnVal =
joinValues(Func->getReturnType(), EnvA.ReturnVal, EnvA, EnvB.ReturnVal,
EnvB, JoinedEnv, Model);
}
if (EnvA.ReturnLoc == EnvB.ReturnLoc)
JoinedEnv.ReturnLoc = EnvA.ReturnLoc;
else
JoinedEnv.ReturnLoc = nullptr;
JoinedEnv.DeclToLoc = intersectDeclToLoc(EnvA.DeclToLoc, EnvB.DeclToLoc);
// FIXME: update join to detect backedges and simplify the flow condition
// accordingly.
JoinedEnv.FlowConditionToken = EnvA.DACtx->joinFlowConditions(
EnvA.FlowConditionToken, EnvB.FlowConditionToken);
JoinedEnv.LocToVal =
joinLocToVal(EnvA.LocToVal, EnvB.LocToVal, EnvA, EnvB, JoinedEnv, Model);
if (ExprBehavior == KeepExprState) {
JoinedEnv.ExprToVal = joinExprMaps(EnvA.ExprToVal, EnvB.ExprToVal);
JoinedEnv.ExprToLoc = joinExprMaps(EnvA.ExprToLoc, EnvB.ExprToLoc);
}
return JoinedEnv;
}
Value *Environment::joinValues(QualType Ty, Value *Val1,
const Environment &Env1, Value *Val2,
const Environment &Env2, Environment &JoinedEnv,
Environment::ValueModel &Model) {
if (Val1 == nullptr || Val2 == nullptr)
// We can't say anything about the joined value -- even if one of the values
// is non-null, we don't want to simply propagate it, because it would be
// too specific: Because the other value is null, that means we have no
// information at all about the value (i.e. the value is unconstrained).
return nullptr;
if (areEquivalentValues(*Val1, *Val2))
// Arbitrarily return one of the two values.
return Val1;
return joinDistinctValues(Ty, *Val1, Env1, *Val2, Env2, JoinedEnv, Model);
}
StorageLocation &Environment::createStorageLocation(QualType Type) {
return DACtx->createStorageLocation(Type);
}
StorageLocation &Environment::createStorageLocation(const ValueDecl &D) {
// Evaluated declarations are always assigned the same storage locations to
// ensure that the environment stabilizes across loop iterations. Storage
// locations for evaluated declarations are stored in the analysis context.
return DACtx->getStableStorageLocation(D);
}
StorageLocation &Environment::createStorageLocation(const Expr &E) {
// Evaluated expressions are always assigned the same storage locations to
// ensure that the environment stabilizes across loop iterations. Storage
// locations for evaluated expressions are stored in the analysis context.
return DACtx->getStableStorageLocation(E);
}
void Environment::setStorageLocation(const ValueDecl &D, StorageLocation &Loc) {
assert(!DeclToLoc.contains(&D));
// The only kinds of declarations that may have a "variable" storage location
// are declarations of reference type and `BindingDecl`. For all other
// declaration, the storage location should be the stable storage location
// returned by `createStorageLocation()`.
assert(D.getType()->isReferenceType() || isa<BindingDecl>(D) ||
&Loc == &createStorageLocation(D));
DeclToLoc[&D] = &Loc;
}
StorageLocation *Environment::getStorageLocation(const ValueDecl &D) const {
auto It = DeclToLoc.find(&D);
if (It == DeclToLoc.end())
return nullptr;
StorageLocation *Loc = It->second;
return Loc;
}
void Environment::removeDecl(const ValueDecl &D) { DeclToLoc.erase(&D); }
void Environment::setStorageLocation(const Expr &E, StorageLocation &Loc) {
// `DeclRefExpr`s to builtin function types aren't glvalues, for some reason,
// but we still want to be able to associate a `StorageLocation` with them,
// so allow these as an exception.
assert(E.isGLValue() ||
E.getType()->isSpecificBuiltinType(BuiltinType::BuiltinFn));
const Expr &CanonE = ignoreCFGOmittedNodes(E);
assert(!ExprToLoc.contains(&CanonE));
ExprToLoc[&CanonE] = &Loc;
}
StorageLocation *Environment::getStorageLocation(const Expr &E) const {
// See comment in `setStorageLocation()`.
assert(E.isGLValue() ||
E.getType()->isSpecificBuiltinType(BuiltinType::BuiltinFn));
auto It = ExprToLoc.find(&ignoreCFGOmittedNodes(E));
return It == ExprToLoc.end() ? nullptr : &*It->second;
}
RecordStorageLocation &
Environment::getResultObjectLocation(const Expr &RecordPRValue) const {
assert(RecordPRValue.getType()->isRecordType());
assert(RecordPRValue.isPRValue());
assert(ResultObjectMap != nullptr);
RecordStorageLocation *Loc = ResultObjectMap->lookup(&RecordPRValue);
assert(Loc != nullptr);
// In release builds, use the "stable" storage location if the map lookup
// failed.
if (Loc == nullptr)
return cast<RecordStorageLocation>(
DACtx->getStableStorageLocation(RecordPRValue));
return *Loc;
}
PointerValue &Environment::getOrCreateNullPointerValue(QualType PointeeType) {
return DACtx->getOrCreateNullPointerValue(PointeeType);
}
void Environment::initializeFieldsWithValues(RecordStorageLocation &Loc,
QualType Type) {
llvm::DenseSet<QualType> Visited;
int CreatedValuesCount = 0;
initializeFieldsWithValues(Loc, Type, Visited, 0, CreatedValuesCount);
if (CreatedValuesCount > MaxCompositeValueSize) {
llvm::errs() << "Attempting to initialize a huge value of type: " << Type
<< '\n';
}
}
void Environment::setValue(const StorageLocation &Loc, Value &Val) {
// Records should not be associated with values.
assert(!isa<RecordStorageLocation>(Loc));
LocToVal[&Loc] = &Val;
}
void Environment::setValue(const Expr &E, Value &Val) {
const Expr &CanonE = ignoreCFGOmittedNodes(E);
assert(CanonE.isPRValue());
// Records should not be associated with values.
assert(!CanonE.getType()->isRecordType());
ExprToVal[&CanonE] = &Val;
}
Value *Environment::getValue(const StorageLocation &Loc) const {
// Records should not be associated with values.
assert(!isa<RecordStorageLocation>(Loc));
return LocToVal.lookup(&Loc);
}
Value *Environment::getValue(const ValueDecl &D) const {
auto *Loc = getStorageLocation(D);
if (Loc == nullptr)
return nullptr;
return getValue(*Loc);
}
Value *Environment::getValue(const Expr &E) const {
// Records should not be associated with values.
assert(!E.getType()->isRecordType());
if (E.isPRValue()) {
auto It = ExprToVal.find(&ignoreCFGOmittedNodes(E));
return It == ExprToVal.end() ? nullptr : It->second;
}
auto It = ExprToLoc.find(&ignoreCFGOmittedNodes(E));
if (It == ExprToLoc.end())
return nullptr;
return getValue(*It->second);
}
Value *Environment::createValue(QualType Type) {
llvm::DenseSet<QualType> Visited;
int CreatedValuesCount = 0;
Value *Val = createValueUnlessSelfReferential(Type, Visited, /*Depth=*/0,
CreatedValuesCount);
if (CreatedValuesCount > MaxCompositeValueSize) {
llvm::errs() << "Attempting to initialize a huge value of type: " << Type
<< '\n';
}
return Val;
}
Value *Environment::createValueUnlessSelfReferential(
QualType Type, llvm::DenseSet<QualType> &Visited, int Depth,
int &CreatedValuesCount) {
assert(!Type.isNull());
assert(!Type->isReferenceType());
assert(!Type->isRecordType());
// Allow unlimited fields at depth 1; only cap at deeper nesting levels.
if ((Depth > 1 && CreatedValuesCount > MaxCompositeValueSize) ||
Depth > MaxCompositeValueDepth)
return nullptr;
if (Type->isBooleanType()) {
CreatedValuesCount++;
return &makeAtomicBoolValue();
}
if (Type->isIntegerType()) {
// FIXME: consider instead `return nullptr`, given that we do nothing useful
// with integers, and so distinguishing them serves no purpose, but could
// prevent convergence.
CreatedValuesCount++;
return &arena().create<IntegerValue>();
}
if (Type->isPointerType()) {
CreatedValuesCount++;
QualType PointeeType = Type->getPointeeType();
StorageLocation &PointeeLoc =
createLocAndMaybeValue(PointeeType, Visited, Depth, CreatedValuesCount);
return &arena().create<PointerValue>(PointeeLoc);
}
return nullptr;
}
StorageLocation &
Environment::createLocAndMaybeValue(QualType Ty,
llvm::DenseSet<QualType> &Visited,
int Depth, int &CreatedValuesCount) {
if (!Visited.insert(Ty.getCanonicalType()).second)
return createStorageLocation(Ty.getNonReferenceType());
auto EraseVisited = llvm::make_scope_exit(
[&Visited, Ty] { Visited.erase(Ty.getCanonicalType()); });
Ty = Ty.getNonReferenceType();
if (Ty->isRecordType()) {
auto &Loc = cast<RecordStorageLocation>(createStorageLocation(Ty));
initializeFieldsWithValues(Loc, Ty, Visited, Depth, CreatedValuesCount);
return Loc;
}
StorageLocation &Loc = createStorageLocation(Ty);
if (Value *Val = createValueUnlessSelfReferential(Ty, Visited, Depth,
CreatedValuesCount))
setValue(Loc, *Val);
return Loc;
}
void Environment::initializeFieldsWithValues(RecordStorageLocation &Loc,
QualType Type,
llvm::DenseSet<QualType> &Visited,
int Depth,
int &CreatedValuesCount) {
auto initField = [&](QualType FieldType, StorageLocation &FieldLoc) {
if (FieldType->isRecordType()) {
auto &FieldRecordLoc = cast<RecordStorageLocation>(FieldLoc);
initializeFieldsWithValues(FieldRecordLoc, FieldRecordLoc.getType(),
Visited, Depth + 1, CreatedValuesCount);
} else {
if (getValue(FieldLoc) != nullptr)
return;
if (!Visited.insert(FieldType.getCanonicalType()).second)
return;
if (Value *Val = createValueUnlessSelfReferential(
FieldType, Visited, Depth + 1, CreatedValuesCount))
setValue(FieldLoc, *Val);
Visited.erase(FieldType.getCanonicalType());
}
};
for (const FieldDecl *Field : DACtx->getModeledFields(Type)) {
assert(Field != nullptr);
QualType FieldType = Field->getType();
if (FieldType->isReferenceType()) {
Loc.setChild(*Field,
&createLocAndMaybeValue(FieldType, Visited, Depth + 1,
CreatedValuesCount));
} else {
StorageLocation *FieldLoc = Loc.getChild(*Field);
assert(FieldLoc != nullptr);
initField(FieldType, *FieldLoc);
}
}
for (const auto &[FieldName, FieldType] : DACtx->getSyntheticFields(Type)) {
// Synthetic fields cannot have reference type, so we don't need to deal
// with this case.
assert(!FieldType->isReferenceType());
initField(FieldType, Loc.getSyntheticField(FieldName));
}
}
StorageLocation &Environment::createObjectInternal(const ValueDecl *D,
QualType Ty,
const Expr *InitExpr) {
if (Ty->isReferenceType()) {
// Although variables of reference type always need to be initialized, it
// can happen that we can't see the initializer, so `InitExpr` may still
// be null.
if (InitExpr) {
if (auto *InitExprLoc = getStorageLocation(*InitExpr))
return *InitExprLoc;
}
// Even though we have an initializer, we might not get an
// InitExprLoc, for example if the InitExpr is a CallExpr for which we
// don't have a function body. In this case, we just invent a storage
// location and value -- it's the best we can do.
return createObjectInternal(D, Ty.getNonReferenceType(), nullptr);
}
StorageLocation &Loc =
D ? createStorageLocation(*D) : createStorageLocation(Ty);
if (Ty->isRecordType()) {
auto &RecordLoc = cast<RecordStorageLocation>(Loc);
if (!InitExpr)
initializeFieldsWithValues(RecordLoc);
} else {
Value *Val = nullptr;
if (InitExpr)
// In the (few) cases where an expression is intentionally
// "uninterpreted", `InitExpr` is not associated with a value. There are
// two ways to handle this situation: propagate the status, so that
// uninterpreted initializers result in uninterpreted variables, or
// provide a default value. We choose the latter so that later refinements
// of the variable can be used for reasoning about the surrounding code.
// For this reason, we let this case be handled by the `createValue()`
// call below.
//
// FIXME. If and when we interpret all language cases, change this to
// assert that `InitExpr` is interpreted, rather than supplying a
// default value (assuming we don't update the environment API to return
// references).
Val = getValue(*InitExpr);
if (!Val)
Val = createValue(Ty);
if (Val)
setValue(Loc, *Val);
}
return Loc;
}
void Environment::assume(const Formula &F) {
DACtx->addFlowConditionConstraint(FlowConditionToken, F);
}
bool Environment::proves(const Formula &F) const {
return DACtx->flowConditionImplies(FlowConditionToken, F);
}
bool Environment::allows(const Formula &F) const {
return DACtx->flowConditionAllows(FlowConditionToken, F);
}
void Environment::dump(raw_ostream &OS) const {
llvm::DenseMap<const StorageLocation *, std::string> LocToName;
if (LocForRecordReturnVal != nullptr)
LocToName[LocForRecordReturnVal] = "(returned record)";
if (ThisPointeeLoc != nullptr)
LocToName[ThisPointeeLoc] = "this";
OS << "DeclToLoc:\n";
for (auto [D, L] : DeclToLoc) {
auto Iter = LocToName.insert({L, D->getNameAsString()}).first;
OS << " [" << Iter->second << ", " << L << "]\n";
}
OS << "ExprToLoc:\n";
for (auto [E, L] : ExprToLoc)
OS << " [" << E << ", " << L << "]\n";
OS << "ExprToVal:\n";
for (auto [E, V] : ExprToVal)
OS << " [" << E << ", " << V << ": " << *V << "]\n";
OS << "LocToVal:\n";
for (auto [L, V] : LocToVal) {
OS << " [" << L;
if (auto Iter = LocToName.find(L); Iter != LocToName.end())
OS << " (" << Iter->second << ")";
OS << ", " << V << ": " << *V << "]\n";
}
if (const FunctionDecl *Func = getCurrentFunc()) {
if (Func->getReturnType()->isReferenceType()) {
OS << "ReturnLoc: " << ReturnLoc;
if (auto Iter = LocToName.find(ReturnLoc); Iter != LocToName.end())
OS << " (" << Iter->second << ")";
OS << "\n";
} else if (Func->getReturnType()->isRecordType() ||
isa<CXXConstructorDecl>(Func)) {
OS << "LocForRecordReturnVal: " << LocForRecordReturnVal << "\n";
} else if (!Func->getReturnType()->isVoidType()) {
if (ReturnVal == nullptr)
OS << "ReturnVal: nullptr\n";
else
OS << "ReturnVal: " << *ReturnVal << "\n";
}
if (isa<CXXMethodDecl>(Func)) {
OS << "ThisPointeeLoc: " << ThisPointeeLoc << "\n";
}
}
OS << "\n";
DACtx->dumpFlowCondition(FlowConditionToken, OS);
}
void Environment::dump() const { dump(llvm::dbgs()); }
Environment::PrValueToResultObject Environment::buildResultObjectMap(
DataflowAnalysisContext *DACtx, const FunctionDecl *FuncDecl,
RecordStorageLocation *ThisPointeeLoc,
RecordStorageLocation *LocForRecordReturnVal) {
assert(FuncDecl->doesThisDeclarationHaveABody());
PrValueToResultObject Map = buildResultObjectMap(
DACtx, FuncDecl->getBody(), ThisPointeeLoc, LocForRecordReturnVal);
ResultObjectVisitor Visitor(Map, LocForRecordReturnVal, *DACtx);
if (const auto *Ctor = dyn_cast<CXXConstructorDecl>(FuncDecl))
Visitor.TraverseConstructorInits(Ctor, ThisPointeeLoc);
return Map;
}
Environment::PrValueToResultObject Environment::buildResultObjectMap(
DataflowAnalysisContext *DACtx, Stmt *S,
RecordStorageLocation *ThisPointeeLoc,
RecordStorageLocation *LocForRecordReturnVal) {
PrValueToResultObject Map;
ResultObjectVisitor Visitor(Map, LocForRecordReturnVal, *DACtx);
Visitor.TraverseStmt(S);
return Map;
}
RecordStorageLocation *getImplicitObjectLocation(const CXXMemberCallExpr &MCE,
const Environment &Env) {
Expr *ImplicitObject = MCE.getImplicitObjectArgument();
if (ImplicitObject == nullptr)
return nullptr;
if (ImplicitObject->getType()->isPointerType()) {
if (auto *Val = Env.get<PointerValue>(*ImplicitObject))
return &cast<RecordStorageLocation>(Val->getPointeeLoc());
return nullptr;
}
return cast_or_null<RecordStorageLocation>(
Env.getStorageLocation(*ImplicitObject));
}
RecordStorageLocation *getBaseObjectLocation(const MemberExpr &ME,
const Environment &Env) {
Expr *Base = ME.getBase();
if (Base == nullptr)
return nullptr;
if (ME.isArrow()) {
if (auto *Val = Env.get<PointerValue>(*Base))
return &cast<RecordStorageLocation>(Val->getPointeeLoc());
return nullptr;
}
return Env.get<RecordStorageLocation>(*Base);
}
} // namespace dataflow
} // namespace clang
|