1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897
|
//===-- Transfer.cpp --------------------------------------------*- C++ -*-===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This file defines transfer functions that evaluate program statements and
// update an environment accordingly.
//
//===----------------------------------------------------------------------===//
#include "clang/Analysis/FlowSensitive/Transfer.h"
#include "clang/AST/Decl.h"
#include "clang/AST/DeclBase.h"
#include "clang/AST/DeclCXX.h"
#include "clang/AST/Expr.h"
#include "clang/AST/ExprCXX.h"
#include "clang/AST/OperationKinds.h"
#include "clang/AST/Stmt.h"
#include "clang/AST/StmtVisitor.h"
#include "clang/Analysis/FlowSensitive/ASTOps.h"
#include "clang/Analysis/FlowSensitive/AdornedCFG.h"
#include "clang/Analysis/FlowSensitive/DataflowAnalysisContext.h"
#include "clang/Analysis/FlowSensitive/DataflowEnvironment.h"
#include "clang/Analysis/FlowSensitive/NoopAnalysis.h"
#include "clang/Analysis/FlowSensitive/RecordOps.h"
#include "clang/Analysis/FlowSensitive/Value.h"
#include "clang/Basic/Builtins.h"
#include "clang/Basic/OperatorKinds.h"
#include "llvm/Support/Casting.h"
#include "llvm/Support/Debug.h"
#include <assert.h>
#include <cassert>
#define DEBUG_TYPE "dataflow"
namespace clang {
namespace dataflow {
const Environment *StmtToEnvMap::getEnvironment(const Stmt &S) const {
auto BlockIt = ACFG.getStmtToBlock().find(&ignoreCFGOmittedNodes(S));
if (BlockIt == ACFG.getStmtToBlock().end()) {
assert(false);
// Return null to avoid dereferencing the end iterator in non-assert builds.
return nullptr;
}
if (!ACFG.isBlockReachable(*BlockIt->getSecond()))
return nullptr;
if (BlockIt->getSecond()->getBlockID() == CurBlockID)
return &CurState.Env;
const auto &State = BlockToState[BlockIt->getSecond()->getBlockID()];
if (!(State))
return nullptr;
return &State->Env;
}
static BoolValue &evaluateBooleanEquality(const Expr &LHS, const Expr &RHS,
Environment &Env) {
Value *LHSValue = Env.getValue(LHS);
Value *RHSValue = Env.getValue(RHS);
if (LHSValue == RHSValue)
return Env.getBoolLiteralValue(true);
if (auto *LHSBool = dyn_cast_or_null<BoolValue>(LHSValue))
if (auto *RHSBool = dyn_cast_or_null<BoolValue>(RHSValue))
return Env.makeIff(*LHSBool, *RHSBool);
if (auto *LHSPtr = dyn_cast_or_null<PointerValue>(LHSValue))
if (auto *RHSPtr = dyn_cast_or_null<PointerValue>(RHSValue))
// If the storage locations are the same, the pointers definitely compare
// the same. If the storage locations are different, they may still alias,
// so we fall through to the case below that returns an atom.
if (&LHSPtr->getPointeeLoc() == &RHSPtr->getPointeeLoc())
return Env.getBoolLiteralValue(true);
return Env.makeAtomicBoolValue();
}
static BoolValue &unpackValue(BoolValue &V, Environment &Env) {
if (auto *Top = llvm::dyn_cast<TopBoolValue>(&V)) {
auto &A = Env.getDataflowAnalysisContext().arena();
return A.makeBoolValue(A.makeAtomRef(Top->getAtom()));
}
return V;
}
// Unpacks the value (if any) associated with `E` and updates `E` to the new
// value, if any unpacking occured. Also, does the lvalue-to-rvalue conversion,
// by skipping past the reference.
static Value *maybeUnpackLValueExpr(const Expr &E, Environment &Env) {
auto *Loc = Env.getStorageLocation(E);
if (Loc == nullptr)
return nullptr;
auto *Val = Env.getValue(*Loc);
auto *B = dyn_cast_or_null<BoolValue>(Val);
if (B == nullptr)
return Val;
auto &UnpackedVal = unpackValue(*B, Env);
if (&UnpackedVal == Val)
return Val;
Env.setValue(*Loc, UnpackedVal);
return &UnpackedVal;
}
static void propagateValue(const Expr &From, const Expr &To, Environment &Env) {
if (From.getType()->isRecordType())
return;
if (auto *Val = Env.getValue(From))
Env.setValue(To, *Val);
}
static void propagateStorageLocation(const Expr &From, const Expr &To,
Environment &Env) {
if (auto *Loc = Env.getStorageLocation(From))
Env.setStorageLocation(To, *Loc);
}
// Propagates the value or storage location of `From` to `To` in cases where
// `From` may be either a glvalue or a prvalue. `To` must be a glvalue iff
// `From` is a glvalue.
static void propagateValueOrStorageLocation(const Expr &From, const Expr &To,
Environment &Env) {
assert(From.isGLValue() == To.isGLValue());
if (From.isGLValue())
propagateStorageLocation(From, To, Env);
else
propagateValue(From, To, Env);
}
namespace {
class TransferVisitor : public ConstStmtVisitor<TransferVisitor> {
public:
TransferVisitor(const StmtToEnvMap &StmtToEnv, Environment &Env,
Environment::ValueModel &Model)
: StmtToEnv(StmtToEnv), Env(Env), Model(Model) {}
void VisitBinaryOperator(const BinaryOperator *S) {
const Expr *LHS = S->getLHS();
assert(LHS != nullptr);
const Expr *RHS = S->getRHS();
assert(RHS != nullptr);
// Do compound assignments up-front, as there are so many of them and we
// don't want to list all of them in the switch statement below.
// To avoid generating unnecessary values, we don't create a new value but
// instead leave it to the specific analysis to do this if desired.
if (S->isCompoundAssignmentOp())
propagateStorageLocation(*S->getLHS(), *S, Env);
switch (S->getOpcode()) {
case BO_Assign: {
auto *LHSLoc = Env.getStorageLocation(*LHS);
if (LHSLoc == nullptr)
break;
auto *RHSVal = Env.getValue(*RHS);
if (RHSVal == nullptr)
break;
// Assign a value to the storage location of the left-hand side.
Env.setValue(*LHSLoc, *RHSVal);
// Assign a storage location for the whole expression.
Env.setStorageLocation(*S, *LHSLoc);
break;
}
case BO_LAnd:
case BO_LOr: {
BoolValue &LHSVal = getLogicOperatorSubExprValue(*LHS);
BoolValue &RHSVal = getLogicOperatorSubExprValue(*RHS);
if (S->getOpcode() == BO_LAnd)
Env.setValue(*S, Env.makeAnd(LHSVal, RHSVal));
else
Env.setValue(*S, Env.makeOr(LHSVal, RHSVal));
break;
}
case BO_NE:
case BO_EQ: {
auto &LHSEqRHSValue = evaluateBooleanEquality(*LHS, *RHS, Env);
Env.setValue(*S, S->getOpcode() == BO_EQ ? LHSEqRHSValue
: Env.makeNot(LHSEqRHSValue));
break;
}
case BO_Comma: {
propagateValueOrStorageLocation(*RHS, *S, Env);
break;
}
default:
break;
}
}
void VisitDeclRefExpr(const DeclRefExpr *S) {
const ValueDecl *VD = S->getDecl();
assert(VD != nullptr);
// Some `DeclRefExpr`s aren't glvalues, so we can't associate them with a
// `StorageLocation`, and there's also no sensible `Value` that we can
// assign to them. Examples:
// - Non-static member variables
// - Non static member functions
// Note: Member operators are an exception to this, but apparently only
// if the `DeclRefExpr` is used within the callee of a
// `CXXOperatorCallExpr`. In other cases, for example when applying the
// address-of operator, the `DeclRefExpr` is a prvalue.
if (!S->isGLValue())
return;
auto *DeclLoc = Env.getStorageLocation(*VD);
if (DeclLoc == nullptr)
return;
Env.setStorageLocation(*S, *DeclLoc);
}
void VisitDeclStmt(const DeclStmt *S) {
// Group decls are converted into single decls in the CFG so the cast below
// is safe.
const auto &D = *cast<VarDecl>(S->getSingleDecl());
ProcessVarDecl(D);
}
void ProcessVarDecl(const VarDecl &D) {
// Static local vars are already initialized in `Environment`.
if (D.hasGlobalStorage())
return;
// If this is the holding variable for a `BindingDecl`, we may already
// have a storage location set up -- so check. (See also explanation below
// where we process the `BindingDecl`.)
if (D.getType()->isReferenceType() && Env.getStorageLocation(D) != nullptr)
return;
assert(Env.getStorageLocation(D) == nullptr);
Env.setStorageLocation(D, Env.createObject(D));
// `DecompositionDecl` must be handled after we've interpreted the loc
// itself, because the binding expression refers back to the
// `DecompositionDecl` (even though it has no written name).
if (const auto *Decomp = dyn_cast<DecompositionDecl>(&D)) {
// If VarDecl is a DecompositionDecl, evaluate each of its bindings. This
// needs to be evaluated after initializing the values in the storage for
// VarDecl, as the bindings refer to them.
// FIXME: Add support for ArraySubscriptExpr.
// FIXME: Consider adding AST nodes used in BindingDecls to the CFG.
for (const auto *B : Decomp->bindings()) {
if (auto *ME = dyn_cast_or_null<MemberExpr>(B->getBinding())) {
auto *DE = dyn_cast_or_null<DeclRefExpr>(ME->getBase());
if (DE == nullptr)
continue;
// ME and its base haven't been visited because they aren't included
// in the statements of the CFG basic block.
VisitDeclRefExpr(DE);
VisitMemberExpr(ME);
if (auto *Loc = Env.getStorageLocation(*ME))
Env.setStorageLocation(*B, *Loc);
} else if (auto *VD = B->getHoldingVar()) {
// Holding vars are used to back the `BindingDecl`s of tuple-like
// types. The holding var declarations appear after the
// `DecompositionDecl`, so we have to explicitly process them here
// to know their storage location. They will be processed a second
// time when we visit their `VarDecl`s, so we have code that protects
// against this above.
ProcessVarDecl(*VD);
auto *VDLoc = Env.getStorageLocation(*VD);
assert(VDLoc != nullptr);
Env.setStorageLocation(*B, *VDLoc);
}
}
}
}
void VisitImplicitCastExpr(const ImplicitCastExpr *S) {
const Expr *SubExpr = S->getSubExpr();
assert(SubExpr != nullptr);
switch (S->getCastKind()) {
case CK_IntegralToBoolean: {
// This cast creates a new, boolean value from the integral value. We
// model that with a fresh value in the environment, unless it's already a
// boolean.
if (auto *SubExprVal =
dyn_cast_or_null<BoolValue>(Env.getValue(*SubExpr)))
Env.setValue(*S, *SubExprVal);
else
// FIXME: If integer modeling is added, then update this code to create
// the boolean based on the integer model.
Env.setValue(*S, Env.makeAtomicBoolValue());
break;
}
case CK_LValueToRValue: {
// When an L-value is used as an R-value, it may result in sharing, so we
// need to unpack any nested `Top`s.
auto *SubExprVal = maybeUnpackLValueExpr(*SubExpr, Env);
if (SubExprVal == nullptr)
break;
Env.setValue(*S, *SubExprVal);
break;
}
case CK_IntegralCast:
// FIXME: This cast creates a new integral value from the
// subexpression. But, because we don't model integers, we don't
// distinguish between this new value and the underlying one. If integer
// modeling is added, then update this code to create a fresh location and
// value.
case CK_UncheckedDerivedToBase:
case CK_ConstructorConversion:
case CK_UserDefinedConversion:
// FIXME: Add tests that excercise CK_UncheckedDerivedToBase,
// CK_ConstructorConversion, and CK_UserDefinedConversion.
case CK_NoOp: {
// FIXME: Consider making `Environment::getStorageLocation` skip noop
// expressions (this and other similar expressions in the file) instead
// of assigning them storage locations.
propagateValueOrStorageLocation(*SubExpr, *S, Env);
break;
}
case CK_NullToPointer: {
auto &NullPointerVal =
Env.getOrCreateNullPointerValue(S->getType()->getPointeeType());
Env.setValue(*S, NullPointerVal);
break;
}
case CK_NullToMemberPointer:
// FIXME: Implement pointers to members. For now, don't associate a value
// with this expression.
break;
case CK_FunctionToPointerDecay: {
StorageLocation *PointeeLoc = Env.getStorageLocation(*SubExpr);
if (PointeeLoc == nullptr)
break;
Env.setValue(*S, Env.create<PointerValue>(*PointeeLoc));
break;
}
case CK_BuiltinFnToFnPtr:
// Despite its name, the result type of `BuiltinFnToFnPtr` is a function,
// not a function pointer. In addition, builtin functions can only be
// called directly; it is not legal to take their address. We therefore
// don't need to create a value or storage location for them.
break;
default:
break;
}
}
void VisitUnaryOperator(const UnaryOperator *S) {
const Expr *SubExpr = S->getSubExpr();
assert(SubExpr != nullptr);
switch (S->getOpcode()) {
case UO_Deref: {
const auto *SubExprVal = Env.get<PointerValue>(*SubExpr);
if (SubExprVal == nullptr)
break;
Env.setStorageLocation(*S, SubExprVal->getPointeeLoc());
break;
}
case UO_AddrOf: {
// FIXME: Model pointers to members.
if (S->getType()->isMemberPointerType())
break;
if (StorageLocation *PointeeLoc = Env.getStorageLocation(*SubExpr))
Env.setValue(*S, Env.create<PointerValue>(*PointeeLoc));
break;
}
case UO_LNot: {
auto *SubExprVal = dyn_cast_or_null<BoolValue>(Env.getValue(*SubExpr));
if (SubExprVal == nullptr)
break;
Env.setValue(*S, Env.makeNot(*SubExprVal));
break;
}
case UO_PreInc:
case UO_PreDec:
// Propagate the storage location and clear out any value associated with
// it (to represent the fact that the value has definitely changed).
// To avoid generating unnecessary values, we leave it to the specific
// analysis to create a new value if desired.
propagateStorageLocation(*S->getSubExpr(), *S, Env);
if (StorageLocation *Loc = Env.getStorageLocation(*S->getSubExpr()))
Env.clearValue(*Loc);
break;
case UO_PostInc:
case UO_PostDec:
// Propagate the old value, then clear out any value associated with the
// storage location (to represent the fact that the value has definitely
// changed). See above for rationale.
propagateValue(*S->getSubExpr(), *S, Env);
if (StorageLocation *Loc = Env.getStorageLocation(*S->getSubExpr()))
Env.clearValue(*Loc);
break;
default:
break;
}
}
void VisitCXXThisExpr(const CXXThisExpr *S) {
auto *ThisPointeeLoc = Env.getThisPointeeStorageLocation();
if (ThisPointeeLoc == nullptr)
// Unions are not supported yet, and will not have a location for the
// `this` expression's pointee.
return;
Env.setValue(*S, Env.create<PointerValue>(*ThisPointeeLoc));
}
void VisitCXXNewExpr(const CXXNewExpr *S) {
if (Value *Val = Env.createValue(S->getType()))
Env.setValue(*S, *Val);
}
void VisitCXXDeleteExpr(const CXXDeleteExpr *S) {
// Empty method.
// We consciously don't do anything on deletes. Diagnosing double deletes
// (for example) should be done by a specific analysis, not by the
// framework.
}
void VisitReturnStmt(const ReturnStmt *S) {
if (!Env.getDataflowAnalysisContext().getOptions().ContextSensitiveOpts)
return;
auto *Ret = S->getRetValue();
if (Ret == nullptr)
return;
if (Ret->isPRValue()) {
if (Ret->getType()->isRecordType())
return;
auto *Val = Env.getValue(*Ret);
if (Val == nullptr)
return;
// FIXME: Model NRVO.
Env.setReturnValue(Val);
} else {
auto *Loc = Env.getStorageLocation(*Ret);
if (Loc == nullptr)
return;
// FIXME: Model NRVO.
Env.setReturnStorageLocation(Loc);
}
}
void VisitMemberExpr(const MemberExpr *S) {
ValueDecl *Member = S->getMemberDecl();
assert(Member != nullptr);
// FIXME: Consider assigning pointer values to function member expressions.
if (Member->isFunctionOrFunctionTemplate())
return;
// FIXME: if/when we add support for modeling enums, use that support here.
if (isa<EnumConstantDecl>(Member))
return;
if (auto *D = dyn_cast<VarDecl>(Member)) {
if (D->hasGlobalStorage()) {
auto *VarDeclLoc = Env.getStorageLocation(*D);
if (VarDeclLoc == nullptr)
return;
Env.setStorageLocation(*S, *VarDeclLoc);
return;
}
}
RecordStorageLocation *BaseLoc = getBaseObjectLocation(*S, Env);
if (BaseLoc == nullptr)
return;
auto *MemberLoc = BaseLoc->getChild(*Member);
if (MemberLoc == nullptr)
return;
Env.setStorageLocation(*S, *MemberLoc);
}
void VisitCXXDefaultArgExpr(const CXXDefaultArgExpr *S) {
const Expr *ArgExpr = S->getExpr();
assert(ArgExpr != nullptr);
propagateValueOrStorageLocation(*ArgExpr, *S, Env);
if (S->isPRValue() && S->getType()->isRecordType()) {
auto &Loc = Env.getResultObjectLocation(*S);
Env.initializeFieldsWithValues(Loc);
}
}
void VisitCXXDefaultInitExpr(const CXXDefaultInitExpr *S) {
const Expr *InitExpr = S->getExpr();
assert(InitExpr != nullptr);
// If this is a prvalue of record type, the handler for `*InitExpr` (if one
// exists) will initialize the result object; there is no value to propgate
// here.
if (S->getType()->isRecordType() && S->isPRValue())
return;
propagateValueOrStorageLocation(*InitExpr, *S, Env);
}
void VisitCXXConstructExpr(const CXXConstructExpr *S) {
const CXXConstructorDecl *ConstructorDecl = S->getConstructor();
assert(ConstructorDecl != nullptr);
// `CXXConstructExpr` can have array type if default-initializing an array
// of records. We don't handle this specifically beyond potentially inlining
// the call.
if (!S->getType()->isRecordType()) {
transferInlineCall(S, ConstructorDecl);
return;
}
RecordStorageLocation &Loc = Env.getResultObjectLocation(*S);
if (ConstructorDecl->isCopyOrMoveConstructor()) {
// It is permissible for a copy/move constructor to have additional
// parameters as long as they have default arguments defined for them.
assert(S->getNumArgs() != 0);
const Expr *Arg = S->getArg(0);
assert(Arg != nullptr);
auto *ArgLoc = Env.get<RecordStorageLocation>(*Arg);
if (ArgLoc == nullptr)
return;
// Even if the copy/move constructor call is elidable, we choose to copy
// the record in all cases (which isn't wrong, just potentially not
// optimal).
copyRecord(*ArgLoc, Loc, Env);
return;
}
Env.initializeFieldsWithValues(Loc, S->getType());
transferInlineCall(S, ConstructorDecl);
}
void VisitCXXOperatorCallExpr(const CXXOperatorCallExpr *S) {
if (S->getOperator() == OO_Equal) {
assert(S->getNumArgs() == 2);
const Expr *Arg0 = S->getArg(0);
assert(Arg0 != nullptr);
const Expr *Arg1 = S->getArg(1);
assert(Arg1 != nullptr);
// Evaluate only copy and move assignment operators.
const auto *Method =
dyn_cast_or_null<CXXMethodDecl>(S->getDirectCallee());
if (!Method)
return;
if (!Method->isCopyAssignmentOperator() &&
!Method->isMoveAssignmentOperator())
return;
RecordStorageLocation *LocSrc = nullptr;
if (Arg1->isPRValue()) {
LocSrc = &Env.getResultObjectLocation(*Arg1);
} else {
LocSrc = Env.get<RecordStorageLocation>(*Arg1);
}
auto *LocDst = Env.get<RecordStorageLocation>(*Arg0);
if (LocSrc == nullptr || LocDst == nullptr)
return;
copyRecord(*LocSrc, *LocDst, Env);
// The assignment operator can have an arbitrary return type. We model the
// return value only if the return type is the same as or a base class of
// the destination type.
if (S->getType().getCanonicalType().getUnqualifiedType() !=
LocDst->getType().getCanonicalType().getUnqualifiedType()) {
auto ReturnDecl = S->getType()->getAsCXXRecordDecl();
auto DstDecl = LocDst->getType()->getAsCXXRecordDecl();
if (ReturnDecl == nullptr || DstDecl == nullptr)
return;
if (!DstDecl->isDerivedFrom(ReturnDecl))
return;
}
if (S->isGLValue())
Env.setStorageLocation(*S, *LocDst);
else
copyRecord(*LocDst, Env.getResultObjectLocation(*S), Env);
return;
}
// `CXXOperatorCallExpr` can be a prvalue. Call `VisitCallExpr`() to
// initialize the prvalue's fields with values.
VisitCallExpr(S);
}
void VisitCXXRewrittenBinaryOperator(const CXXRewrittenBinaryOperator *RBO) {
propagateValue(*RBO->getSemanticForm(), *RBO, Env);
}
void VisitCallExpr(const CallExpr *S) {
// Of clang's builtins, only `__builtin_expect` is handled explicitly, since
// others (like trap, debugtrap, and unreachable) are handled by CFG
// construction.
if (S->isCallToStdMove()) {
assert(S->getNumArgs() == 1);
const Expr *Arg = S->getArg(0);
assert(Arg != nullptr);
auto *ArgLoc = Env.getStorageLocation(*Arg);
if (ArgLoc == nullptr)
return;
Env.setStorageLocation(*S, *ArgLoc);
} else if (S->getDirectCallee() != nullptr &&
S->getDirectCallee()->getBuiltinID() ==
Builtin::BI__builtin_expect) {
assert(S->getNumArgs() > 0);
assert(S->getArg(0) != nullptr);
auto *ArgVal = Env.getValue(*S->getArg(0));
if (ArgVal == nullptr)
return;
Env.setValue(*S, *ArgVal);
} else if (const FunctionDecl *F = S->getDirectCallee()) {
transferInlineCall(S, F);
// If this call produces a prvalue of record type, initialize its fields
// with values.
if (S->getType()->isRecordType() && S->isPRValue()) {
RecordStorageLocation &Loc = Env.getResultObjectLocation(*S);
Env.initializeFieldsWithValues(Loc);
}
}
}
void VisitMaterializeTemporaryExpr(const MaterializeTemporaryExpr *S) {
const Expr *SubExpr = S->getSubExpr();
assert(SubExpr != nullptr);
StorageLocation &Loc = Env.createStorageLocation(*S);
Env.setStorageLocation(*S, Loc);
if (SubExpr->getType()->isRecordType())
// Nothing else left to do -- we initialized the record when transferring
// `SubExpr`.
return;
if (Value *SubExprVal = Env.getValue(*SubExpr))
Env.setValue(Loc, *SubExprVal);
}
void VisitCXXBindTemporaryExpr(const CXXBindTemporaryExpr *S) {
const Expr *SubExpr = S->getSubExpr();
assert(SubExpr != nullptr);
propagateValue(*SubExpr, *S, Env);
}
void VisitCXXStaticCastExpr(const CXXStaticCastExpr *S) {
if (S->getCastKind() == CK_NoOp) {
const Expr *SubExpr = S->getSubExpr();
assert(SubExpr != nullptr);
propagateValueOrStorageLocation(*SubExpr, *S, Env);
}
}
void VisitConditionalOperator(const ConditionalOperator *S) {
const Environment *TrueEnv = StmtToEnv.getEnvironment(*S->getTrueExpr());
const Environment *FalseEnv = StmtToEnv.getEnvironment(*S->getFalseExpr());
if (TrueEnv == nullptr || FalseEnv == nullptr) {
// If the true or false branch is dead, we may not have an environment for
// it. We could handle this specifically by forwarding the value or
// location of the live branch, but this case is rare enough that this
// probably isn't worth the additional complexity.
return;
}
if (S->isGLValue()) {
StorageLocation *TrueLoc = TrueEnv->getStorageLocation(*S->getTrueExpr());
StorageLocation *FalseLoc =
FalseEnv->getStorageLocation(*S->getFalseExpr());
if (TrueLoc == FalseLoc && TrueLoc != nullptr)
Env.setStorageLocation(*S, *TrueLoc);
} else if (!S->getType()->isRecordType()) {
// The conditional operator can evaluate to either of the values of the
// two branches. To model this, join these two values together to yield
// the result of the conditional operator.
// Note: Most joins happen in `computeBlockInputState()`, but this case is
// different:
// - `computeBlockInputState()` (which in turn calls `Environment::join()`
// joins values associated with the _same_ expression or storage
// location, then associates the joined value with that expression or
// storage location. This join has nothing to do with transfer --
// instead, it joins together the results of performing transfer on two
// different blocks.
// - Here, we join values associated with _different_ expressions (the
// true and false branch), then associate the joined value with a third
// expression (the conditional operator itself). This join is what it
// means to perform transfer on the conditional operator.
if (Value *Val = Environment::joinValues(
S->getType(), TrueEnv->getValue(*S->getTrueExpr()), *TrueEnv,
FalseEnv->getValue(*S->getFalseExpr()), *FalseEnv, Env, Model))
Env.setValue(*S, *Val);
}
}
void VisitInitListExpr(const InitListExpr *S) {
QualType Type = S->getType();
if (!Type->isRecordType()) {
// Until array initialization is implemented, we skip arrays and don't
// need to care about cases where `getNumInits() > 1`.
if (!Type->isArrayType() && S->getNumInits() == 1)
propagateValueOrStorageLocation(*S->getInit(0), *S, Env);
return;
}
// If the initializer list is transparent, there's nothing to do.
if (S->isSemanticForm() && S->isTransparent())
return;
RecordStorageLocation &Loc = Env.getResultObjectLocation(*S);
// Initialization of base classes and fields of record type happens when we
// visit the nested `CXXConstructExpr` or `InitListExpr` for that base class
// or field. We therefore only need to deal with fields of non-record type
// here.
RecordInitListHelper InitListHelper(S);
for (auto [Field, Init] : InitListHelper.field_inits()) {
if (Field->getType()->isRecordType())
continue;
if (Field->getType()->isReferenceType()) {
assert(Field->getType().getCanonicalType()->getPointeeType() ==
Init->getType().getCanonicalType());
Loc.setChild(*Field, &Env.createObject(Field->getType(), Init));
continue;
}
assert(Field->getType().getCanonicalType().getUnqualifiedType() ==
Init->getType().getCanonicalType().getUnqualifiedType());
StorageLocation *FieldLoc = Loc.getChild(*Field);
// Locations for non-reference fields must always be non-null.
assert(FieldLoc != nullptr);
Value *Val = Env.getValue(*Init);
if (Val == nullptr && isa<ImplicitValueInitExpr>(Init) &&
Init->getType()->isPointerType())
Val =
&Env.getOrCreateNullPointerValue(Init->getType()->getPointeeType());
if (Val == nullptr)
Val = Env.createValue(Field->getType());
if (Val != nullptr)
Env.setValue(*FieldLoc, *Val);
}
for (const auto &[FieldName, FieldLoc] : Loc.synthetic_fields()) {
QualType FieldType = FieldLoc->getType();
if (FieldType->isRecordType()) {
Env.initializeFieldsWithValues(*cast<RecordStorageLocation>(FieldLoc));
} else {
if (Value *Val = Env.createValue(FieldType))
Env.setValue(*FieldLoc, *Val);
}
}
// FIXME: Implement array initialization.
}
void VisitCXXBoolLiteralExpr(const CXXBoolLiteralExpr *S) {
Env.setValue(*S, Env.getBoolLiteralValue(S->getValue()));
}
void VisitIntegerLiteral(const IntegerLiteral *S) {
Env.setValue(*S, Env.getIntLiteralValue(S->getValue()));
}
void VisitParenExpr(const ParenExpr *S) {
// The CFG does not contain `ParenExpr` as top-level statements in basic
// blocks, however manual traversal to sub-expressions may encounter them.
// Redirect to the sub-expression.
auto *SubExpr = S->getSubExpr();
assert(SubExpr != nullptr);
Visit(SubExpr);
}
void VisitExprWithCleanups(const ExprWithCleanups *S) {
// The CFG does not contain `ExprWithCleanups` as top-level statements in
// basic blocks, however manual traversal to sub-expressions may encounter
// them. Redirect to the sub-expression.
auto *SubExpr = S->getSubExpr();
assert(SubExpr != nullptr);
Visit(SubExpr);
}
private:
/// Returns the value for the sub-expression `SubExpr` of a logic operator.
BoolValue &getLogicOperatorSubExprValue(const Expr &SubExpr) {
// `SubExpr` and its parent logic operator might be part of different basic
// blocks. We try to access the value that is assigned to `SubExpr` in the
// corresponding environment.
if (const Environment *SubExprEnv = StmtToEnv.getEnvironment(SubExpr))
if (auto *Val =
dyn_cast_or_null<BoolValue>(SubExprEnv->getValue(SubExpr)))
return *Val;
// The sub-expression may lie within a basic block that isn't reachable,
// even if we need it to evaluate the current (reachable) expression
// (see https://discourse.llvm.org/t/70775). In this case, visit `SubExpr`
// within the current environment and then try to get the value that gets
// assigned to it.
if (Env.getValue(SubExpr) == nullptr)
Visit(&SubExpr);
if (auto *Val = dyn_cast_or_null<BoolValue>(Env.getValue(SubExpr)))
return *Val;
// If the value of `SubExpr` is still unknown, we create a fresh symbolic
// boolean value for it.
return Env.makeAtomicBoolValue();
}
// If context sensitivity is enabled, try to analyze the body of the callee
// `F` of `S`. The type `E` must be either `CallExpr` or `CXXConstructExpr`.
template <typename E>
void transferInlineCall(const E *S, const FunctionDecl *F) {
const auto &Options = Env.getDataflowAnalysisContext().getOptions();
if (!(Options.ContextSensitiveOpts &&
Env.canDescend(Options.ContextSensitiveOpts->Depth, F)))
return;
const AdornedCFG *ACFG = Env.getDataflowAnalysisContext().getAdornedCFG(F);
if (!ACFG)
return;
// FIXME: We don't support context-sensitive analysis of recursion, so
// we should return early here if `F` is the same as the `FunctionDecl`
// holding `S` itself.
auto ExitBlock = ACFG->getCFG().getExit().getBlockID();
auto CalleeEnv = Env.pushCall(S);
// FIXME: Use the same analysis as the caller for the callee. Note,
// though, that doing so would require support for changing the analysis's
// ASTContext.
auto Analysis = NoopAnalysis(ACFG->getDecl().getASTContext(),
DataflowAnalysisOptions{Options});
auto BlockToOutputState =
dataflow::runDataflowAnalysis(*ACFG, Analysis, CalleeEnv);
assert(BlockToOutputState);
assert(ExitBlock < BlockToOutputState->size());
auto &ExitState = (*BlockToOutputState)[ExitBlock];
assert(ExitState);
Env.popCall(S, ExitState->Env);
}
const StmtToEnvMap &StmtToEnv;
Environment &Env;
Environment::ValueModel &Model;
};
} // namespace
void transfer(const StmtToEnvMap &StmtToEnv, const Stmt &S, Environment &Env,
Environment::ValueModel &Model) {
TransferVisitor(StmtToEnv, Env, Model).Visit(&S);
}
} // namespace dataflow
} // namespace clang
|