1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571
|
//===- TypeErasedDataflowAnalysis.cpp -------------------------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This file defines type-erased base types and functions for building dataflow
// analyses that run over Control-Flow Graphs (CFGs).
//
//===----------------------------------------------------------------------===//
#include <optional>
#include <system_error>
#include <utility>
#include <vector>
#include "clang/AST/ASTDumper.h"
#include "clang/AST/DeclCXX.h"
#include "clang/AST/OperationKinds.h"
#include "clang/AST/StmtCXX.h"
#include "clang/AST/StmtVisitor.h"
#include "clang/Analysis/Analyses/PostOrderCFGView.h"
#include "clang/Analysis/CFG.h"
#include "clang/Analysis/FlowSensitive/DataflowEnvironment.h"
#include "clang/Analysis/FlowSensitive/DataflowLattice.h"
#include "clang/Analysis/FlowSensitive/DataflowWorklist.h"
#include "clang/Analysis/FlowSensitive/RecordOps.h"
#include "clang/Analysis/FlowSensitive/Transfer.h"
#include "clang/Analysis/FlowSensitive/TypeErasedDataflowAnalysis.h"
#include "clang/Analysis/FlowSensitive/Value.h"
#include "llvm/ADT/ArrayRef.h"
#include "llvm/ADT/STLExtras.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/Error.h"
#define DEBUG_TYPE "clang-dataflow"
namespace clang {
namespace dataflow {
/// Returns the index of `Block` in the successors of `Pred`.
static int blockIndexInPredecessor(const CFGBlock &Pred,
const CFGBlock &Block) {
auto BlockPos = llvm::find_if(
Pred.succs(), [&Block](const CFGBlock::AdjacentBlock &Succ) {
return Succ && Succ->getBlockID() == Block.getBlockID();
});
return BlockPos - Pred.succ_begin();
}
// A "backedge" node is a block introduced in the CFG exclusively to indicate a
// loop backedge. They are exactly identified by the presence of a non-null
// pointer to the entry block of the loop condition. Note that this is not
// necessarily the block with the loop statement as terminator, because
// short-circuit operators will result in multiple blocks encoding the loop
// condition, only one of which will contain the loop statement as terminator.
static bool isBackedgeNode(const CFGBlock &B) {
return B.getLoopTarget() != nullptr;
}
namespace {
/// Extracts the terminator's condition expression.
class TerminatorVisitor
: public ConstStmtVisitor<TerminatorVisitor, const Expr *> {
public:
TerminatorVisitor() = default;
const Expr *VisitIfStmt(const IfStmt *S) { return S->getCond(); }
const Expr *VisitWhileStmt(const WhileStmt *S) { return S->getCond(); }
const Expr *VisitDoStmt(const DoStmt *S) { return S->getCond(); }
const Expr *VisitForStmt(const ForStmt *S) { return S->getCond(); }
const Expr *VisitCXXForRangeStmt(const CXXForRangeStmt *) {
// Don't do anything special for CXXForRangeStmt, because the condition
// (being implicitly generated) isn't visible from the loop body.
return nullptr;
}
const Expr *VisitBinaryOperator(const BinaryOperator *S) {
assert(S->getOpcode() == BO_LAnd || S->getOpcode() == BO_LOr);
return S->getLHS();
}
const Expr *VisitConditionalOperator(const ConditionalOperator *S) {
return S->getCond();
}
};
/// Holds data structures required for running dataflow analysis.
struct AnalysisContext {
AnalysisContext(const AdornedCFG &ACFG, TypeErasedDataflowAnalysis &Analysis,
const Environment &InitEnv,
llvm::ArrayRef<std::optional<TypeErasedDataflowAnalysisState>>
BlockStates)
: ACFG(ACFG), Analysis(Analysis), InitEnv(InitEnv),
Log(*InitEnv.getDataflowAnalysisContext().getOptions().Log),
BlockStates(BlockStates) {
Log.beginAnalysis(ACFG, Analysis);
}
~AnalysisContext() { Log.endAnalysis(); }
/// Contains the CFG being analyzed.
const AdornedCFG &ACFG;
/// The analysis to be run.
TypeErasedDataflowAnalysis &Analysis;
/// Initial state to start the analysis.
const Environment &InitEnv;
Logger &Log;
/// Stores the state of a CFG block if it has been evaluated by the analysis.
/// The indices correspond to the block IDs.
llvm::ArrayRef<std::optional<TypeErasedDataflowAnalysisState>> BlockStates;
};
class PrettyStackTraceAnalysis : public llvm::PrettyStackTraceEntry {
public:
PrettyStackTraceAnalysis(const AdornedCFG &ACFG, const char *Message)
: ACFG(ACFG), Message(Message) {}
void print(raw_ostream &OS) const override {
OS << Message << "\n";
OS << "Decl:\n";
ACFG.getDecl().dump(OS);
OS << "CFG:\n";
ACFG.getCFG().print(OS, LangOptions(), false);
}
private:
const AdornedCFG &ACFG;
const char *Message;
};
class PrettyStackTraceCFGElement : public llvm::PrettyStackTraceEntry {
public:
PrettyStackTraceCFGElement(const CFGElement &Element, int BlockIdx,
int ElementIdx, const char *Message)
: Element(Element), BlockIdx(BlockIdx), ElementIdx(ElementIdx),
Message(Message) {}
void print(raw_ostream &OS) const override {
OS << Message << ": Element [B" << BlockIdx << "." << ElementIdx << "]\n";
if (auto Stmt = Element.getAs<CFGStmt>()) {
OS << "Stmt:\n";
ASTDumper Dumper(OS, false);
Dumper.Visit(Stmt->getStmt());
}
}
private:
const CFGElement ∈
int BlockIdx;
int ElementIdx;
const char *Message;
};
// Builds a joined TypeErasedDataflowAnalysisState from 0 or more sources,
// each of which may be owned (built as part of the join) or external (a
// reference to an Environment that will outlive the builder).
// Avoids unneccesary copies of the environment.
class JoinedStateBuilder {
AnalysisContext &AC;
Environment::ExprJoinBehavior JoinBehavior;
std::vector<const TypeErasedDataflowAnalysisState *> All;
std::deque<TypeErasedDataflowAnalysisState> Owned;
TypeErasedDataflowAnalysisState
join(const TypeErasedDataflowAnalysisState &L,
const TypeErasedDataflowAnalysisState &R) {
return {AC.Analysis.joinTypeErased(L.Lattice, R.Lattice),
Environment::join(L.Env, R.Env, AC.Analysis, JoinBehavior)};
}
public:
JoinedStateBuilder(AnalysisContext &AC,
Environment::ExprJoinBehavior JoinBehavior)
: AC(AC), JoinBehavior(JoinBehavior) {}
void addOwned(TypeErasedDataflowAnalysisState State) {
Owned.push_back(std::move(State));
All.push_back(&Owned.back());
}
void addUnowned(const TypeErasedDataflowAnalysisState &State) {
All.push_back(&State);
}
TypeErasedDataflowAnalysisState take() && {
if (All.empty())
// FIXME: Consider passing `Block` to Analysis.typeErasedInitialElement
// to enable building analyses like computation of dominators that
// initialize the state of each basic block differently.
return {AC.Analysis.typeErasedInitialElement(), AC.InitEnv.fork()};
if (All.size() == 1)
// Join the environment with itself so that we discard expression state if
// desired.
// FIXME: We could consider writing special-case code for this that only
// does the discarding, but it's not clear if this is worth it.
return {All[0]->Lattice, Environment::join(All[0]->Env, All[0]->Env,
AC.Analysis, JoinBehavior)};
auto Result = join(*All[0], *All[1]);
for (unsigned I = 2; I < All.size(); ++I)
Result = join(Result, *All[I]);
return Result;
}
};
} // namespace
static const Expr *getTerminatorCondition(const Stmt *TerminatorStmt) {
return TerminatorStmt == nullptr ? nullptr
: TerminatorVisitor().Visit(TerminatorStmt);
}
/// Computes the input state for a given basic block by joining the output
/// states of its predecessors.
///
/// Requirements:
///
/// All predecessors of `Block` except those with loop back edges must have
/// already been transferred. States in `AC.BlockStates` that are set to
/// `std::nullopt` represent basic blocks that are not evaluated yet.
static TypeErasedDataflowAnalysisState
computeBlockInputState(const CFGBlock &Block, AnalysisContext &AC) {
std::vector<const CFGBlock *> Preds(Block.pred_begin(), Block.pred_end());
if (Block.getTerminator().isTemporaryDtorsBranch()) {
// This handles a special case where the code that produced the CFG includes
// a conditional operator with a branch that constructs a temporary and
// calls a destructor annotated as noreturn. The CFG models this as follows:
//
// B1 (contains the condition of the conditional operator) - succs: B2, B3
// B2 (contains code that does not call a noreturn destructor) - succs: B4
// B3 (contains code that calls a noreturn destructor) - succs: B4
// B4 (has temporary destructor terminator) - succs: B5, B6
// B5 (noreturn block that is associated with the noreturn destructor call)
// B6 (contains code that follows the conditional operator statement)
//
// The first successor (B5 above) of a basic block with a temporary
// destructor terminator (B4 above) is the block that evaluates the
// destructor. If that block has a noreturn element then the predecessor
// block that constructed the temporary object (B3 above) is effectively a
// noreturn block and its state should not be used as input for the state
// of the block that has a temporary destructor terminator (B4 above). This
// holds regardless of which branch of the ternary operator calls the
// noreturn destructor. However, it doesn't cases where a nested ternary
// operator includes a branch that contains a noreturn destructor call.
//
// See `NoreturnDestructorTest` for concrete examples.
if (Block.succ_begin()->getReachableBlock() != nullptr &&
Block.succ_begin()->getReachableBlock()->hasNoReturnElement()) {
auto &StmtToBlock = AC.ACFG.getStmtToBlock();
auto StmtBlock = StmtToBlock.find(Block.getTerminatorStmt());
assert(StmtBlock != StmtToBlock.end());
llvm::erase(Preds, StmtBlock->getSecond());
}
}
// If any of the predecessor blocks contains an expression consumed in a
// different block, we need to keep expression state.
// Note that in this case, we keep expression state for all predecessors,
// rather than only those predecessors that actually contain an expression
// consumed in a different block. While this is potentially suboptimal, it's
// actually likely, if we have control flow within a full expression, that
// all predecessors have expression state consumed in a different block.
Environment::ExprJoinBehavior JoinBehavior = Environment::DiscardExprState;
for (const CFGBlock *Pred : Preds) {
if (Pred && AC.ACFG.containsExprConsumedInDifferentBlock(*Pred)) {
JoinBehavior = Environment::KeepExprState;
break;
}
}
JoinedStateBuilder Builder(AC, JoinBehavior);
for (const CFGBlock *Pred : Preds) {
// Skip if the `Block` is unreachable or control flow cannot get past it.
if (!Pred || Pred->hasNoReturnElement())
continue;
// Skip if `Pred` was not evaluated yet. This could happen if `Pred` has a
// loop back edge to `Block`.
const std::optional<TypeErasedDataflowAnalysisState> &MaybePredState =
AC.BlockStates[Pred->getBlockID()];
if (!MaybePredState)
continue;
const TypeErasedDataflowAnalysisState &PredState = *MaybePredState;
const Expr *Cond = getTerminatorCondition(Pred->getTerminatorStmt());
if (Cond == nullptr) {
Builder.addUnowned(PredState);
continue;
}
bool BranchVal = blockIndexInPredecessor(*Pred, Block) == 0;
// `transferBranch` may need to mutate the environment to describe the
// dynamic effect of the terminator for a given branch. Copy now.
TypeErasedDataflowAnalysisState Copy = MaybePredState->fork();
if (AC.Analysis.builtinOptions()) {
auto *CondVal = Copy.Env.get<BoolValue>(*Cond);
// In transferCFGBlock(), we ensure that we always have a `Value`
// for the terminator condition, so assert this. We consciously
// assert ourselves instead of asserting via `cast()` so that we get
// a more meaningful line number if the assertion fails.
assert(CondVal != nullptr);
BoolValue *AssertedVal =
BranchVal ? CondVal : &Copy.Env.makeNot(*CondVal);
Copy.Env.assume(AssertedVal->formula());
}
AC.Analysis.transferBranchTypeErased(BranchVal, Cond, Copy.Lattice,
Copy.Env);
Builder.addOwned(std::move(Copy));
}
return std::move(Builder).take();
}
/// Built-in transfer function for `CFGStmt`.
static void
builtinTransferStatement(unsigned CurBlockID, const CFGStmt &Elt,
TypeErasedDataflowAnalysisState &InputState,
AnalysisContext &AC) {
const Stmt *S = Elt.getStmt();
assert(S != nullptr);
transfer(StmtToEnvMap(AC.ACFG, AC.BlockStates, CurBlockID, InputState), *S,
InputState.Env, AC.Analysis);
}
/// Built-in transfer function for `CFGInitializer`.
static void
builtinTransferInitializer(const CFGInitializer &Elt,
TypeErasedDataflowAnalysisState &InputState) {
const CXXCtorInitializer *Init = Elt.getInitializer();
assert(Init != nullptr);
auto &Env = InputState.Env;
auto &ThisLoc = *Env.getThisPointeeStorageLocation();
if (!Init->isAnyMemberInitializer())
// FIXME: Handle base initialization
return;
auto *InitExpr = Init->getInit();
assert(InitExpr != nullptr);
const FieldDecl *Member = nullptr;
RecordStorageLocation *ParentLoc = &ThisLoc;
StorageLocation *MemberLoc = nullptr;
if (Init->isMemberInitializer()) {
Member = Init->getMember();
MemberLoc = ThisLoc.getChild(*Member);
} else {
IndirectFieldDecl *IndirectField = Init->getIndirectMember();
assert(IndirectField != nullptr);
MemberLoc = &ThisLoc;
for (const auto *I : IndirectField->chain()) {
Member = cast<FieldDecl>(I);
ParentLoc = cast<RecordStorageLocation>(MemberLoc);
MemberLoc = ParentLoc->getChild(*Member);
}
}
assert(Member != nullptr);
// FIXME: Instead of these case distinctions, we would ideally want to be able
// to simply use `Environment::createObject()` here, the same way that we do
// this in `TransferVisitor::VisitInitListExpr()`. However, this would require
// us to be able to build a list of fields that we then use to initialize an
// `RecordStorageLocation` -- and the problem is that, when we get here,
// the `RecordStorageLocation` already exists. We should explore if there's
// anything that we can do to change this.
if (Member->getType()->isReferenceType()) {
auto *InitExprLoc = Env.getStorageLocation(*InitExpr);
if (InitExprLoc == nullptr)
return;
ParentLoc->setChild(*Member, InitExprLoc);
// Record-type initializers construct themselves directly into the result
// object, so there is no need to handle them here.
} else if (!Member->getType()->isRecordType()) {
assert(MemberLoc != nullptr);
if (auto *InitExprVal = Env.getValue(*InitExpr))
Env.setValue(*MemberLoc, *InitExprVal);
}
}
static void builtinTransfer(unsigned CurBlockID, const CFGElement &Elt,
TypeErasedDataflowAnalysisState &State,
AnalysisContext &AC) {
switch (Elt.getKind()) {
case CFGElement::Statement:
builtinTransferStatement(CurBlockID, Elt.castAs<CFGStmt>(), State, AC);
break;
case CFGElement::Initializer:
builtinTransferInitializer(Elt.castAs<CFGInitializer>(), State);
break;
case CFGElement::LifetimeEnds:
// Removing declarations when their lifetime ends serves two purposes:
// - Eliminate unnecessary clutter from `Environment::DeclToLoc`
// - Allow us to assert that, when joining two `Environment`s, the two
// `DeclToLoc` maps never contain entries that map the same declaration to
// different storage locations.
if (const ValueDecl *VD = Elt.castAs<CFGLifetimeEnds>().getVarDecl())
State.Env.removeDecl(*VD);
break;
default:
// FIXME: Evaluate other kinds of `CFGElement`
break;
}
}
/// Transfers `State` by evaluating each element in the `Block` based on the
/// `AC.Analysis` specified.
///
/// Built-in transfer functions (if the option for `ApplyBuiltinTransfer` is set
/// by the analysis) will be applied to the element before evaluation by the
/// user-specified analysis.
/// `PostVisitCFG` (if provided) will be applied to the element after evaluation
/// by the user-specified analysis.
static TypeErasedDataflowAnalysisState
transferCFGBlock(const CFGBlock &Block, AnalysisContext &AC,
const CFGEltCallbacksTypeErased &PostAnalysisCallbacks = {}) {
AC.Log.enterBlock(Block, PostAnalysisCallbacks.Before != nullptr ||
PostAnalysisCallbacks.After != nullptr);
auto State = computeBlockInputState(Block, AC);
AC.Log.recordState(State);
int ElementIdx = 1;
for (const auto &Element : Block) {
PrettyStackTraceCFGElement CrashInfo(Element, Block.getBlockID(),
ElementIdx++, "transferCFGBlock");
AC.Log.enterElement(Element);
if (PostAnalysisCallbacks.Before) {
PostAnalysisCallbacks.Before(Element, State);
}
// Built-in analysis
if (AC.Analysis.builtinOptions()) {
builtinTransfer(Block.getBlockID(), Element, State, AC);
}
// User-provided analysis
AC.Analysis.transferTypeErased(Element, State.Lattice, State.Env);
if (PostAnalysisCallbacks.After) {
PostAnalysisCallbacks.After(Element, State);
}
AC.Log.recordState(State);
}
// If we have a terminator, evaluate its condition.
// This `Expr` may not appear as a `CFGElement` anywhere else, and it's
// important that we evaluate it here (rather than while processing the
// terminator) so that we put the corresponding value in the right
// environment.
if (const Expr *TerminatorCond =
dyn_cast_or_null<Expr>(Block.getTerminatorCondition())) {
if (State.Env.getValue(*TerminatorCond) == nullptr)
// FIXME: This only runs the builtin transfer, not the analysis-specific
// transfer. Fixing this isn't trivial, as the analysis-specific transfer
// takes a `CFGElement` as input, but some expressions only show up as a
// terminator condition, but not as a `CFGElement`. The condition of an if
// statement is one such example.
transfer(StmtToEnvMap(AC.ACFG, AC.BlockStates, Block.getBlockID(), State),
*TerminatorCond, State.Env, AC.Analysis);
// If the transfer function didn't produce a value, create an atom so that
// we have *some* value for the condition expression. This ensures that
// when we extend the flow condition, it actually changes.
if (State.Env.getValue(*TerminatorCond) == nullptr)
State.Env.setValue(*TerminatorCond, State.Env.makeAtomicBoolValue());
AC.Log.recordState(State);
}
return State;
}
llvm::Expected<std::vector<std::optional<TypeErasedDataflowAnalysisState>>>
runTypeErasedDataflowAnalysis(
const AdornedCFG &ACFG, TypeErasedDataflowAnalysis &Analysis,
const Environment &InitEnv,
const CFGEltCallbacksTypeErased &PostAnalysisCallbacks,
std::int32_t MaxBlockVisits) {
PrettyStackTraceAnalysis CrashInfo(ACFG, "runTypeErasedDataflowAnalysis");
std::optional<Environment> MaybeStartingEnv;
if (InitEnv.callStackSize() == 0) {
MaybeStartingEnv = InitEnv.fork();
MaybeStartingEnv->initialize();
}
const Environment &StartingEnv =
MaybeStartingEnv ? *MaybeStartingEnv : InitEnv;
const clang::CFG &CFG = ACFG.getCFG();
PostOrderCFGView POV(&CFG);
ForwardDataflowWorklist Worklist(CFG, &POV);
std::vector<std::optional<TypeErasedDataflowAnalysisState>> BlockStates(
CFG.size());
// The entry basic block doesn't contain statements so it can be skipped.
const CFGBlock &Entry = CFG.getEntry();
BlockStates[Entry.getBlockID()] = {Analysis.typeErasedInitialElement(),
StartingEnv.fork()};
Worklist.enqueueSuccessors(&Entry);
AnalysisContext AC(ACFG, Analysis, StartingEnv, BlockStates);
std::int32_t BlockVisits = 0;
while (const CFGBlock *Block = Worklist.dequeue()) {
LLVM_DEBUG(llvm::dbgs()
<< "Processing Block " << Block->getBlockID() << "\n");
if (++BlockVisits > MaxBlockVisits) {
return llvm::createStringError(std::errc::timed_out,
"maximum number of blocks processed");
}
const std::optional<TypeErasedDataflowAnalysisState> &OldBlockState =
BlockStates[Block->getBlockID()];
TypeErasedDataflowAnalysisState NewBlockState =
transferCFGBlock(*Block, AC);
LLVM_DEBUG({
llvm::errs() << "New Env:\n";
NewBlockState.Env.dump();
});
if (OldBlockState) {
LLVM_DEBUG({
llvm::errs() << "Old Env:\n";
OldBlockState->Env.dump();
});
if (isBackedgeNode(*Block)) {
LatticeJoinEffect Effect1 = Analysis.widenTypeErased(
NewBlockState.Lattice, OldBlockState->Lattice);
LatticeJoinEffect Effect2 =
NewBlockState.Env.widen(OldBlockState->Env, Analysis);
if (Effect1 == LatticeJoinEffect::Unchanged &&
Effect2 == LatticeJoinEffect::Unchanged) {
// The state of `Block` didn't change from widening so there's no need
// to revisit its successors.
AC.Log.blockConverged();
continue;
}
} else if (Analysis.isEqualTypeErased(OldBlockState->Lattice,
NewBlockState.Lattice) &&
OldBlockState->Env.equivalentTo(NewBlockState.Env, Analysis)) {
// The state of `Block` didn't change after transfer so there's no need
// to revisit its successors.
AC.Log.blockConverged();
continue;
}
}
BlockStates[Block->getBlockID()] = std::move(NewBlockState);
// Do not add unreachable successor blocks to `Worklist`.
if (Block->hasNoReturnElement())
continue;
Worklist.enqueueSuccessors(Block);
}
// FIXME: Consider evaluating unreachable basic blocks (those that have a
// state set to `std::nullopt` at this point) to also analyze dead code.
if (PostAnalysisCallbacks.Before || PostAnalysisCallbacks.After) {
for (const CFGBlock *Block : ACFG.getCFG()) {
// Skip blocks that were not evaluated.
if (!BlockStates[Block->getBlockID()])
continue;
transferCFGBlock(*Block, AC, PostAnalysisCallbacks);
}
}
return std::move(BlockStates);
}
} // namespace dataflow
} // namespace clang
|