1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283
|
//===- ABIInfo.cpp --------------------------------------------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
#include "ABIInfo.h"
#include "ABIInfoImpl.h"
using namespace clang;
using namespace clang::CodeGen;
// Pin the vtable to this file.
ABIInfo::~ABIInfo() = default;
CGCXXABI &ABIInfo::getCXXABI() const { return CGT.getCXXABI(); }
ASTContext &ABIInfo::getContext() const { return CGT.getContext(); }
llvm::LLVMContext &ABIInfo::getVMContext() const {
return CGT.getLLVMContext();
}
const llvm::DataLayout &ABIInfo::getDataLayout() const {
return CGT.getDataLayout();
}
const TargetInfo &ABIInfo::getTarget() const { return CGT.getTarget(); }
const CodeGenOptions &ABIInfo::getCodeGenOpts() const {
return CGT.getCodeGenOpts();
}
bool ABIInfo::isAndroid() const { return getTarget().getTriple().isAndroid(); }
bool ABIInfo::isOHOSFamily() const {
return getTarget().getTriple().isOHOSFamily();
}
RValue ABIInfo::EmitMSVAArg(CodeGenFunction &CGF, Address VAListAddr,
QualType Ty, AggValueSlot Slot) const {
return RValue::getIgnored();
}
bool ABIInfo::isHomogeneousAggregateBaseType(QualType Ty) const {
return false;
}
bool ABIInfo::isHomogeneousAggregateSmallEnough(const Type *Base,
uint64_t Members) const {
return false;
}
bool ABIInfo::isZeroLengthBitfieldPermittedInHomogeneousAggregate() const {
// For compatibility with GCC, ignore empty bitfields in C++ mode.
return getContext().getLangOpts().CPlusPlus;
}
bool ABIInfo::isHomogeneousAggregate(QualType Ty, const Type *&Base,
uint64_t &Members) const {
if (const ConstantArrayType *AT = getContext().getAsConstantArrayType(Ty)) {
uint64_t NElements = AT->getZExtSize();
if (NElements == 0)
return false;
if (!isHomogeneousAggregate(AT->getElementType(), Base, Members))
return false;
Members *= NElements;
} else if (const RecordType *RT = Ty->getAs<RecordType>()) {
const RecordDecl *RD = RT->getDecl();
if (RD->hasFlexibleArrayMember())
return false;
Members = 0;
// If this is a C++ record, check the properties of the record such as
// bases and ABI specific restrictions
if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD)) {
if (!getCXXABI().isPermittedToBeHomogeneousAggregate(CXXRD))
return false;
for (const auto &I : CXXRD->bases()) {
// Ignore empty records.
if (isEmptyRecord(getContext(), I.getType(), true))
continue;
uint64_t FldMembers;
if (!isHomogeneousAggregate(I.getType(), Base, FldMembers))
return false;
Members += FldMembers;
}
}
for (const auto *FD : RD->fields()) {
// Ignore (non-zero arrays of) empty records.
QualType FT = FD->getType();
while (const ConstantArrayType *AT =
getContext().getAsConstantArrayType(FT)) {
if (AT->isZeroSize())
return false;
FT = AT->getElementType();
}
if (isEmptyRecord(getContext(), FT, true))
continue;
if (isZeroLengthBitfieldPermittedInHomogeneousAggregate() &&
FD->isZeroLengthBitField(getContext()))
continue;
uint64_t FldMembers;
if (!isHomogeneousAggregate(FD->getType(), Base, FldMembers))
return false;
Members = (RD->isUnion() ?
std::max(Members, FldMembers) : Members + FldMembers);
}
if (!Base)
return false;
// Ensure there is no padding.
if (getContext().getTypeSize(Base) * Members !=
getContext().getTypeSize(Ty))
return false;
} else {
Members = 1;
if (const ComplexType *CT = Ty->getAs<ComplexType>()) {
Members = 2;
Ty = CT->getElementType();
}
// Most ABIs only support float, double, and some vector type widths.
if (!isHomogeneousAggregateBaseType(Ty))
return false;
// The base type must be the same for all members. Types that
// agree in both total size and mode (float vs. vector) are
// treated as being equivalent here.
const Type *TyPtr = Ty.getTypePtr();
if (!Base) {
Base = TyPtr;
// If it's a non-power-of-2 vector, its size is already a power-of-2,
// so make sure to widen it explicitly.
if (const VectorType *VT = Base->getAs<VectorType>()) {
QualType EltTy = VT->getElementType();
unsigned NumElements =
getContext().getTypeSize(VT) / getContext().getTypeSize(EltTy);
Base = getContext()
.getVectorType(EltTy, NumElements, VT->getVectorKind())
.getTypePtr();
}
}
if (Base->isVectorType() != TyPtr->isVectorType() ||
getContext().getTypeSize(Base) != getContext().getTypeSize(TyPtr))
return false;
}
return Members > 0 && isHomogeneousAggregateSmallEnough(Base, Members);
}
bool ABIInfo::isPromotableIntegerTypeForABI(QualType Ty) const {
if (getContext().isPromotableIntegerType(Ty))
return true;
if (const auto *EIT = Ty->getAs<BitIntType>())
if (EIT->getNumBits() < getContext().getTypeSize(getContext().IntTy))
return true;
return false;
}
ABIArgInfo ABIInfo::getNaturalAlignIndirect(QualType Ty, bool ByVal,
bool Realign,
llvm::Type *Padding) const {
return ABIArgInfo::getIndirect(getContext().getTypeAlignInChars(Ty), ByVal,
Realign, Padding);
}
ABIArgInfo ABIInfo::getNaturalAlignIndirectInReg(QualType Ty,
bool Realign) const {
return ABIArgInfo::getIndirectInReg(getContext().getTypeAlignInChars(Ty),
/*ByVal*/ false, Realign);
}
void ABIInfo::appendAttributeMangling(TargetAttr *Attr,
raw_ostream &Out) const {
if (Attr->isDefaultVersion())
return;
appendAttributeMangling(Attr->getFeaturesStr(), Out);
}
void ABIInfo::appendAttributeMangling(TargetVersionAttr *Attr,
raw_ostream &Out) const {
appendAttributeMangling(Attr->getNamesStr(), Out);
}
void ABIInfo::appendAttributeMangling(TargetClonesAttr *Attr, unsigned Index,
raw_ostream &Out) const {
appendAttributeMangling(Attr->getFeatureStr(Index), Out);
Out << '.' << Attr->getMangledIndex(Index);
}
void ABIInfo::appendAttributeMangling(StringRef AttrStr,
raw_ostream &Out) const {
if (AttrStr == "default") {
Out << ".default";
return;
}
Out << '.';
const TargetInfo &TI = CGT.getTarget();
ParsedTargetAttr Info = TI.parseTargetAttr(AttrStr);
llvm::sort(Info.Features, [&TI](StringRef LHS, StringRef RHS) {
// Multiversioning doesn't allow "no-${feature}", so we can
// only have "+" prefixes here.
assert(LHS.starts_with("+") && RHS.starts_with("+") &&
"Features should always have a prefix.");
return TI.multiVersionSortPriority(LHS.substr(1)) >
TI.multiVersionSortPriority(RHS.substr(1));
});
bool IsFirst = true;
if (!Info.CPU.empty()) {
IsFirst = false;
Out << "arch_" << Info.CPU;
}
for (StringRef Feat : Info.Features) {
if (!IsFirst)
Out << '_';
IsFirst = false;
Out << Feat.substr(1);
}
}
// Pin the vtable to this file.
SwiftABIInfo::~SwiftABIInfo() = default;
/// Does the given lowering require more than the given number of
/// registers when expanded?
///
/// This is intended to be the basis of a reasonable basic implementation
/// of should{Pass,Return}Indirectly.
///
/// For most targets, a limit of four total registers is reasonable; this
/// limits the amount of code required in order to move around the value
/// in case it wasn't produced immediately prior to the call by the caller
/// (or wasn't produced in exactly the right registers) or isn't used
/// immediately within the callee. But some targets may need to further
/// limit the register count due to an inability to support that many
/// return registers.
bool SwiftABIInfo::occupiesMoreThan(ArrayRef<llvm::Type *> scalarTypes,
unsigned maxAllRegisters) const {
unsigned intCount = 0, fpCount = 0;
for (llvm::Type *type : scalarTypes) {
if (type->isPointerTy()) {
intCount++;
} else if (auto intTy = dyn_cast<llvm::IntegerType>(type)) {
auto ptrWidth = CGT.getTarget().getPointerWidth(LangAS::Default);
intCount += (intTy->getBitWidth() + ptrWidth - 1) / ptrWidth;
} else {
assert(type->isVectorTy() || type->isFloatingPointTy());
fpCount++;
}
}
return (intCount + fpCount > maxAllRegisters);
}
bool SwiftABIInfo::shouldPassIndirectly(ArrayRef<llvm::Type *> ComponentTys,
bool AsReturnValue) const {
return occupiesMoreThan(ComponentTys, /*total=*/4);
}
bool SwiftABIInfo::isLegalVectorType(CharUnits VectorSize, llvm::Type *EltTy,
unsigned NumElts) const {
// The default implementation of this assumes that the target guarantees
// 128-bit SIMD support but nothing more.
return (VectorSize.getQuantity() > 8 && VectorSize.getQuantity() <= 16);
}
|