1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620
|
//===--- CoverageMappingGen.cpp - Coverage mapping generation ---*- C++ -*-===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// Instrumentation-based code coverage mapping generator
//
//===----------------------------------------------------------------------===//
#include "CoverageMappingGen.h"
#include "CodeGenFunction.h"
#include "clang/AST/StmtVisitor.h"
#include "clang/Basic/Diagnostic.h"
#include "clang/Basic/FileManager.h"
#include "clang/Frontend/FrontendDiagnostic.h"
#include "clang/Lex/Lexer.h"
#include "llvm/ADT/DenseSet.h"
#include "llvm/ADT/SmallSet.h"
#include "llvm/ADT/StringExtras.h"
#include "llvm/ProfileData/Coverage/CoverageMapping.h"
#include "llvm/ProfileData/Coverage/CoverageMappingReader.h"
#include "llvm/ProfileData/Coverage/CoverageMappingWriter.h"
#include "llvm/ProfileData/InstrProfReader.h"
#include "llvm/Support/FileSystem.h"
#include "llvm/Support/Path.h"
#include <optional>
// This selects the coverage mapping format defined when `InstrProfData.inc`
// is textually included.
#define COVMAP_V3
namespace llvm {
cl::opt<bool>
EnableSingleByteCoverage("enable-single-byte-coverage",
llvm::cl::ZeroOrMore,
llvm::cl::desc("Enable single byte coverage"),
llvm::cl::Hidden, llvm::cl::init(false));
} // namespace llvm
static llvm::cl::opt<bool> EmptyLineCommentCoverage(
"emptyline-comment-coverage",
llvm::cl::desc("Emit emptylines and comment lines as skipped regions (only "
"disable it on test)"),
llvm::cl::init(true), llvm::cl::Hidden);
namespace llvm::coverage {
cl::opt<bool> SystemHeadersCoverage(
"system-headers-coverage",
cl::desc("Enable collecting coverage from system headers"), cl::init(false),
cl::Hidden);
}
using namespace clang;
using namespace CodeGen;
using namespace llvm::coverage;
CoverageSourceInfo *
CoverageMappingModuleGen::setUpCoverageCallbacks(Preprocessor &PP) {
CoverageSourceInfo *CoverageInfo =
new CoverageSourceInfo(PP.getSourceManager());
PP.addPPCallbacks(std::unique_ptr<PPCallbacks>(CoverageInfo));
if (EmptyLineCommentCoverage) {
PP.addCommentHandler(CoverageInfo);
PP.setEmptylineHandler(CoverageInfo);
PP.setPreprocessToken(true);
PP.setTokenWatcher([CoverageInfo](clang::Token Tok) {
// Update previous token location.
CoverageInfo->PrevTokLoc = Tok.getLocation();
if (Tok.getKind() != clang::tok::eod)
CoverageInfo->updateNextTokLoc(Tok.getLocation());
});
}
return CoverageInfo;
}
void CoverageSourceInfo::AddSkippedRange(SourceRange Range,
SkippedRange::Kind RangeKind) {
if (EmptyLineCommentCoverage && !SkippedRanges.empty() &&
PrevTokLoc == SkippedRanges.back().PrevTokLoc &&
SourceMgr.isWrittenInSameFile(SkippedRanges.back().Range.getEnd(),
Range.getBegin()))
SkippedRanges.back().Range.setEnd(Range.getEnd());
else
SkippedRanges.push_back({Range, RangeKind, PrevTokLoc});
}
void CoverageSourceInfo::SourceRangeSkipped(SourceRange Range, SourceLocation) {
AddSkippedRange(Range, SkippedRange::PPIfElse);
}
void CoverageSourceInfo::HandleEmptyline(SourceRange Range) {
AddSkippedRange(Range, SkippedRange::EmptyLine);
}
bool CoverageSourceInfo::HandleComment(Preprocessor &PP, SourceRange Range) {
AddSkippedRange(Range, SkippedRange::Comment);
return false;
}
void CoverageSourceInfo::updateNextTokLoc(SourceLocation Loc) {
if (!SkippedRanges.empty() && SkippedRanges.back().NextTokLoc.isInvalid())
SkippedRanges.back().NextTokLoc = Loc;
}
namespace {
/// A region of source code that can be mapped to a counter.
class SourceMappingRegion {
/// Primary Counter that is also used for Branch Regions for "True" branches.
Counter Count;
/// Secondary Counter used for Branch Regions for "False" branches.
std::optional<Counter> FalseCount;
/// Parameters used for Modified Condition/Decision Coverage
mcdc::Parameters MCDCParams;
/// The region's starting location.
std::optional<SourceLocation> LocStart;
/// The region's ending location.
std::optional<SourceLocation> LocEnd;
/// Whether this region is a gap region. The count from a gap region is set
/// as the line execution count if there are no other regions on the line.
bool GapRegion;
/// Whetever this region is skipped ('if constexpr' or 'if consteval' untaken
/// branch, or anything skipped but not empty line / comments)
bool SkippedRegion;
public:
SourceMappingRegion(Counter Count, std::optional<SourceLocation> LocStart,
std::optional<SourceLocation> LocEnd,
bool GapRegion = false)
: Count(Count), LocStart(LocStart), LocEnd(LocEnd), GapRegion(GapRegion),
SkippedRegion(false) {}
SourceMappingRegion(Counter Count, std::optional<Counter> FalseCount,
mcdc::Parameters MCDCParams,
std::optional<SourceLocation> LocStart,
std::optional<SourceLocation> LocEnd,
bool GapRegion = false)
: Count(Count), FalseCount(FalseCount), MCDCParams(MCDCParams),
LocStart(LocStart), LocEnd(LocEnd), GapRegion(GapRegion),
SkippedRegion(false) {}
SourceMappingRegion(mcdc::Parameters MCDCParams,
std::optional<SourceLocation> LocStart,
std::optional<SourceLocation> LocEnd)
: MCDCParams(MCDCParams), LocStart(LocStart), LocEnd(LocEnd),
GapRegion(false), SkippedRegion(false) {}
const Counter &getCounter() const { return Count; }
const Counter &getFalseCounter() const {
assert(FalseCount && "Region has no alternate counter");
return *FalseCount;
}
void setCounter(Counter C) { Count = C; }
bool hasStartLoc() const { return LocStart.has_value(); }
void setStartLoc(SourceLocation Loc) { LocStart = Loc; }
SourceLocation getBeginLoc() const {
assert(LocStart && "Region has no start location");
return *LocStart;
}
bool hasEndLoc() const { return LocEnd.has_value(); }
void setEndLoc(SourceLocation Loc) {
assert(Loc.isValid() && "Setting an invalid end location");
LocEnd = Loc;
}
SourceLocation getEndLoc() const {
assert(LocEnd && "Region has no end location");
return *LocEnd;
}
bool isGap() const { return GapRegion; }
void setGap(bool Gap) { GapRegion = Gap; }
bool isSkipped() const { return SkippedRegion; }
void setSkipped(bool Skipped) { SkippedRegion = Skipped; }
bool isBranch() const { return FalseCount.has_value(); }
bool isMCDCBranch() const {
return std::holds_alternative<mcdc::BranchParameters>(MCDCParams);
}
const auto &getMCDCBranchParams() const {
return mcdc::getParams<const mcdc::BranchParameters>(MCDCParams);
}
bool isMCDCDecision() const {
return std::holds_alternative<mcdc::DecisionParameters>(MCDCParams);
}
const auto &getMCDCDecisionParams() const {
return mcdc::getParams<const mcdc::DecisionParameters>(MCDCParams);
}
const mcdc::Parameters &getMCDCParams() const { return MCDCParams; }
void resetMCDCParams() { MCDCParams = mcdc::Parameters(); }
};
/// Spelling locations for the start and end of a source region.
struct SpellingRegion {
/// The line where the region starts.
unsigned LineStart;
/// The column where the region starts.
unsigned ColumnStart;
/// The line where the region ends.
unsigned LineEnd;
/// The column where the region ends.
unsigned ColumnEnd;
SpellingRegion(SourceManager &SM, SourceLocation LocStart,
SourceLocation LocEnd) {
LineStart = SM.getSpellingLineNumber(LocStart);
ColumnStart = SM.getSpellingColumnNumber(LocStart);
LineEnd = SM.getSpellingLineNumber(LocEnd);
ColumnEnd = SM.getSpellingColumnNumber(LocEnd);
}
SpellingRegion(SourceManager &SM, SourceMappingRegion &R)
: SpellingRegion(SM, R.getBeginLoc(), R.getEndLoc()) {}
/// Check if the start and end locations appear in source order, i.e
/// top->bottom, left->right.
bool isInSourceOrder() const {
return (LineStart < LineEnd) ||
(LineStart == LineEnd && ColumnStart <= ColumnEnd);
}
};
/// Provides the common functionality for the different
/// coverage mapping region builders.
class CoverageMappingBuilder {
public:
CoverageMappingModuleGen &CVM;
SourceManager &SM;
const LangOptions &LangOpts;
private:
/// Map of clang's FileIDs to IDs used for coverage mapping.
llvm::SmallDenseMap<FileID, std::pair<unsigned, SourceLocation>, 8>
FileIDMapping;
public:
/// The coverage mapping regions for this function
llvm::SmallVector<CounterMappingRegion, 32> MappingRegions;
/// The source mapping regions for this function.
std::vector<SourceMappingRegion> SourceRegions;
/// A set of regions which can be used as a filter.
///
/// It is produced by emitExpansionRegions() and is used in
/// emitSourceRegions() to suppress producing code regions if
/// the same area is covered by expansion regions.
typedef llvm::SmallSet<std::pair<SourceLocation, SourceLocation>, 8>
SourceRegionFilter;
CoverageMappingBuilder(CoverageMappingModuleGen &CVM, SourceManager &SM,
const LangOptions &LangOpts)
: CVM(CVM), SM(SM), LangOpts(LangOpts) {}
/// Return the precise end location for the given token.
SourceLocation getPreciseTokenLocEnd(SourceLocation Loc) {
// We avoid getLocForEndOfToken here, because it doesn't do what we want for
// macro locations, which we just treat as expanded files.
unsigned TokLen =
Lexer::MeasureTokenLength(SM.getSpellingLoc(Loc), SM, LangOpts);
return Loc.getLocWithOffset(TokLen);
}
/// Return the start location of an included file or expanded macro.
SourceLocation getStartOfFileOrMacro(SourceLocation Loc) {
if (Loc.isMacroID())
return Loc.getLocWithOffset(-SM.getFileOffset(Loc));
return SM.getLocForStartOfFile(SM.getFileID(Loc));
}
/// Return the end location of an included file or expanded macro.
SourceLocation getEndOfFileOrMacro(SourceLocation Loc) {
if (Loc.isMacroID())
return Loc.getLocWithOffset(SM.getFileIDSize(SM.getFileID(Loc)) -
SM.getFileOffset(Loc));
return SM.getLocForEndOfFile(SM.getFileID(Loc));
}
/// Find out where a macro is expanded. If the immediate result is a
/// <scratch space>, keep looking until the result isn't. Return a pair of
/// \c SourceLocation. The first object is always the begin sloc of found
/// result. The second should be checked by the caller: if it has value, it's
/// the end sloc of the found result. Otherwise the while loop didn't get
/// executed, which means the location wasn't changed and the caller has to
/// learn the end sloc from somewhere else.
std::pair<SourceLocation, std::optional<SourceLocation>>
getNonScratchExpansionLoc(SourceLocation Loc) {
std::optional<SourceLocation> EndLoc = std::nullopt;
while (Loc.isMacroID() &&
SM.isWrittenInScratchSpace(SM.getSpellingLoc(Loc))) {
auto ExpansionRange = SM.getImmediateExpansionRange(Loc);
Loc = ExpansionRange.getBegin();
EndLoc = ExpansionRange.getEnd();
}
return std::make_pair(Loc, EndLoc);
}
/// Find out where the current file is included or macro is expanded. If
/// \c AcceptScratch is set to false, keep looking for expansions until the
/// found sloc is not a <scratch space>.
SourceLocation getIncludeOrExpansionLoc(SourceLocation Loc,
bool AcceptScratch = true) {
if (!Loc.isMacroID())
return SM.getIncludeLoc(SM.getFileID(Loc));
Loc = SM.getImmediateExpansionRange(Loc).getBegin();
if (AcceptScratch)
return Loc;
return getNonScratchExpansionLoc(Loc).first;
}
/// Return true if \c Loc is a location in a built-in macro.
bool isInBuiltin(SourceLocation Loc) {
return SM.getBufferName(SM.getSpellingLoc(Loc)) == "<built-in>";
}
/// Check whether \c Loc is included or expanded from \c Parent.
bool isNestedIn(SourceLocation Loc, FileID Parent) {
do {
Loc = getIncludeOrExpansionLoc(Loc);
if (Loc.isInvalid())
return false;
} while (!SM.isInFileID(Loc, Parent));
return true;
}
/// Get the start of \c S ignoring macro arguments and builtin macros.
SourceLocation getStart(const Stmt *S) {
SourceLocation Loc = S->getBeginLoc();
while (SM.isMacroArgExpansion(Loc) || isInBuiltin(Loc))
Loc = SM.getImmediateExpansionRange(Loc).getBegin();
return Loc;
}
/// Get the end of \c S ignoring macro arguments and builtin macros.
SourceLocation getEnd(const Stmt *S) {
SourceLocation Loc = S->getEndLoc();
while (SM.isMacroArgExpansion(Loc) || isInBuiltin(Loc))
Loc = SM.getImmediateExpansionRange(Loc).getBegin();
return getPreciseTokenLocEnd(Loc);
}
/// Find the set of files we have regions for and assign IDs
///
/// Fills \c Mapping with the virtual file mapping needed to write out
/// coverage and collects the necessary file information to emit source and
/// expansion regions.
void gatherFileIDs(SmallVectorImpl<unsigned> &Mapping) {
FileIDMapping.clear();
llvm::SmallSet<FileID, 8> Visited;
SmallVector<std::pair<SourceLocation, unsigned>, 8> FileLocs;
for (auto &Region : SourceRegions) {
SourceLocation Loc = Region.getBeginLoc();
// Replace Region with its definition if it is in <scratch space>.
auto NonScratchExpansionLoc = getNonScratchExpansionLoc(Loc);
auto EndLoc = NonScratchExpansionLoc.second;
if (EndLoc.has_value()) {
Loc = NonScratchExpansionLoc.first;
Region.setStartLoc(Loc);
Region.setEndLoc(EndLoc.value());
}
// Replace Loc with FileLoc if it is expanded with system headers.
if (!SystemHeadersCoverage && SM.isInSystemMacro(Loc)) {
auto BeginLoc = SM.getSpellingLoc(Loc);
auto EndLoc = SM.getSpellingLoc(Region.getEndLoc());
if (SM.isWrittenInSameFile(BeginLoc, EndLoc)) {
Loc = SM.getFileLoc(Loc);
Region.setStartLoc(Loc);
Region.setEndLoc(SM.getFileLoc(Region.getEndLoc()));
}
}
FileID File = SM.getFileID(Loc);
if (!Visited.insert(File).second)
continue;
assert(SystemHeadersCoverage ||
!SM.isInSystemHeader(SM.getSpellingLoc(Loc)));
unsigned Depth = 0;
for (SourceLocation Parent = getIncludeOrExpansionLoc(Loc);
Parent.isValid(); Parent = getIncludeOrExpansionLoc(Parent))
++Depth;
FileLocs.push_back(std::make_pair(Loc, Depth));
}
llvm::stable_sort(FileLocs, llvm::less_second());
for (const auto &FL : FileLocs) {
SourceLocation Loc = FL.first;
FileID SpellingFile = SM.getDecomposedSpellingLoc(Loc).first;
auto Entry = SM.getFileEntryRefForID(SpellingFile);
if (!Entry)
continue;
FileIDMapping[SM.getFileID(Loc)] = std::make_pair(Mapping.size(), Loc);
Mapping.push_back(CVM.getFileID(*Entry));
}
}
/// Get the coverage mapping file ID for \c Loc.
///
/// If such file id doesn't exist, return std::nullopt.
std::optional<unsigned> getCoverageFileID(SourceLocation Loc) {
auto Mapping = FileIDMapping.find(SM.getFileID(Loc));
if (Mapping != FileIDMapping.end())
return Mapping->second.first;
return std::nullopt;
}
/// This shrinks the skipped range if it spans a line that contains a
/// non-comment token. If shrinking the skipped range would make it empty,
/// this returns std::nullopt.
/// Note this function can potentially be expensive because
/// getSpellingLineNumber uses getLineNumber, which is expensive.
std::optional<SpellingRegion> adjustSkippedRange(SourceManager &SM,
SourceLocation LocStart,
SourceLocation LocEnd,
SourceLocation PrevTokLoc,
SourceLocation NextTokLoc) {
SpellingRegion SR{SM, LocStart, LocEnd};
SR.ColumnStart = 1;
if (PrevTokLoc.isValid() && SM.isWrittenInSameFile(LocStart, PrevTokLoc) &&
SR.LineStart == SM.getSpellingLineNumber(PrevTokLoc))
SR.LineStart++;
if (NextTokLoc.isValid() && SM.isWrittenInSameFile(LocEnd, NextTokLoc) &&
SR.LineEnd == SM.getSpellingLineNumber(NextTokLoc)) {
SR.LineEnd--;
SR.ColumnEnd++;
}
if (SR.isInSourceOrder())
return SR;
return std::nullopt;
}
/// Gather all the regions that were skipped by the preprocessor
/// using the constructs like #if or comments.
void gatherSkippedRegions() {
/// An array of the minimum lineStarts and the maximum lineEnds
/// for mapping regions from the appropriate source files.
llvm::SmallVector<std::pair<unsigned, unsigned>, 8> FileLineRanges;
FileLineRanges.resize(
FileIDMapping.size(),
std::make_pair(std::numeric_limits<unsigned>::max(), 0));
for (const auto &R : MappingRegions) {
FileLineRanges[R.FileID].first =
std::min(FileLineRanges[R.FileID].first, R.LineStart);
FileLineRanges[R.FileID].second =
std::max(FileLineRanges[R.FileID].second, R.LineEnd);
}
auto SkippedRanges = CVM.getSourceInfo().getSkippedRanges();
for (auto &I : SkippedRanges) {
SourceRange Range = I.Range;
auto LocStart = Range.getBegin();
auto LocEnd = Range.getEnd();
assert(SM.isWrittenInSameFile(LocStart, LocEnd) &&
"region spans multiple files");
auto CovFileID = getCoverageFileID(LocStart);
if (!CovFileID)
continue;
std::optional<SpellingRegion> SR;
if (I.isComment())
SR = adjustSkippedRange(SM, LocStart, LocEnd, I.PrevTokLoc,
I.NextTokLoc);
else if (I.isPPIfElse() || I.isEmptyLine())
SR = {SM, LocStart, LocEnd};
if (!SR)
continue;
auto Region = CounterMappingRegion::makeSkipped(
*CovFileID, SR->LineStart, SR->ColumnStart, SR->LineEnd,
SR->ColumnEnd);
// Make sure that we only collect the regions that are inside
// the source code of this function.
if (Region.LineStart >= FileLineRanges[*CovFileID].first &&
Region.LineEnd <= FileLineRanges[*CovFileID].second)
MappingRegions.push_back(Region);
}
}
/// Generate the coverage counter mapping regions from collected
/// source regions.
void emitSourceRegions(const SourceRegionFilter &Filter) {
for (const auto &Region : SourceRegions) {
assert(Region.hasEndLoc() && "incomplete region");
SourceLocation LocStart = Region.getBeginLoc();
assert(SM.getFileID(LocStart).isValid() && "region in invalid file");
// Ignore regions from system headers unless collecting coverage from
// system headers is explicitly enabled.
if (!SystemHeadersCoverage &&
SM.isInSystemHeader(SM.getSpellingLoc(LocStart))) {
assert(!Region.isMCDCBranch() && !Region.isMCDCDecision() &&
"Don't suppress the condition in system headers");
continue;
}
auto CovFileID = getCoverageFileID(LocStart);
// Ignore regions that don't have a file, such as builtin macros.
if (!CovFileID) {
assert(!Region.isMCDCBranch() && !Region.isMCDCDecision() &&
"Don't suppress the condition in non-file regions");
continue;
}
SourceLocation LocEnd = Region.getEndLoc();
assert(SM.isWrittenInSameFile(LocStart, LocEnd) &&
"region spans multiple files");
// Don't add code regions for the area covered by expansion regions.
// This not only suppresses redundant regions, but sometimes prevents
// creating regions with wrong counters if, for example, a statement's
// body ends at the end of a nested macro.
if (Filter.count(std::make_pair(LocStart, LocEnd))) {
assert(!Region.isMCDCBranch() && !Region.isMCDCDecision() &&
"Don't suppress the condition");
continue;
}
// Find the spelling locations for the mapping region.
SpellingRegion SR{SM, LocStart, LocEnd};
assert(SR.isInSourceOrder() && "region start and end out of order");
if (Region.isGap()) {
MappingRegions.push_back(CounterMappingRegion::makeGapRegion(
Region.getCounter(), *CovFileID, SR.LineStart, SR.ColumnStart,
SR.LineEnd, SR.ColumnEnd));
} else if (Region.isSkipped()) {
MappingRegions.push_back(CounterMappingRegion::makeSkipped(
*CovFileID, SR.LineStart, SR.ColumnStart, SR.LineEnd,
SR.ColumnEnd));
} else if (Region.isBranch()) {
MappingRegions.push_back(CounterMappingRegion::makeBranchRegion(
Region.getCounter(), Region.getFalseCounter(), *CovFileID,
SR.LineStart, SR.ColumnStart, SR.LineEnd, SR.ColumnEnd,
Region.getMCDCParams()));
} else if (Region.isMCDCDecision()) {
MappingRegions.push_back(CounterMappingRegion::makeDecisionRegion(
Region.getMCDCDecisionParams(), *CovFileID, SR.LineStart,
SR.ColumnStart, SR.LineEnd, SR.ColumnEnd));
} else {
MappingRegions.push_back(CounterMappingRegion::makeRegion(
Region.getCounter(), *CovFileID, SR.LineStart, SR.ColumnStart,
SR.LineEnd, SR.ColumnEnd));
}
}
}
/// Generate expansion regions for each virtual file we've seen.
SourceRegionFilter emitExpansionRegions() {
SourceRegionFilter Filter;
for (const auto &FM : FileIDMapping) {
SourceLocation ExpandedLoc = FM.second.second;
SourceLocation ParentLoc = getIncludeOrExpansionLoc(ExpandedLoc, false);
if (ParentLoc.isInvalid())
continue;
auto ParentFileID = getCoverageFileID(ParentLoc);
if (!ParentFileID)
continue;
auto ExpandedFileID = getCoverageFileID(ExpandedLoc);
assert(ExpandedFileID && "expansion in uncovered file");
SourceLocation LocEnd = getPreciseTokenLocEnd(ParentLoc);
assert(SM.isWrittenInSameFile(ParentLoc, LocEnd) &&
"region spans multiple files");
Filter.insert(std::make_pair(ParentLoc, LocEnd));
SpellingRegion SR{SM, ParentLoc, LocEnd};
assert(SR.isInSourceOrder() && "region start and end out of order");
MappingRegions.push_back(CounterMappingRegion::makeExpansion(
*ParentFileID, *ExpandedFileID, SR.LineStart, SR.ColumnStart,
SR.LineEnd, SR.ColumnEnd));
}
return Filter;
}
};
/// Creates unreachable coverage regions for the functions that
/// are not emitted.
struct EmptyCoverageMappingBuilder : public CoverageMappingBuilder {
EmptyCoverageMappingBuilder(CoverageMappingModuleGen &CVM, SourceManager &SM,
const LangOptions &LangOpts)
: CoverageMappingBuilder(CVM, SM, LangOpts) {}
void VisitDecl(const Decl *D) {
if (!D->hasBody())
return;
auto Body = D->getBody();
SourceLocation Start = getStart(Body);
SourceLocation End = getEnd(Body);
if (!SM.isWrittenInSameFile(Start, End)) {
// Walk up to find the common ancestor.
// Correct the locations accordingly.
FileID StartFileID = SM.getFileID(Start);
FileID EndFileID = SM.getFileID(End);
while (StartFileID != EndFileID && !isNestedIn(End, StartFileID)) {
Start = getIncludeOrExpansionLoc(Start);
assert(Start.isValid() &&
"Declaration start location not nested within a known region");
StartFileID = SM.getFileID(Start);
}
while (StartFileID != EndFileID) {
End = getPreciseTokenLocEnd(getIncludeOrExpansionLoc(End));
assert(End.isValid() &&
"Declaration end location not nested within a known region");
EndFileID = SM.getFileID(End);
}
}
SourceRegions.emplace_back(Counter(), Start, End);
}
/// Write the mapping data to the output stream
void write(llvm::raw_ostream &OS) {
SmallVector<unsigned, 16> FileIDMapping;
gatherFileIDs(FileIDMapping);
emitSourceRegions(SourceRegionFilter());
if (MappingRegions.empty())
return;
CoverageMappingWriter Writer(FileIDMapping, std::nullopt, MappingRegions);
Writer.write(OS);
}
};
/// A wrapper object for maintaining stacks to track the resursive AST visitor
/// walks for the purpose of assigning IDs to leaf-level conditions measured by
/// MC/DC. The object is created with a reference to the MCDCBitmapMap that was
/// created during the initial AST walk. The presence of a bitmap associated
/// with a boolean expression (top-level logical operator nest) indicates that
/// the boolean expression qualified for MC/DC. The resulting condition IDs
/// are preserved in a map reference that is also provided during object
/// creation.
struct MCDCCoverageBuilder {
/// The AST walk recursively visits nested logical-AND or logical-OR binary
/// operator nodes and then visits their LHS and RHS children nodes. As this
/// happens, the algorithm will assign IDs to each operator's LHS and RHS side
/// as the walk moves deeper into the nest. At each level of the recursive
/// nest, the LHS and RHS may actually correspond to larger subtrees (not
/// leaf-conditions). If this is the case, when that node is visited, the ID
/// assigned to the subtree is re-assigned to its LHS, and a new ID is given
/// to its RHS. At the end of the walk, all leaf-level conditions will have a
/// unique ID -- keep in mind that the final set of IDs may not be in
/// numerical order from left to right.
///
/// Example: "x = (A && B) || (C && D) || (D && F)"
///
/// Visit Depth1:
/// (A && B) || (C && D) || (D && F)
/// ^-------LHS--------^ ^-RHS--^
/// ID=1 ID=2
///
/// Visit LHS-Depth2:
/// (A && B) || (C && D)
/// ^-LHS--^ ^-RHS--^
/// ID=1 ID=3
///
/// Visit LHS-Depth3:
/// (A && B)
/// LHS RHS
/// ID=1 ID=4
///
/// Visit RHS-Depth3:
/// (C && D)
/// LHS RHS
/// ID=3 ID=5
///
/// Visit RHS-Depth2: (D && F)
/// LHS RHS
/// ID=2 ID=6
///
/// Visit Depth1:
/// (A && B) || (C && D) || (D && F)
/// ID=1 ID=4 ID=3 ID=5 ID=2 ID=6
///
/// A node ID of '0' always means MC/DC isn't being tracked.
///
/// As the AST walk proceeds recursively, the algorithm will also use a stack
/// to track the IDs of logical-AND and logical-OR operations on the RHS so
/// that it can be determined which nodes are executed next, depending on how
/// a LHS or RHS of a logical-AND or logical-OR is evaluated. This
/// information relies on the assigned IDs and are embedded within the
/// coverage region IDs of each branch region associated with a leaf-level
/// condition. This information helps the visualization tool reconstruct all
/// possible test vectors for the purposes of MC/DC analysis. If a "next" node
/// ID is '0', it means it's the end of the test vector. The following rules
/// are used:
///
/// For logical-AND ("LHS && RHS"):
/// - If LHS is TRUE, execution goes to the RHS node.
/// - If LHS is FALSE, execution goes to the LHS node of the next logical-OR.
/// If that does not exist, execution exits (ID == 0).
///
/// - If RHS is TRUE, execution goes to LHS node of the next logical-AND.
/// If that does not exist, execution exits (ID == 0).
/// - If RHS is FALSE, execution goes to the LHS node of the next logical-OR.
/// If that does not exist, execution exits (ID == 0).
///
/// For logical-OR ("LHS || RHS"):
/// - If LHS is TRUE, execution goes to the LHS node of the next logical-AND.
/// If that does not exist, execution exits (ID == 0).
/// - If LHS is FALSE, execution goes to the RHS node.
///
/// - If RHS is TRUE, execution goes to LHS node of the next logical-AND.
/// If that does not exist, execution exits (ID == 0).
/// - If RHS is FALSE, execution goes to the LHS node of the next logical-OR.
/// If that does not exist, execution exits (ID == 0).
///
/// Finally, the condition IDs are also used when instrumenting the code to
/// indicate a unique offset into a temporary bitmap that represents the true
/// or false evaluation of that particular condition.
///
/// NOTE regarding the use of CodeGenFunction::stripCond(). Even though, for
/// simplicity, parentheses and unary logical-NOT operators are considered
/// part of their underlying condition for both MC/DC and branch coverage, the
/// condition IDs themselves are assigned and tracked using the underlying
/// condition itself. This is done solely for consistency since parentheses
/// and logical-NOTs are ignored when checking whether the condition is
/// actually an instrumentable condition. This can also make debugging a bit
/// easier.
private:
CodeGenModule &CGM;
llvm::SmallVector<mcdc::ConditionIDs> DecisionStack;
MCDC::State &MCDCState;
const Stmt *DecisionStmt = nullptr;
mcdc::ConditionID NextID = 0;
bool NotMapped = false;
/// Represent a sentinel value as a pair of final decisions for the bottom
// of DecisionStack.
static constexpr mcdc::ConditionIDs DecisionStackSentinel{-1, -1};
/// Is this a logical-AND operation?
bool isLAnd(const BinaryOperator *E) const {
return E->getOpcode() == BO_LAnd;
}
public:
MCDCCoverageBuilder(CodeGenModule &CGM, MCDC::State &MCDCState)
: CGM(CGM), DecisionStack(1, DecisionStackSentinel),
MCDCState(MCDCState) {}
/// Return whether the build of the control flow map is at the top-level
/// (root) of a logical operator nest in a boolean expression prior to the
/// assignment of condition IDs.
bool isIdle() const { return (NextID == 0 && !NotMapped); }
/// Return whether any IDs have been assigned in the build of the control
/// flow map, indicating that the map is being generated for this boolean
/// expression.
bool isBuilding() const { return (NextID > 0); }
/// Set the given condition's ID.
void setCondID(const Expr *Cond, mcdc::ConditionID ID) {
MCDCState.BranchByStmt[CodeGenFunction::stripCond(Cond)] = {ID,
DecisionStmt};
}
/// Return the ID of a given condition.
mcdc::ConditionID getCondID(const Expr *Cond) const {
auto I = MCDCState.BranchByStmt.find(CodeGenFunction::stripCond(Cond));
if (I == MCDCState.BranchByStmt.end())
return -1;
else
return I->second.ID;
}
/// Return the LHS Decision ([0,0] if not set).
const mcdc::ConditionIDs &back() const { return DecisionStack.back(); }
/// Push the binary operator statement to track the nest level and assign IDs
/// to the operator's LHS and RHS. The RHS may be a larger subtree that is
/// broken up on successive levels.
void pushAndAssignIDs(const BinaryOperator *E) {
if (!CGM.getCodeGenOpts().MCDCCoverage)
return;
// If binary expression is disqualified, don't do mapping.
if (!isBuilding() &&
!MCDCState.DecisionByStmt.contains(CodeGenFunction::stripCond(E)))
NotMapped = true;
// Don't go any further if we don't need to map condition IDs.
if (NotMapped)
return;
if (NextID == 0) {
DecisionStmt = E;
assert(MCDCState.DecisionByStmt.contains(E));
}
const mcdc::ConditionIDs &ParentDecision = DecisionStack.back();
// If the operator itself has an assigned ID, this means it represents a
// larger subtree. In this case, assign that ID to its LHS node. Its RHS
// will receive a new ID below. Otherwise, assign ID+1 to LHS.
if (MCDCState.BranchByStmt.contains(CodeGenFunction::stripCond(E)))
setCondID(E->getLHS(), getCondID(E));
else
setCondID(E->getLHS(), NextID++);
// Assign a ID+1 for the RHS.
mcdc::ConditionID RHSid = NextID++;
setCondID(E->getRHS(), RHSid);
// Push the LHS decision IDs onto the DecisionStack.
if (isLAnd(E))
DecisionStack.push_back({ParentDecision[false], RHSid});
else
DecisionStack.push_back({RHSid, ParentDecision[true]});
}
/// Pop and return the LHS Decision ([0,0] if not set).
mcdc::ConditionIDs pop() {
if (!CGM.getCodeGenOpts().MCDCCoverage || NotMapped)
return DecisionStackSentinel;
assert(DecisionStack.size() > 1);
return DecisionStack.pop_back_val();
}
/// Return the total number of conditions and reset the state. The number of
/// conditions is zero if the expression isn't mapped.
unsigned getTotalConditionsAndReset(const BinaryOperator *E) {
if (!CGM.getCodeGenOpts().MCDCCoverage)
return 0;
assert(!isIdle());
assert(DecisionStack.size() == 1);
// Reset state if not doing mapping.
if (NotMapped) {
NotMapped = false;
assert(NextID == 0);
return 0;
}
// Set number of conditions and reset.
unsigned TotalConds = NextID;
// Reset ID back to beginning.
NextID = 0;
return TotalConds;
}
};
/// A StmtVisitor that creates coverage mapping regions which map
/// from the source code locations to the PGO counters.
struct CounterCoverageMappingBuilder
: public CoverageMappingBuilder,
public ConstStmtVisitor<CounterCoverageMappingBuilder> {
/// The map of statements to count values.
llvm::DenseMap<const Stmt *, unsigned> &CounterMap;
MCDC::State &MCDCState;
/// A stack of currently live regions.
llvm::SmallVector<SourceMappingRegion> RegionStack;
/// Set if the Expr should be handled as a leaf even if it is kind of binary
/// logical ops (&&, ||).
llvm::DenseSet<const Stmt *> LeafExprSet;
/// An object to manage MCDC regions.
MCDCCoverageBuilder MCDCBuilder;
CounterExpressionBuilder Builder;
/// A location in the most recently visited file or macro.
///
/// This is used to adjust the active source regions appropriately when
/// expressions cross file or macro boundaries.
SourceLocation MostRecentLocation;
/// Whether the visitor at a terminate statement.
bool HasTerminateStmt = false;
/// Gap region counter after terminate statement.
Counter GapRegionCounter;
/// Return a counter for the subtraction of \c RHS from \c LHS
Counter subtractCounters(Counter LHS, Counter RHS, bool Simplify = true) {
assert(!llvm::EnableSingleByteCoverage &&
"cannot add counters when single byte coverage mode is enabled");
return Builder.subtract(LHS, RHS, Simplify);
}
/// Return a counter for the sum of \c LHS and \c RHS.
Counter addCounters(Counter LHS, Counter RHS, bool Simplify = true) {
assert(!llvm::EnableSingleByteCoverage &&
"cannot add counters when single byte coverage mode is enabled");
return Builder.add(LHS, RHS, Simplify);
}
Counter addCounters(Counter C1, Counter C2, Counter C3,
bool Simplify = true) {
assert(!llvm::EnableSingleByteCoverage &&
"cannot add counters when single byte coverage mode is enabled");
return addCounters(addCounters(C1, C2, Simplify), C3, Simplify);
}
/// Return the region counter for the given statement.
///
/// This should only be called on statements that have a dedicated counter.
Counter getRegionCounter(const Stmt *S) {
return Counter::getCounter(CounterMap[S]);
}
/// Push a region onto the stack.
///
/// Returns the index on the stack where the region was pushed. This can be
/// used with popRegions to exit a "scope", ending the region that was pushed.
size_t pushRegion(Counter Count,
std::optional<SourceLocation> StartLoc = std::nullopt,
std::optional<SourceLocation> EndLoc = std::nullopt,
std::optional<Counter> FalseCount = std::nullopt,
const mcdc::Parameters &BranchParams = std::monostate()) {
if (StartLoc && !FalseCount) {
MostRecentLocation = *StartLoc;
}
// If either of these locations is invalid, something elsewhere in the
// compiler has broken.
assert((!StartLoc || StartLoc->isValid()) && "Start location is not valid");
assert((!EndLoc || EndLoc->isValid()) && "End location is not valid");
// However, we can still recover without crashing.
// If either location is invalid, set it to std::nullopt to avoid
// letting users of RegionStack think that region has a valid start/end
// location.
if (StartLoc && StartLoc->isInvalid())
StartLoc = std::nullopt;
if (EndLoc && EndLoc->isInvalid())
EndLoc = std::nullopt;
RegionStack.emplace_back(Count, FalseCount, BranchParams, StartLoc, EndLoc);
return RegionStack.size() - 1;
}
size_t pushRegion(const mcdc::DecisionParameters &DecisionParams,
std::optional<SourceLocation> StartLoc = std::nullopt,
std::optional<SourceLocation> EndLoc = std::nullopt) {
RegionStack.emplace_back(DecisionParams, StartLoc, EndLoc);
return RegionStack.size() - 1;
}
size_t locationDepth(SourceLocation Loc) {
size_t Depth = 0;
while (Loc.isValid()) {
Loc = getIncludeOrExpansionLoc(Loc);
Depth++;
}
return Depth;
}
/// Pop regions from the stack into the function's list of regions.
///
/// Adds all regions from \c ParentIndex to the top of the stack to the
/// function's \c SourceRegions.
void popRegions(size_t ParentIndex) {
assert(RegionStack.size() >= ParentIndex && "parent not in stack");
while (RegionStack.size() > ParentIndex) {
SourceMappingRegion &Region = RegionStack.back();
if (Region.hasStartLoc() &&
(Region.hasEndLoc() || RegionStack[ParentIndex].hasEndLoc())) {
SourceLocation StartLoc = Region.getBeginLoc();
SourceLocation EndLoc = Region.hasEndLoc()
? Region.getEndLoc()
: RegionStack[ParentIndex].getEndLoc();
bool isBranch = Region.isBranch();
size_t StartDepth = locationDepth(StartLoc);
size_t EndDepth = locationDepth(EndLoc);
while (!SM.isWrittenInSameFile(StartLoc, EndLoc)) {
bool UnnestStart = StartDepth >= EndDepth;
bool UnnestEnd = EndDepth >= StartDepth;
if (UnnestEnd) {
// The region ends in a nested file or macro expansion. If the
// region is not a branch region, create a separate region for each
// expansion, and for all regions, update the EndLoc. Branch
// regions should not be split in order to keep a straightforward
// correspondance between the region and its associated branch
// condition, even if the condition spans multiple depths.
SourceLocation NestedLoc = getStartOfFileOrMacro(EndLoc);
assert(SM.isWrittenInSameFile(NestedLoc, EndLoc));
if (!isBranch && !isRegionAlreadyAdded(NestedLoc, EndLoc))
SourceRegions.emplace_back(Region.getCounter(), NestedLoc,
EndLoc);
EndLoc = getPreciseTokenLocEnd(getIncludeOrExpansionLoc(EndLoc));
if (EndLoc.isInvalid())
llvm::report_fatal_error(
"File exit not handled before popRegions");
EndDepth--;
}
if (UnnestStart) {
// The region ends in a nested file or macro expansion. If the
// region is not a branch region, create a separate region for each
// expansion, and for all regions, update the StartLoc. Branch
// regions should not be split in order to keep a straightforward
// correspondance between the region and its associated branch
// condition, even if the condition spans multiple depths.
SourceLocation NestedLoc = getEndOfFileOrMacro(StartLoc);
assert(SM.isWrittenInSameFile(StartLoc, NestedLoc));
if (!isBranch && !isRegionAlreadyAdded(StartLoc, NestedLoc))
SourceRegions.emplace_back(Region.getCounter(), StartLoc,
NestedLoc);
StartLoc = getIncludeOrExpansionLoc(StartLoc);
if (StartLoc.isInvalid())
llvm::report_fatal_error(
"File exit not handled before popRegions");
StartDepth--;
}
}
Region.setStartLoc(StartLoc);
Region.setEndLoc(EndLoc);
if (!isBranch) {
MostRecentLocation = EndLoc;
// If this region happens to span an entire expansion, we need to
// make sure we don't overlap the parent region with it.
if (StartLoc == getStartOfFileOrMacro(StartLoc) &&
EndLoc == getEndOfFileOrMacro(EndLoc))
MostRecentLocation = getIncludeOrExpansionLoc(EndLoc);
}
assert(SM.isWrittenInSameFile(Region.getBeginLoc(), EndLoc));
assert(SpellingRegion(SM, Region).isInSourceOrder());
SourceRegions.push_back(Region);
}
RegionStack.pop_back();
}
}
/// Return the currently active region.
SourceMappingRegion &getRegion() {
assert(!RegionStack.empty() && "statement has no region");
return RegionStack.back();
}
/// Propagate counts through the children of \p S if \p VisitChildren is true.
/// Otherwise, only emit a count for \p S itself.
Counter propagateCounts(Counter TopCount, const Stmt *S,
bool VisitChildren = true) {
SourceLocation StartLoc = getStart(S);
SourceLocation EndLoc = getEnd(S);
size_t Index = pushRegion(TopCount, StartLoc, EndLoc);
if (VisitChildren)
Visit(S);
Counter ExitCount = getRegion().getCounter();
popRegions(Index);
// The statement may be spanned by an expansion. Make sure we handle a file
// exit out of this expansion before moving to the next statement.
if (SM.isBeforeInTranslationUnit(StartLoc, S->getBeginLoc()))
MostRecentLocation = EndLoc;
return ExitCount;
}
/// Determine whether the given condition can be constant folded.
bool ConditionFoldsToBool(const Expr *Cond) {
Expr::EvalResult Result;
return (Cond->EvaluateAsInt(Result, CVM.getCodeGenModule().getContext()));
}
/// Create a Branch Region around an instrumentable condition for coverage
/// and add it to the function's SourceRegions. A branch region tracks a
/// "True" counter and a "False" counter for boolean expressions that
/// result in the generation of a branch.
void createBranchRegion(const Expr *C, Counter TrueCnt, Counter FalseCnt,
const mcdc::ConditionIDs &Conds = {}) {
// Check for NULL conditions.
if (!C)
return;
// Ensure we are an instrumentable condition (i.e. no "&&" or "||"). Push
// region onto RegionStack but immediately pop it (which adds it to the
// function's SourceRegions) because it doesn't apply to any other source
// code other than the Condition.
// With !SystemHeadersCoverage, binary logical ops in system headers may be
// treated as instrumentable conditions.
if (CodeGenFunction::isInstrumentedCondition(C) ||
LeafExprSet.count(CodeGenFunction::stripCond(C))) {
mcdc::Parameters BranchParams;
mcdc::ConditionID ID = MCDCBuilder.getCondID(C);
if (ID >= 0)
BranchParams = mcdc::BranchParameters{ID, Conds};
// If a condition can fold to true or false, the corresponding branch
// will be removed. Create a region with both counters hard-coded to
// zero. This allows us to visualize them in a special way.
// Alternatively, we can prevent any optimization done via
// constant-folding by ensuring that ConstantFoldsToSimpleInteger() in
// CodeGenFunction.c always returns false, but that is very heavy-handed.
if (ConditionFoldsToBool(C))
popRegions(pushRegion(Counter::getZero(), getStart(C), getEnd(C),
Counter::getZero(), BranchParams));
else
// Otherwise, create a region with the True counter and False counter.
popRegions(pushRegion(TrueCnt, getStart(C), getEnd(C), FalseCnt,
BranchParams));
}
}
/// Create a Decision Region with a BitmapIdx and number of Conditions. This
/// type of region "contains" branch regions, one for each of the conditions.
/// The visualization tool will group everything together.
void createDecisionRegion(const Expr *C,
const mcdc::DecisionParameters &DecisionParams) {
popRegions(pushRegion(DecisionParams, getStart(C), getEnd(C)));
}
/// Create a Branch Region around a SwitchCase for code coverage
/// and add it to the function's SourceRegions.
void createSwitchCaseRegion(const SwitchCase *SC, Counter TrueCnt,
Counter FalseCnt) {
// Push region onto RegionStack but immediately pop it (which adds it to
// the function's SourceRegions) because it doesn't apply to any other
// source other than the SwitchCase.
popRegions(pushRegion(TrueCnt, getStart(SC), SC->getColonLoc(), FalseCnt));
}
/// Check whether a region with bounds \c StartLoc and \c EndLoc
/// is already added to \c SourceRegions.
bool isRegionAlreadyAdded(SourceLocation StartLoc, SourceLocation EndLoc,
bool isBranch = false) {
return llvm::any_of(
llvm::reverse(SourceRegions), [&](const SourceMappingRegion &Region) {
return Region.getBeginLoc() == StartLoc &&
Region.getEndLoc() == EndLoc && Region.isBranch() == isBranch;
});
}
/// Adjust the most recently visited location to \c EndLoc.
///
/// This should be used after visiting any statements in non-source order.
void adjustForOutOfOrderTraversal(SourceLocation EndLoc) {
MostRecentLocation = EndLoc;
// The code region for a whole macro is created in handleFileExit() when
// it detects exiting of the virtual file of that macro. If we visited
// statements in non-source order, we might already have such a region
// added, for example, if a body of a loop is divided among multiple
// macros. Avoid adding duplicate regions in such case.
if (getRegion().hasEndLoc() &&
MostRecentLocation == getEndOfFileOrMacro(MostRecentLocation) &&
isRegionAlreadyAdded(getStartOfFileOrMacro(MostRecentLocation),
MostRecentLocation, getRegion().isBranch()))
MostRecentLocation = getIncludeOrExpansionLoc(MostRecentLocation);
}
/// Adjust regions and state when \c NewLoc exits a file.
///
/// If moving from our most recently tracked location to \c NewLoc exits any
/// files, this adjusts our current region stack and creates the file regions
/// for the exited file.
void handleFileExit(SourceLocation NewLoc) {
if (NewLoc.isInvalid() ||
SM.isWrittenInSameFile(MostRecentLocation, NewLoc))
return;
// If NewLoc is not in a file that contains MostRecentLocation, walk up to
// find the common ancestor.
SourceLocation LCA = NewLoc;
FileID ParentFile = SM.getFileID(LCA);
while (!isNestedIn(MostRecentLocation, ParentFile)) {
LCA = getIncludeOrExpansionLoc(LCA);
if (LCA.isInvalid() || SM.isWrittenInSameFile(LCA, MostRecentLocation)) {
// Since there isn't a common ancestor, no file was exited. We just need
// to adjust our location to the new file.
MostRecentLocation = NewLoc;
return;
}
ParentFile = SM.getFileID(LCA);
}
llvm::SmallSet<SourceLocation, 8> StartLocs;
std::optional<Counter> ParentCounter;
for (SourceMappingRegion &I : llvm::reverse(RegionStack)) {
if (!I.hasStartLoc())
continue;
SourceLocation Loc = I.getBeginLoc();
if (!isNestedIn(Loc, ParentFile)) {
ParentCounter = I.getCounter();
break;
}
while (!SM.isInFileID(Loc, ParentFile)) {
// The most nested region for each start location is the one with the
// correct count. We avoid creating redundant regions by stopping once
// we've seen this region.
if (StartLocs.insert(Loc).second) {
if (I.isBranch())
SourceRegions.emplace_back(I.getCounter(), I.getFalseCounter(),
I.getMCDCParams(), Loc,
getEndOfFileOrMacro(Loc), I.isBranch());
else
SourceRegions.emplace_back(I.getCounter(), Loc,
getEndOfFileOrMacro(Loc));
}
Loc = getIncludeOrExpansionLoc(Loc);
}
I.setStartLoc(getPreciseTokenLocEnd(Loc));
}
if (ParentCounter) {
// If the file is contained completely by another region and doesn't
// immediately start its own region, the whole file gets a region
// corresponding to the parent.
SourceLocation Loc = MostRecentLocation;
while (isNestedIn(Loc, ParentFile)) {
SourceLocation FileStart = getStartOfFileOrMacro(Loc);
if (StartLocs.insert(FileStart).second) {
SourceRegions.emplace_back(*ParentCounter, FileStart,
getEndOfFileOrMacro(Loc));
assert(SpellingRegion(SM, SourceRegions.back()).isInSourceOrder());
}
Loc = getIncludeOrExpansionLoc(Loc);
}
}
MostRecentLocation = NewLoc;
}
/// Ensure that \c S is included in the current region.
void extendRegion(const Stmt *S) {
SourceMappingRegion &Region = getRegion();
SourceLocation StartLoc = getStart(S);
handleFileExit(StartLoc);
if (!Region.hasStartLoc())
Region.setStartLoc(StartLoc);
}
/// Mark \c S as a terminator, starting a zero region.
void terminateRegion(const Stmt *S) {
extendRegion(S);
SourceMappingRegion &Region = getRegion();
SourceLocation EndLoc = getEnd(S);
if (!Region.hasEndLoc())
Region.setEndLoc(EndLoc);
pushRegion(Counter::getZero());
HasTerminateStmt = true;
}
/// Find a valid gap range between \p AfterLoc and \p BeforeLoc.
std::optional<SourceRange> findGapAreaBetween(SourceLocation AfterLoc,
SourceLocation BeforeLoc) {
// Some statements (like AttributedStmt and ImplicitValueInitExpr) don't
// have valid source locations. Do not emit a gap region if this is the case
// in either AfterLoc end or BeforeLoc end.
if (AfterLoc.isInvalid() || BeforeLoc.isInvalid())
return std::nullopt;
// If AfterLoc is in function-like macro, use the right parenthesis
// location.
if (AfterLoc.isMacroID()) {
FileID FID = SM.getFileID(AfterLoc);
const SrcMgr::ExpansionInfo *EI = &SM.getSLocEntry(FID).getExpansion();
if (EI->isFunctionMacroExpansion())
AfterLoc = EI->getExpansionLocEnd();
}
size_t StartDepth = locationDepth(AfterLoc);
size_t EndDepth = locationDepth(BeforeLoc);
while (!SM.isWrittenInSameFile(AfterLoc, BeforeLoc)) {
bool UnnestStart = StartDepth >= EndDepth;
bool UnnestEnd = EndDepth >= StartDepth;
if (UnnestEnd) {
assert(SM.isWrittenInSameFile(getStartOfFileOrMacro(BeforeLoc),
BeforeLoc));
BeforeLoc = getIncludeOrExpansionLoc(BeforeLoc);
assert(BeforeLoc.isValid());
EndDepth--;
}
if (UnnestStart) {
assert(SM.isWrittenInSameFile(AfterLoc,
getEndOfFileOrMacro(AfterLoc)));
AfterLoc = getIncludeOrExpansionLoc(AfterLoc);
assert(AfterLoc.isValid());
AfterLoc = getPreciseTokenLocEnd(AfterLoc);
assert(AfterLoc.isValid());
StartDepth--;
}
}
AfterLoc = getPreciseTokenLocEnd(AfterLoc);
// If the start and end locations of the gap are both within the same macro
// file, the range may not be in source order.
if (AfterLoc.isMacroID() || BeforeLoc.isMacroID())
return std::nullopt;
if (!SM.isWrittenInSameFile(AfterLoc, BeforeLoc) ||
!SpellingRegion(SM, AfterLoc, BeforeLoc).isInSourceOrder())
return std::nullopt;
return {{AfterLoc, BeforeLoc}};
}
/// Emit a gap region between \p StartLoc and \p EndLoc with the given count.
void fillGapAreaWithCount(SourceLocation StartLoc, SourceLocation EndLoc,
Counter Count) {
if (StartLoc == EndLoc)
return;
assert(SpellingRegion(SM, StartLoc, EndLoc).isInSourceOrder());
handleFileExit(StartLoc);
size_t Index = pushRegion(Count, StartLoc, EndLoc);
getRegion().setGap(true);
handleFileExit(EndLoc);
popRegions(Index);
}
/// Find a valid range starting with \p StartingLoc and ending before \p
/// BeforeLoc.
std::optional<SourceRange> findAreaStartingFromTo(SourceLocation StartingLoc,
SourceLocation BeforeLoc) {
// If StartingLoc is in function-like macro, use its start location.
if (StartingLoc.isMacroID()) {
FileID FID = SM.getFileID(StartingLoc);
const SrcMgr::ExpansionInfo *EI = &SM.getSLocEntry(FID).getExpansion();
if (EI->isFunctionMacroExpansion())
StartingLoc = EI->getExpansionLocStart();
}
size_t StartDepth = locationDepth(StartingLoc);
size_t EndDepth = locationDepth(BeforeLoc);
while (!SM.isWrittenInSameFile(StartingLoc, BeforeLoc)) {
bool UnnestStart = StartDepth >= EndDepth;
bool UnnestEnd = EndDepth >= StartDepth;
if (UnnestEnd) {
assert(SM.isWrittenInSameFile(getStartOfFileOrMacro(BeforeLoc),
BeforeLoc));
BeforeLoc = getIncludeOrExpansionLoc(BeforeLoc);
assert(BeforeLoc.isValid());
EndDepth--;
}
if (UnnestStart) {
assert(SM.isWrittenInSameFile(StartingLoc,
getStartOfFileOrMacro(StartingLoc)));
StartingLoc = getIncludeOrExpansionLoc(StartingLoc);
assert(StartingLoc.isValid());
StartDepth--;
}
}
// If the start and end locations of the gap are both within the same macro
// file, the range may not be in source order.
if (StartingLoc.isMacroID() || BeforeLoc.isMacroID())
return std::nullopt;
if (!SM.isWrittenInSameFile(StartingLoc, BeforeLoc) ||
!SpellingRegion(SM, StartingLoc, BeforeLoc).isInSourceOrder())
return std::nullopt;
return {{StartingLoc, BeforeLoc}};
}
void markSkipped(SourceLocation StartLoc, SourceLocation BeforeLoc) {
const auto Skipped = findAreaStartingFromTo(StartLoc, BeforeLoc);
if (!Skipped)
return;
const auto NewStartLoc = Skipped->getBegin();
const auto EndLoc = Skipped->getEnd();
if (NewStartLoc == EndLoc)
return;
assert(SpellingRegion(SM, NewStartLoc, EndLoc).isInSourceOrder());
handleFileExit(NewStartLoc);
size_t Index = pushRegion(Counter{}, NewStartLoc, EndLoc);
getRegion().setSkipped(true);
handleFileExit(EndLoc);
popRegions(Index);
}
/// Keep counts of breaks and continues inside loops.
struct BreakContinue {
Counter BreakCount;
Counter ContinueCount;
};
SmallVector<BreakContinue, 8> BreakContinueStack;
CounterCoverageMappingBuilder(
CoverageMappingModuleGen &CVM,
llvm::DenseMap<const Stmt *, unsigned> &CounterMap,
MCDC::State &MCDCState, SourceManager &SM, const LangOptions &LangOpts)
: CoverageMappingBuilder(CVM, SM, LangOpts), CounterMap(CounterMap),
MCDCState(MCDCState), MCDCBuilder(CVM.getCodeGenModule(), MCDCState) {}
/// Write the mapping data to the output stream
void write(llvm::raw_ostream &OS) {
llvm::SmallVector<unsigned, 8> VirtualFileMapping;
gatherFileIDs(VirtualFileMapping);
SourceRegionFilter Filter = emitExpansionRegions();
emitSourceRegions(Filter);
gatherSkippedRegions();
if (MappingRegions.empty())
return;
CoverageMappingWriter Writer(VirtualFileMapping, Builder.getExpressions(),
MappingRegions);
Writer.write(OS);
}
void VisitStmt(const Stmt *S) {
if (S->getBeginLoc().isValid())
extendRegion(S);
const Stmt *LastStmt = nullptr;
bool SaveTerminateStmt = HasTerminateStmt;
HasTerminateStmt = false;
GapRegionCounter = Counter::getZero();
for (const Stmt *Child : S->children())
if (Child) {
// If last statement contains terminate statements, add a gap area
// between the two statements.
if (LastStmt && HasTerminateStmt) {
auto Gap = findGapAreaBetween(getEnd(LastStmt), getStart(Child));
if (Gap)
fillGapAreaWithCount(Gap->getBegin(), Gap->getEnd(),
GapRegionCounter);
SaveTerminateStmt = true;
HasTerminateStmt = false;
}
this->Visit(Child);
LastStmt = Child;
}
if (SaveTerminateStmt)
HasTerminateStmt = true;
handleFileExit(getEnd(S));
}
void VisitDecl(const Decl *D) {
Stmt *Body = D->getBody();
// Do not propagate region counts into system headers unless collecting
// coverage from system headers is explicitly enabled.
if (!SystemHeadersCoverage && Body &&
SM.isInSystemHeader(SM.getSpellingLoc(getStart(Body))))
return;
// Do not visit the artificial children nodes of defaulted methods. The
// lexer may not be able to report back precise token end locations for
// these children nodes (llvm.org/PR39822), and moreover users will not be
// able to see coverage for them.
Counter BodyCounter = getRegionCounter(Body);
bool Defaulted = false;
if (auto *Method = dyn_cast<CXXMethodDecl>(D))
Defaulted = Method->isDefaulted();
if (auto *Ctor = dyn_cast<CXXConstructorDecl>(D)) {
for (auto *Initializer : Ctor->inits()) {
if (Initializer->isWritten()) {
auto *Init = Initializer->getInit();
if (getStart(Init).isValid() && getEnd(Init).isValid())
propagateCounts(BodyCounter, Init);
}
}
}
propagateCounts(BodyCounter, Body,
/*VisitChildren=*/!Defaulted);
assert(RegionStack.empty() && "Regions entered but never exited");
}
void VisitReturnStmt(const ReturnStmt *S) {
extendRegion(S);
if (S->getRetValue())
Visit(S->getRetValue());
terminateRegion(S);
}
void VisitCoroutineBodyStmt(const CoroutineBodyStmt *S) {
extendRegion(S);
Visit(S->getBody());
}
void VisitCoreturnStmt(const CoreturnStmt *S) {
extendRegion(S);
if (S->getOperand())
Visit(S->getOperand());
terminateRegion(S);
}
void VisitCoroutineSuspendExpr(const CoroutineSuspendExpr *E) {
Visit(E->getOperand());
}
void VisitCXXThrowExpr(const CXXThrowExpr *E) {
extendRegion(E);
if (E->getSubExpr())
Visit(E->getSubExpr());
terminateRegion(E);
}
void VisitGotoStmt(const GotoStmt *S) { terminateRegion(S); }
void VisitLabelStmt(const LabelStmt *S) {
Counter LabelCount = getRegionCounter(S);
SourceLocation Start = getStart(S);
// We can't extendRegion here or we risk overlapping with our new region.
handleFileExit(Start);
pushRegion(LabelCount, Start);
Visit(S->getSubStmt());
}
void VisitBreakStmt(const BreakStmt *S) {
assert(!BreakContinueStack.empty() && "break not in a loop or switch!");
if (!llvm::EnableSingleByteCoverage)
BreakContinueStack.back().BreakCount = addCounters(
BreakContinueStack.back().BreakCount, getRegion().getCounter());
// FIXME: a break in a switch should terminate regions for all preceding
// case statements, not just the most recent one.
terminateRegion(S);
}
void VisitContinueStmt(const ContinueStmt *S) {
assert(!BreakContinueStack.empty() && "continue stmt not in a loop!");
if (!llvm::EnableSingleByteCoverage)
BreakContinueStack.back().ContinueCount = addCounters(
BreakContinueStack.back().ContinueCount, getRegion().getCounter());
terminateRegion(S);
}
void VisitCallExpr(const CallExpr *E) {
VisitStmt(E);
// Terminate the region when we hit a noreturn function.
// (This is helpful dealing with switch statements.)
QualType CalleeType = E->getCallee()->getType();
if (getFunctionExtInfo(*CalleeType).getNoReturn())
terminateRegion(E);
}
void VisitWhileStmt(const WhileStmt *S) {
extendRegion(S);
Counter ParentCount = getRegion().getCounter();
Counter BodyCount = llvm::EnableSingleByteCoverage
? getRegionCounter(S->getBody())
: getRegionCounter(S);
// Handle the body first so that we can get the backedge count.
BreakContinueStack.push_back(BreakContinue());
extendRegion(S->getBody());
Counter BackedgeCount = propagateCounts(BodyCount, S->getBody());
BreakContinue BC = BreakContinueStack.pop_back_val();
bool BodyHasTerminateStmt = HasTerminateStmt;
HasTerminateStmt = false;
// Go back to handle the condition.
Counter CondCount =
llvm::EnableSingleByteCoverage
? getRegionCounter(S->getCond())
: addCounters(ParentCount, BackedgeCount, BC.ContinueCount);
propagateCounts(CondCount, S->getCond());
adjustForOutOfOrderTraversal(getEnd(S));
// The body count applies to the area immediately after the increment.
auto Gap = findGapAreaBetween(S->getRParenLoc(), getStart(S->getBody()));
if (Gap)
fillGapAreaWithCount(Gap->getBegin(), Gap->getEnd(), BodyCount);
Counter OutCount =
llvm::EnableSingleByteCoverage
? getRegionCounter(S)
: addCounters(BC.BreakCount,
subtractCounters(CondCount, BodyCount));
if (OutCount != ParentCount) {
pushRegion(OutCount);
GapRegionCounter = OutCount;
if (BodyHasTerminateStmt)
HasTerminateStmt = true;
}
// Create Branch Region around condition.
if (!llvm::EnableSingleByteCoverage)
createBranchRegion(S->getCond(), BodyCount,
subtractCounters(CondCount, BodyCount));
}
void VisitDoStmt(const DoStmt *S) {
extendRegion(S);
Counter ParentCount = getRegion().getCounter();
Counter BodyCount = llvm::EnableSingleByteCoverage
? getRegionCounter(S->getBody())
: getRegionCounter(S);
BreakContinueStack.push_back(BreakContinue());
extendRegion(S->getBody());
Counter BackedgeCount;
if (llvm::EnableSingleByteCoverage)
propagateCounts(BodyCount, S->getBody());
else
BackedgeCount =
propagateCounts(addCounters(ParentCount, BodyCount), S->getBody());
BreakContinue BC = BreakContinueStack.pop_back_val();
bool BodyHasTerminateStmt = HasTerminateStmt;
HasTerminateStmt = false;
Counter CondCount = llvm::EnableSingleByteCoverage
? getRegionCounter(S->getCond())
: addCounters(BackedgeCount, BC.ContinueCount);
propagateCounts(CondCount, S->getCond());
Counter OutCount =
llvm::EnableSingleByteCoverage
? getRegionCounter(S)
: addCounters(BC.BreakCount,
subtractCounters(CondCount, BodyCount));
if (OutCount != ParentCount) {
pushRegion(OutCount);
GapRegionCounter = OutCount;
}
// Create Branch Region around condition.
if (!llvm::EnableSingleByteCoverage)
createBranchRegion(S->getCond(), BodyCount,
subtractCounters(CondCount, BodyCount));
if (BodyHasTerminateStmt)
HasTerminateStmt = true;
}
void VisitForStmt(const ForStmt *S) {
extendRegion(S);
if (S->getInit())
Visit(S->getInit());
Counter ParentCount = getRegion().getCounter();
Counter BodyCount = llvm::EnableSingleByteCoverage
? getRegionCounter(S->getBody())
: getRegionCounter(S);
// The loop increment may contain a break or continue.
if (S->getInc())
BreakContinueStack.emplace_back();
// Handle the body first so that we can get the backedge count.
BreakContinueStack.emplace_back();
extendRegion(S->getBody());
Counter BackedgeCount = propagateCounts(BodyCount, S->getBody());
BreakContinue BodyBC = BreakContinueStack.pop_back_val();
bool BodyHasTerminateStmt = HasTerminateStmt;
HasTerminateStmt = false;
// The increment is essentially part of the body but it needs to include
// the count for all the continue statements.
BreakContinue IncrementBC;
if (const Stmt *Inc = S->getInc()) {
Counter IncCount;
if (llvm::EnableSingleByteCoverage)
IncCount = getRegionCounter(S->getInc());
else
IncCount = addCounters(BackedgeCount, BodyBC.ContinueCount);
propagateCounts(IncCount, Inc);
IncrementBC = BreakContinueStack.pop_back_val();
}
// Go back to handle the condition.
Counter CondCount =
llvm::EnableSingleByteCoverage
? getRegionCounter(S->getCond())
: addCounters(
addCounters(ParentCount, BackedgeCount, BodyBC.ContinueCount),
IncrementBC.ContinueCount);
if (const Expr *Cond = S->getCond()) {
propagateCounts(CondCount, Cond);
adjustForOutOfOrderTraversal(getEnd(S));
}
// The body count applies to the area immediately after the increment.
auto Gap = findGapAreaBetween(S->getRParenLoc(), getStart(S->getBody()));
if (Gap)
fillGapAreaWithCount(Gap->getBegin(), Gap->getEnd(), BodyCount);
Counter OutCount =
llvm::EnableSingleByteCoverage
? getRegionCounter(S)
: addCounters(BodyBC.BreakCount, IncrementBC.BreakCount,
subtractCounters(CondCount, BodyCount));
if (OutCount != ParentCount) {
pushRegion(OutCount);
GapRegionCounter = OutCount;
if (BodyHasTerminateStmt)
HasTerminateStmt = true;
}
// Create Branch Region around condition.
if (!llvm::EnableSingleByteCoverage)
createBranchRegion(S->getCond(), BodyCount,
subtractCounters(CondCount, BodyCount));
}
void VisitCXXForRangeStmt(const CXXForRangeStmt *S) {
extendRegion(S);
if (S->getInit())
Visit(S->getInit());
Visit(S->getLoopVarStmt());
Visit(S->getRangeStmt());
Counter ParentCount = getRegion().getCounter();
Counter BodyCount = llvm::EnableSingleByteCoverage
? getRegionCounter(S->getBody())
: getRegionCounter(S);
BreakContinueStack.push_back(BreakContinue());
extendRegion(S->getBody());
Counter BackedgeCount = propagateCounts(BodyCount, S->getBody());
BreakContinue BC = BreakContinueStack.pop_back_val();
bool BodyHasTerminateStmt = HasTerminateStmt;
HasTerminateStmt = false;
// The body count applies to the area immediately after the range.
auto Gap = findGapAreaBetween(S->getRParenLoc(), getStart(S->getBody()));
if (Gap)
fillGapAreaWithCount(Gap->getBegin(), Gap->getEnd(), BodyCount);
Counter OutCount;
Counter LoopCount;
if (llvm::EnableSingleByteCoverage)
OutCount = getRegionCounter(S);
else {
LoopCount = addCounters(ParentCount, BackedgeCount, BC.ContinueCount);
OutCount =
addCounters(BC.BreakCount, subtractCounters(LoopCount, BodyCount));
}
if (OutCount != ParentCount) {
pushRegion(OutCount);
GapRegionCounter = OutCount;
if (BodyHasTerminateStmt)
HasTerminateStmt = true;
}
// Create Branch Region around condition.
if (!llvm::EnableSingleByteCoverage)
createBranchRegion(S->getCond(), BodyCount,
subtractCounters(LoopCount, BodyCount));
}
void VisitObjCForCollectionStmt(const ObjCForCollectionStmt *S) {
extendRegion(S);
Visit(S->getElement());
Counter ParentCount = getRegion().getCounter();
Counter BodyCount = getRegionCounter(S);
BreakContinueStack.push_back(BreakContinue());
extendRegion(S->getBody());
Counter BackedgeCount = propagateCounts(BodyCount, S->getBody());
BreakContinue BC = BreakContinueStack.pop_back_val();
// The body count applies to the area immediately after the collection.
auto Gap = findGapAreaBetween(S->getRParenLoc(), getStart(S->getBody()));
if (Gap)
fillGapAreaWithCount(Gap->getBegin(), Gap->getEnd(), BodyCount);
Counter LoopCount =
addCounters(ParentCount, BackedgeCount, BC.ContinueCount);
Counter OutCount =
addCounters(BC.BreakCount, subtractCounters(LoopCount, BodyCount));
if (OutCount != ParentCount) {
pushRegion(OutCount);
GapRegionCounter = OutCount;
}
}
void VisitSwitchStmt(const SwitchStmt *S) {
extendRegion(S);
if (S->getInit())
Visit(S->getInit());
Visit(S->getCond());
BreakContinueStack.push_back(BreakContinue());
const Stmt *Body = S->getBody();
extendRegion(Body);
if (const auto *CS = dyn_cast<CompoundStmt>(Body)) {
if (!CS->body_empty()) {
// Make a region for the body of the switch. If the body starts with
// a case, that case will reuse this region; otherwise, this covers
// the unreachable code at the beginning of the switch body.
size_t Index = pushRegion(Counter::getZero(), getStart(CS));
getRegion().setGap(true);
Visit(Body);
// Set the end for the body of the switch, if it isn't already set.
for (size_t i = RegionStack.size(); i != Index; --i) {
if (!RegionStack[i - 1].hasEndLoc())
RegionStack[i - 1].setEndLoc(getEnd(CS->body_back()));
}
popRegions(Index);
}
} else
propagateCounts(Counter::getZero(), Body);
BreakContinue BC = BreakContinueStack.pop_back_val();
if (!BreakContinueStack.empty() && !llvm::EnableSingleByteCoverage)
BreakContinueStack.back().ContinueCount = addCounters(
BreakContinueStack.back().ContinueCount, BC.ContinueCount);
Counter ParentCount = getRegion().getCounter();
Counter ExitCount = getRegionCounter(S);
SourceLocation ExitLoc = getEnd(S);
pushRegion(ExitCount);
GapRegionCounter = ExitCount;
// Ensure that handleFileExit recognizes when the end location is located
// in a different file.
MostRecentLocation = getStart(S);
handleFileExit(ExitLoc);
// When single byte coverage mode is enabled, do not create branch region by
// early returning.
if (llvm::EnableSingleByteCoverage)
return;
// Create a Branch Region around each Case. Subtract the case's
// counter from the Parent counter to track the "False" branch count.
Counter CaseCountSum;
bool HasDefaultCase = false;
const SwitchCase *Case = S->getSwitchCaseList();
for (; Case; Case = Case->getNextSwitchCase()) {
HasDefaultCase = HasDefaultCase || isa<DefaultStmt>(Case);
CaseCountSum =
addCounters(CaseCountSum, getRegionCounter(Case), /*Simplify=*/false);
createSwitchCaseRegion(
Case, getRegionCounter(Case),
subtractCounters(ParentCount, getRegionCounter(Case)));
}
// Simplify is skipped while building the counters above: it can get really
// slow on top of switches with thousands of cases. Instead, trigger
// simplification by adding zero to the last counter.
CaseCountSum = addCounters(CaseCountSum, Counter::getZero());
// If no explicit default case exists, create a branch region to represent
// the hidden branch, which will be added later by the CodeGen. This region
// will be associated with the switch statement's condition.
if (!HasDefaultCase) {
Counter DefaultTrue = subtractCounters(ParentCount, CaseCountSum);
Counter DefaultFalse = subtractCounters(ParentCount, DefaultTrue);
createBranchRegion(S->getCond(), DefaultTrue, DefaultFalse);
}
}
void VisitSwitchCase(const SwitchCase *S) {
extendRegion(S);
SourceMappingRegion &Parent = getRegion();
Counter Count = llvm::EnableSingleByteCoverage
? getRegionCounter(S)
: addCounters(Parent.getCounter(), getRegionCounter(S));
// Reuse the existing region if it starts at our label. This is typical of
// the first case in a switch.
if (Parent.hasStartLoc() && Parent.getBeginLoc() == getStart(S))
Parent.setCounter(Count);
else
pushRegion(Count, getStart(S));
GapRegionCounter = Count;
if (const auto *CS = dyn_cast<CaseStmt>(S)) {
Visit(CS->getLHS());
if (const Expr *RHS = CS->getRHS())
Visit(RHS);
}
Visit(S->getSubStmt());
}
void coverIfConsteval(const IfStmt *S) {
assert(S->isConsteval());
const auto *Then = S->getThen();
const auto *Else = S->getElse();
// It's better for llvm-cov to create a new region with same counter
// so line-coverage can be properly calculated for lines containing
// a skipped region (without it the line is marked uncovered)
const Counter ParentCount = getRegion().getCounter();
extendRegion(S);
if (S->isNegatedConsteval()) {
// ignore 'if consteval'
markSkipped(S->getIfLoc(), getStart(Then));
propagateCounts(ParentCount, Then);
if (Else) {
// ignore 'else <else>'
markSkipped(getEnd(Then), getEnd(Else));
}
} else {
assert(S->isNonNegatedConsteval());
// ignore 'if consteval <then> [else]'
markSkipped(S->getIfLoc(), Else ? getStart(Else) : getEnd(Then));
if (Else)
propagateCounts(ParentCount, Else);
}
}
void coverIfConstexpr(const IfStmt *S) {
assert(S->isConstexpr());
// evaluate constant condition...
const bool isTrue =
S->getCond()
->EvaluateKnownConstInt(CVM.getCodeGenModule().getContext())
.getBoolValue();
extendRegion(S);
// I'm using 'propagateCounts' later as new region is better and allows me
// to properly calculate line coverage in llvm-cov utility
const Counter ParentCount = getRegion().getCounter();
// ignore 'if constexpr ('
SourceLocation startOfSkipped = S->getIfLoc();
if (const auto *Init = S->getInit()) {
const auto start = getStart(Init);
const auto end = getEnd(Init);
// this check is to make sure typedef here which doesn't have valid source
// location won't crash it
if (start.isValid() && end.isValid()) {
markSkipped(startOfSkipped, start);
propagateCounts(ParentCount, Init);
startOfSkipped = getEnd(Init);
}
}
const auto *Then = S->getThen();
const auto *Else = S->getElse();
if (isTrue) {
// ignore '<condition>)'
markSkipped(startOfSkipped, getStart(Then));
propagateCounts(ParentCount, Then);
if (Else)
// ignore 'else <else>'
markSkipped(getEnd(Then), getEnd(Else));
} else {
// ignore '<condition>) <then> [else]'
markSkipped(startOfSkipped, Else ? getStart(Else) : getEnd(Then));
if (Else)
propagateCounts(ParentCount, Else);
}
}
void VisitIfStmt(const IfStmt *S) {
// "if constexpr" and "if consteval" are not normal conditional statements,
// their discarded statement should be skipped
if (S->isConsteval())
return coverIfConsteval(S);
else if (S->isConstexpr())
return coverIfConstexpr(S);
extendRegion(S);
if (S->getInit())
Visit(S->getInit());
// Extend into the condition before we propagate through it below - this is
// needed to handle macros that generate the "if" but not the condition.
extendRegion(S->getCond());
Counter ParentCount = getRegion().getCounter();
Counter ThenCount = llvm::EnableSingleByteCoverage
? getRegionCounter(S->getThen())
: getRegionCounter(S);
// Emitting a counter for the condition makes it easier to interpret the
// counter for the body when looking at the coverage.
propagateCounts(ParentCount, S->getCond());
// The 'then' count applies to the area immediately after the condition.
std::optional<SourceRange> Gap =
findGapAreaBetween(S->getRParenLoc(), getStart(S->getThen()));
if (Gap)
fillGapAreaWithCount(Gap->getBegin(), Gap->getEnd(), ThenCount);
extendRegion(S->getThen());
Counter OutCount = propagateCounts(ThenCount, S->getThen());
Counter ElseCount;
if (!llvm::EnableSingleByteCoverage)
ElseCount = subtractCounters(ParentCount, ThenCount);
else if (S->getElse())
ElseCount = getRegionCounter(S->getElse());
if (const Stmt *Else = S->getElse()) {
bool ThenHasTerminateStmt = HasTerminateStmt;
HasTerminateStmt = false;
// The 'else' count applies to the area immediately after the 'then'.
std::optional<SourceRange> Gap =
findGapAreaBetween(getEnd(S->getThen()), getStart(Else));
if (Gap)
fillGapAreaWithCount(Gap->getBegin(), Gap->getEnd(), ElseCount);
extendRegion(Else);
Counter ElseOutCount = propagateCounts(ElseCount, Else);
if (!llvm::EnableSingleByteCoverage)
OutCount = addCounters(OutCount, ElseOutCount);
if (ThenHasTerminateStmt)
HasTerminateStmt = true;
} else if (!llvm::EnableSingleByteCoverage)
OutCount = addCounters(OutCount, ElseCount);
if (llvm::EnableSingleByteCoverage)
OutCount = getRegionCounter(S);
if (OutCount != ParentCount) {
pushRegion(OutCount);
GapRegionCounter = OutCount;
}
if (!S->isConsteval() && !llvm::EnableSingleByteCoverage)
// Create Branch Region around condition.
createBranchRegion(S->getCond(), ThenCount,
subtractCounters(ParentCount, ThenCount));
}
void VisitCXXTryStmt(const CXXTryStmt *S) {
extendRegion(S);
// Handle macros that generate the "try" but not the rest.
extendRegion(S->getTryBlock());
Counter ParentCount = getRegion().getCounter();
propagateCounts(ParentCount, S->getTryBlock());
for (unsigned I = 0, E = S->getNumHandlers(); I < E; ++I)
Visit(S->getHandler(I));
Counter ExitCount = getRegionCounter(S);
pushRegion(ExitCount);
}
void VisitCXXCatchStmt(const CXXCatchStmt *S) {
propagateCounts(getRegionCounter(S), S->getHandlerBlock());
}
void VisitAbstractConditionalOperator(const AbstractConditionalOperator *E) {
extendRegion(E);
Counter ParentCount = getRegion().getCounter();
Counter TrueCount = llvm::EnableSingleByteCoverage
? getRegionCounter(E->getTrueExpr())
: getRegionCounter(E);
Counter OutCount;
if (const auto *BCO = dyn_cast<BinaryConditionalOperator>(E)) {
propagateCounts(ParentCount, BCO->getCommon());
OutCount = TrueCount;
} else {
propagateCounts(ParentCount, E->getCond());
// The 'then' count applies to the area immediately after the condition.
auto Gap =
findGapAreaBetween(E->getQuestionLoc(), getStart(E->getTrueExpr()));
if (Gap)
fillGapAreaWithCount(Gap->getBegin(), Gap->getEnd(), TrueCount);
extendRegion(E->getTrueExpr());
OutCount = propagateCounts(TrueCount, E->getTrueExpr());
}
extendRegion(E->getFalseExpr());
Counter FalseCount = llvm::EnableSingleByteCoverage
? getRegionCounter(E->getFalseExpr())
: subtractCounters(ParentCount, TrueCount);
Counter FalseOutCount = propagateCounts(FalseCount, E->getFalseExpr());
if (llvm::EnableSingleByteCoverage)
OutCount = getRegionCounter(E);
else
OutCount = addCounters(OutCount, FalseOutCount);
if (OutCount != ParentCount) {
pushRegion(OutCount);
GapRegionCounter = OutCount;
}
// Create Branch Region around condition.
if (!llvm::EnableSingleByteCoverage)
createBranchRegion(E->getCond(), TrueCount,
subtractCounters(ParentCount, TrueCount));
}
void createOrCancelDecision(const BinaryOperator *E, unsigned Since) {
unsigned NumConds = MCDCBuilder.getTotalConditionsAndReset(E);
if (NumConds == 0)
return;
// Extract [ID, Conds] to construct the graph.
llvm::SmallVector<mcdc::ConditionIDs> CondIDs(NumConds);
for (const auto &SR : ArrayRef(SourceRegions).slice(Since)) {
if (SR.isMCDCBranch()) {
auto [ID, Conds] = SR.getMCDCBranchParams();
CondIDs[ID] = Conds;
}
}
// Construct the graph and calculate `Indices`.
mcdc::TVIdxBuilder Builder(CondIDs);
unsigned NumTVs = Builder.NumTestVectors;
unsigned MaxTVs = CVM.getCodeGenModule().getCodeGenOpts().MCDCMaxTVs;
assert(MaxTVs < mcdc::TVIdxBuilder::HardMaxTVs);
if (NumTVs > MaxTVs) {
// NumTVs exceeds MaxTVs -- warn and cancel the Decision.
cancelDecision(E, Since, NumTVs, MaxTVs);
return;
}
// Update the state for CodeGenPGO
assert(MCDCState.DecisionByStmt.contains(E));
MCDCState.DecisionByStmt[E] = {
MCDCState.BitmapBits, // Top
std::move(Builder.Indices),
};
auto DecisionParams = mcdc::DecisionParameters{
MCDCState.BitmapBits += NumTVs, // Tail
NumConds,
};
// Create MCDC Decision Region.
createDecisionRegion(E, DecisionParams);
}
// Warn and cancel the Decision.
void cancelDecision(const BinaryOperator *E, unsigned Since, int NumTVs,
int MaxTVs) {
auto &Diag = CVM.getCodeGenModule().getDiags();
unsigned DiagID =
Diag.getCustomDiagID(DiagnosticsEngine::Warning,
"unsupported MC/DC boolean expression; "
"number of test vectors (%0) exceeds max (%1). "
"Expression will not be covered");
Diag.Report(E->getBeginLoc(), DiagID) << NumTVs << MaxTVs;
// Restore MCDCBranch to Branch.
for (auto &SR : MutableArrayRef(SourceRegions).slice(Since)) {
assert(!SR.isMCDCDecision() && "Decision shouldn't be seen here");
if (SR.isMCDCBranch())
SR.resetMCDCParams();
}
// Tell CodeGenPGO not to instrument.
MCDCState.DecisionByStmt.erase(E);
}
/// Check if E belongs to system headers.
bool isExprInSystemHeader(const BinaryOperator *E) const {
return (!SystemHeadersCoverage &&
SM.isInSystemHeader(SM.getSpellingLoc(E->getOperatorLoc())) &&
SM.isInSystemHeader(SM.getSpellingLoc(E->getBeginLoc())) &&
SM.isInSystemHeader(SM.getSpellingLoc(E->getEndLoc())));
}
void VisitBinLAnd(const BinaryOperator *E) {
if (isExprInSystemHeader(E)) {
LeafExprSet.insert(E);
return;
}
bool IsRootNode = MCDCBuilder.isIdle();
unsigned SourceRegionsSince = SourceRegions.size();
// Keep track of Binary Operator and assign MCDC condition IDs.
MCDCBuilder.pushAndAssignIDs(E);
extendRegion(E->getLHS());
propagateCounts(getRegion().getCounter(), E->getLHS());
handleFileExit(getEnd(E->getLHS()));
// Track LHS True/False Decision.
const auto DecisionLHS = MCDCBuilder.pop();
// Counter tracks the right hand side of a logical and operator.
extendRegion(E->getRHS());
propagateCounts(getRegionCounter(E), E->getRHS());
// Track RHS True/False Decision.
const auto DecisionRHS = MCDCBuilder.back();
// Extract the RHS's Execution Counter.
Counter RHSExecCnt = getRegionCounter(E);
// Extract the RHS's "True" Instance Counter.
Counter RHSTrueCnt = getRegionCounter(E->getRHS());
// Extract the Parent Region Counter.
Counter ParentCnt = getRegion().getCounter();
// Create Branch Region around LHS condition.
if (!llvm::EnableSingleByteCoverage)
createBranchRegion(E->getLHS(), RHSExecCnt,
subtractCounters(ParentCnt, RHSExecCnt), DecisionLHS);
// Create Branch Region around RHS condition.
if (!llvm::EnableSingleByteCoverage)
createBranchRegion(E->getRHS(), RHSTrueCnt,
subtractCounters(RHSExecCnt, RHSTrueCnt), DecisionRHS);
// Create MCDC Decision Region if at top-level (root).
if (IsRootNode)
createOrCancelDecision(E, SourceRegionsSince);
}
// Determine whether the right side of OR operation need to be visited.
bool shouldVisitRHS(const Expr *LHS) {
bool LHSIsTrue = false;
bool LHSIsConst = false;
if (!LHS->isValueDependent())
LHSIsConst = LHS->EvaluateAsBooleanCondition(
LHSIsTrue, CVM.getCodeGenModule().getContext());
return !LHSIsConst || (LHSIsConst && !LHSIsTrue);
}
void VisitBinLOr(const BinaryOperator *E) {
if (isExprInSystemHeader(E)) {
LeafExprSet.insert(E);
return;
}
bool IsRootNode = MCDCBuilder.isIdle();
unsigned SourceRegionsSince = SourceRegions.size();
// Keep track of Binary Operator and assign MCDC condition IDs.
MCDCBuilder.pushAndAssignIDs(E);
extendRegion(E->getLHS());
Counter OutCount = propagateCounts(getRegion().getCounter(), E->getLHS());
handleFileExit(getEnd(E->getLHS()));
// Track LHS True/False Decision.
const auto DecisionLHS = MCDCBuilder.pop();
// Counter tracks the right hand side of a logical or operator.
extendRegion(E->getRHS());
propagateCounts(getRegionCounter(E), E->getRHS());
// Track RHS True/False Decision.
const auto DecisionRHS = MCDCBuilder.back();
// Extract the RHS's Execution Counter.
Counter RHSExecCnt = getRegionCounter(E);
// Extract the RHS's "False" Instance Counter.
Counter RHSFalseCnt = getRegionCounter(E->getRHS());
if (!shouldVisitRHS(E->getLHS())) {
GapRegionCounter = OutCount;
}
// Extract the Parent Region Counter.
Counter ParentCnt = getRegion().getCounter();
// Create Branch Region around LHS condition.
if (!llvm::EnableSingleByteCoverage)
createBranchRegion(E->getLHS(), subtractCounters(ParentCnt, RHSExecCnt),
RHSExecCnt, DecisionLHS);
// Create Branch Region around RHS condition.
if (!llvm::EnableSingleByteCoverage)
createBranchRegion(E->getRHS(), subtractCounters(RHSExecCnt, RHSFalseCnt),
RHSFalseCnt, DecisionRHS);
// Create MCDC Decision Region if at top-level (root).
if (IsRootNode)
createOrCancelDecision(E, SourceRegionsSince);
}
void VisitLambdaExpr(const LambdaExpr *LE) {
// Lambdas are treated as their own functions for now, so we shouldn't
// propagate counts into them.
}
void VisitArrayInitLoopExpr(const ArrayInitLoopExpr *AILE) {
Visit(AILE->getCommonExpr()->getSourceExpr());
}
void VisitPseudoObjectExpr(const PseudoObjectExpr *POE) {
// Just visit syntatic expression as this is what users actually write.
VisitStmt(POE->getSyntacticForm());
}
void VisitOpaqueValueExpr(const OpaqueValueExpr* OVE) {
if (OVE->isUnique())
Visit(OVE->getSourceExpr());
}
};
} // end anonymous namespace
static void dump(llvm::raw_ostream &OS, StringRef FunctionName,
ArrayRef<CounterExpression> Expressions,
ArrayRef<CounterMappingRegion> Regions) {
OS << FunctionName << ":\n";
CounterMappingContext Ctx(Expressions);
for (const auto &R : Regions) {
OS.indent(2);
switch (R.Kind) {
case CounterMappingRegion::CodeRegion:
break;
case CounterMappingRegion::ExpansionRegion:
OS << "Expansion,";
break;
case CounterMappingRegion::SkippedRegion:
OS << "Skipped,";
break;
case CounterMappingRegion::GapRegion:
OS << "Gap,";
break;
case CounterMappingRegion::BranchRegion:
case CounterMappingRegion::MCDCBranchRegion:
OS << "Branch,";
break;
case CounterMappingRegion::MCDCDecisionRegion:
OS << "Decision,";
break;
}
OS << "File " << R.FileID << ", " << R.LineStart << ":" << R.ColumnStart
<< " -> " << R.LineEnd << ":" << R.ColumnEnd << " = ";
if (const auto *DecisionParams =
std::get_if<mcdc::DecisionParameters>(&R.MCDCParams)) {
OS << "M:" << DecisionParams->BitmapIdx;
OS << ", C:" << DecisionParams->NumConditions;
} else {
Ctx.dump(R.Count, OS);
if (R.Kind == CounterMappingRegion::BranchRegion ||
R.Kind == CounterMappingRegion::MCDCBranchRegion) {
OS << ", ";
Ctx.dump(R.FalseCount, OS);
}
}
if (const auto *BranchParams =
std::get_if<mcdc::BranchParameters>(&R.MCDCParams)) {
OS << " [" << BranchParams->ID + 1 << ","
<< BranchParams->Conds[true] + 1;
OS << "," << BranchParams->Conds[false] + 1 << "] ";
}
if (R.Kind == CounterMappingRegion::ExpansionRegion)
OS << " (Expanded file = " << R.ExpandedFileID << ")";
OS << "\n";
}
}
CoverageMappingModuleGen::CoverageMappingModuleGen(
CodeGenModule &CGM, CoverageSourceInfo &SourceInfo)
: CGM(CGM), SourceInfo(SourceInfo) {}
std::string CoverageMappingModuleGen::getCurrentDirname() {
if (!CGM.getCodeGenOpts().CoverageCompilationDir.empty())
return CGM.getCodeGenOpts().CoverageCompilationDir;
SmallString<256> CWD;
llvm::sys::fs::current_path(CWD);
return CWD.str().str();
}
std::string CoverageMappingModuleGen::normalizeFilename(StringRef Filename) {
llvm::SmallString<256> Path(Filename);
llvm::sys::path::remove_dots(Path, /*remove_dot_dot=*/true);
/// Traverse coverage prefix map in reverse order because prefix replacements
/// are applied in reverse order starting from the last one when multiple
/// prefix replacement options are provided.
for (const auto &[From, To] :
llvm::reverse(CGM.getCodeGenOpts().CoveragePrefixMap)) {
if (llvm::sys::path::replace_path_prefix(Path, From, To))
break;
}
return Path.str().str();
}
static std::string getInstrProfSection(const CodeGenModule &CGM,
llvm::InstrProfSectKind SK) {
return llvm::getInstrProfSectionName(
SK, CGM.getContext().getTargetInfo().getTriple().getObjectFormat());
}
void CoverageMappingModuleGen::emitFunctionMappingRecord(
const FunctionInfo &Info, uint64_t FilenamesRef) {
llvm::LLVMContext &Ctx = CGM.getLLVMContext();
// Assign a name to the function record. This is used to merge duplicates.
std::string FuncRecordName = "__covrec_" + llvm::utohexstr(Info.NameHash);
// A dummy description for a function included-but-not-used in a TU can be
// replaced by full description provided by a different TU. The two kinds of
// descriptions play distinct roles: therefore, assign them different names
// to prevent `linkonce_odr` merging.
if (Info.IsUsed)
FuncRecordName += "u";
// Create the function record type.
const uint64_t NameHash = Info.NameHash;
const uint64_t FuncHash = Info.FuncHash;
const std::string &CoverageMapping = Info.CoverageMapping;
#define COVMAP_FUNC_RECORD(Type, LLVMType, Name, Init) LLVMType,
llvm::Type *FunctionRecordTypes[] = {
#include "llvm/ProfileData/InstrProfData.inc"
};
auto *FunctionRecordTy =
llvm::StructType::get(Ctx, ArrayRef(FunctionRecordTypes),
/*isPacked=*/true);
// Create the function record constant.
#define COVMAP_FUNC_RECORD(Type, LLVMType, Name, Init) Init,
llvm::Constant *FunctionRecordVals[] = {
#include "llvm/ProfileData/InstrProfData.inc"
};
auto *FuncRecordConstant =
llvm::ConstantStruct::get(FunctionRecordTy, ArrayRef(FunctionRecordVals));
// Create the function record global.
auto *FuncRecord = new llvm::GlobalVariable(
CGM.getModule(), FunctionRecordTy, /*isConstant=*/true,
llvm::GlobalValue::LinkOnceODRLinkage, FuncRecordConstant,
FuncRecordName);
FuncRecord->setVisibility(llvm::GlobalValue::HiddenVisibility);
FuncRecord->setSection(getInstrProfSection(CGM, llvm::IPSK_covfun));
FuncRecord->setAlignment(llvm::Align(8));
if (CGM.supportsCOMDAT())
FuncRecord->setComdat(CGM.getModule().getOrInsertComdat(FuncRecordName));
// Make sure the data doesn't get deleted.
CGM.addUsedGlobal(FuncRecord);
}
void CoverageMappingModuleGen::addFunctionMappingRecord(
llvm::GlobalVariable *NamePtr, StringRef NameValue, uint64_t FuncHash,
const std::string &CoverageMapping, bool IsUsed) {
const uint64_t NameHash = llvm::IndexedInstrProf::ComputeHash(NameValue);
FunctionRecords.push_back({NameHash, FuncHash, CoverageMapping, IsUsed});
if (!IsUsed)
FunctionNames.push_back(NamePtr);
if (CGM.getCodeGenOpts().DumpCoverageMapping) {
// Dump the coverage mapping data for this function by decoding the
// encoded data. This allows us to dump the mapping regions which were
// also processed by the CoverageMappingWriter which performs
// additional minimization operations such as reducing the number of
// expressions.
llvm::SmallVector<std::string, 16> FilenameStrs;
std::vector<StringRef> Filenames;
std::vector<CounterExpression> Expressions;
std::vector<CounterMappingRegion> Regions;
FilenameStrs.resize(FileEntries.size() + 1);
FilenameStrs[0] = normalizeFilename(getCurrentDirname());
for (const auto &Entry : FileEntries) {
auto I = Entry.second;
FilenameStrs[I] = normalizeFilename(Entry.first.getName());
}
ArrayRef<std::string> FilenameRefs = llvm::ArrayRef(FilenameStrs);
RawCoverageMappingReader Reader(CoverageMapping, FilenameRefs, Filenames,
Expressions, Regions);
if (Reader.read())
return;
dump(llvm::outs(), NameValue, Expressions, Regions);
}
}
void CoverageMappingModuleGen::emit() {
if (FunctionRecords.empty())
return;
llvm::LLVMContext &Ctx = CGM.getLLVMContext();
auto *Int32Ty = llvm::Type::getInt32Ty(Ctx);
// Create the filenames and merge them with coverage mappings
llvm::SmallVector<std::string, 16> FilenameStrs;
FilenameStrs.resize(FileEntries.size() + 1);
// The first filename is the current working directory.
FilenameStrs[0] = normalizeFilename(getCurrentDirname());
for (const auto &Entry : FileEntries) {
auto I = Entry.second;
FilenameStrs[I] = normalizeFilename(Entry.first.getName());
}
std::string Filenames;
{
llvm::raw_string_ostream OS(Filenames);
CoverageFilenamesSectionWriter(FilenameStrs).write(OS);
}
auto *FilenamesVal =
llvm::ConstantDataArray::getString(Ctx, Filenames, false);
const int64_t FilenamesRef = llvm::IndexedInstrProf::ComputeHash(Filenames);
// Emit the function records.
for (const FunctionInfo &Info : FunctionRecords)
emitFunctionMappingRecord(Info, FilenamesRef);
const unsigned NRecords = 0;
const size_t FilenamesSize = Filenames.size();
const unsigned CoverageMappingSize = 0;
llvm::Type *CovDataHeaderTypes[] = {
#define COVMAP_HEADER(Type, LLVMType, Name, Init) LLVMType,
#include "llvm/ProfileData/InstrProfData.inc"
};
auto CovDataHeaderTy =
llvm::StructType::get(Ctx, ArrayRef(CovDataHeaderTypes));
llvm::Constant *CovDataHeaderVals[] = {
#define COVMAP_HEADER(Type, LLVMType, Name, Init) Init,
#include "llvm/ProfileData/InstrProfData.inc"
};
auto CovDataHeaderVal =
llvm::ConstantStruct::get(CovDataHeaderTy, ArrayRef(CovDataHeaderVals));
// Create the coverage data record
llvm::Type *CovDataTypes[] = {CovDataHeaderTy, FilenamesVal->getType()};
auto CovDataTy = llvm::StructType::get(Ctx, ArrayRef(CovDataTypes));
llvm::Constant *TUDataVals[] = {CovDataHeaderVal, FilenamesVal};
auto CovDataVal = llvm::ConstantStruct::get(CovDataTy, ArrayRef(TUDataVals));
auto CovData = new llvm::GlobalVariable(
CGM.getModule(), CovDataTy, true, llvm::GlobalValue::PrivateLinkage,
CovDataVal, llvm::getCoverageMappingVarName());
CovData->setSection(getInstrProfSection(CGM, llvm::IPSK_covmap));
CovData->setAlignment(llvm::Align(8));
// Make sure the data doesn't get deleted.
CGM.addUsedGlobal(CovData);
// Create the deferred function records array
if (!FunctionNames.empty()) {
auto NamesArrTy = llvm::ArrayType::get(llvm::PointerType::getUnqual(Ctx),
FunctionNames.size());
auto NamesArrVal = llvm::ConstantArray::get(NamesArrTy, FunctionNames);
// This variable will *NOT* be emitted to the object file. It is used
// to pass the list of names referenced to codegen.
new llvm::GlobalVariable(CGM.getModule(), NamesArrTy, true,
llvm::GlobalValue::InternalLinkage, NamesArrVal,
llvm::getCoverageUnusedNamesVarName());
}
}
unsigned CoverageMappingModuleGen::getFileID(FileEntryRef File) {
auto It = FileEntries.find(File);
if (It != FileEntries.end())
return It->second;
unsigned FileID = FileEntries.size() + 1;
FileEntries.insert(std::make_pair(File, FileID));
return FileID;
}
void CoverageMappingGen::emitCounterMapping(const Decl *D,
llvm::raw_ostream &OS) {
assert(CounterMap && MCDCState);
CounterCoverageMappingBuilder Walker(CVM, *CounterMap, *MCDCState, SM,
LangOpts);
Walker.VisitDecl(D);
Walker.write(OS);
}
void CoverageMappingGen::emitEmptyMapping(const Decl *D,
llvm::raw_ostream &OS) {
EmptyCoverageMappingBuilder Walker(CVM, SM, LangOpts);
Walker.VisitDecl(D);
Walker.write(OS);
}
|