1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266
|
//===---- TargetInfo.cpp - Encapsulate target details -----------*- C++ -*-===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// These classes wrap the information about a call or function
// definition used to handle ABI compliancy.
//
//===----------------------------------------------------------------------===//
#include "TargetInfo.h"
#include "ABIInfo.h"
#include "ABIInfoImpl.h"
#include "CodeGenFunction.h"
#include "clang/Basic/CodeGenOptions.h"
#include "clang/CodeGen/CGFunctionInfo.h"
#include "llvm/ADT/StringExtras.h"
#include "llvm/ADT/Twine.h"
#include "llvm/IR/Function.h"
#include "llvm/IR/Type.h"
#include "llvm/Support/raw_ostream.h"
using namespace clang;
using namespace CodeGen;
LLVM_DUMP_METHOD void ABIArgInfo::dump() const {
raw_ostream &OS = llvm::errs();
OS << "(ABIArgInfo Kind=";
switch (TheKind) {
case Direct:
OS << "Direct Type=";
if (llvm::Type *Ty = getCoerceToType())
Ty->print(OS);
else
OS << "null";
break;
case Extend:
OS << "Extend";
break;
case Ignore:
OS << "Ignore";
break;
case InAlloca:
OS << "InAlloca Offset=" << getInAllocaFieldIndex();
break;
case Indirect:
OS << "Indirect Align=" << getIndirectAlign().getQuantity()
<< " ByVal=" << getIndirectByVal()
<< " Realign=" << getIndirectRealign();
break;
case IndirectAliased:
OS << "Indirect Align=" << getIndirectAlign().getQuantity()
<< " AadrSpace=" << getIndirectAddrSpace()
<< " Realign=" << getIndirectRealign();
break;
case Expand:
OS << "Expand";
break;
case CoerceAndExpand:
OS << "CoerceAndExpand Type=";
getCoerceAndExpandType()->print(OS);
break;
}
OS << ")\n";
}
TargetCodeGenInfo::TargetCodeGenInfo(std::unique_ptr<ABIInfo> Info)
: Info(std::move(Info)) {}
TargetCodeGenInfo::~TargetCodeGenInfo() = default;
// If someone can figure out a general rule for this, that would be great.
// It's probably just doomed to be platform-dependent, though.
unsigned TargetCodeGenInfo::getSizeOfUnwindException() const {
// Verified for:
// x86-64 FreeBSD, Linux, Darwin
// x86-32 FreeBSD, Linux, Darwin
// PowerPC Linux
// ARM Darwin (*not* EABI)
// AArch64 Linux
return 32;
}
bool TargetCodeGenInfo::isNoProtoCallVariadic(const CallArgList &args,
const FunctionNoProtoType *fnType) const {
// The following conventions are known to require this to be false:
// x86_stdcall
// MIPS
// For everything else, we just prefer false unless we opt out.
return false;
}
void
TargetCodeGenInfo::getDependentLibraryOption(llvm::StringRef Lib,
llvm::SmallString<24> &Opt) const {
// This assumes the user is passing a library name like "rt" instead of a
// filename like "librt.a/so", and that they don't care whether it's static or
// dynamic.
Opt = "-l";
Opt += Lib;
}
unsigned TargetCodeGenInfo::getOpenCLKernelCallingConv() const {
// OpenCL kernels are called via an explicit runtime API with arguments
// set with clSetKernelArg(), not as normal sub-functions.
// Return SPIR_KERNEL by default as the kernel calling convention to
// ensure the fingerprint is fixed such way that each OpenCL argument
// gets one matching argument in the produced kernel function argument
// list to enable feasible implementation of clSetKernelArg() with
// aggregates etc. In case we would use the default C calling conv here,
// clSetKernelArg() might break depending on the target-specific
// conventions; different targets might split structs passed as values
// to multiple function arguments etc.
return llvm::CallingConv::SPIR_KERNEL;
}
llvm::Constant *TargetCodeGenInfo::getNullPointer(const CodeGen::CodeGenModule &CGM,
llvm::PointerType *T, QualType QT) const {
return llvm::ConstantPointerNull::get(T);
}
LangAS TargetCodeGenInfo::getGlobalVarAddressSpace(CodeGenModule &CGM,
const VarDecl *D) const {
assert(!CGM.getLangOpts().OpenCL &&
!(CGM.getLangOpts().CUDA && CGM.getLangOpts().CUDAIsDevice) &&
"Address space agnostic languages only");
return D ? D->getType().getAddressSpace() : LangAS::Default;
}
llvm::Value *TargetCodeGenInfo::performAddrSpaceCast(
CodeGen::CodeGenFunction &CGF, llvm::Value *Src, LangAS SrcAddr,
LangAS DestAddr, llvm::Type *DestTy, bool isNonNull) const {
// Since target may map different address spaces in AST to the same address
// space, an address space conversion may end up as a bitcast.
if (auto *C = dyn_cast<llvm::Constant>(Src))
return performAddrSpaceCast(CGF.CGM, C, SrcAddr, DestAddr, DestTy);
// Try to preserve the source's name to make IR more readable.
return CGF.Builder.CreateAddrSpaceCast(
Src, DestTy, Src->hasName() ? Src->getName() + ".ascast" : "");
}
llvm::Constant *
TargetCodeGenInfo::performAddrSpaceCast(CodeGenModule &CGM, llvm::Constant *Src,
LangAS SrcAddr, LangAS DestAddr,
llvm::Type *DestTy) const {
// Since target may map different address spaces in AST to the same address
// space, an address space conversion may end up as a bitcast.
return llvm::ConstantExpr::getPointerCast(Src, DestTy);
}
llvm::SyncScope::ID
TargetCodeGenInfo::getLLVMSyncScopeID(const LangOptions &LangOpts,
SyncScope Scope,
llvm::AtomicOrdering Ordering,
llvm::LLVMContext &Ctx) const {
return Ctx.getOrInsertSyncScopeID(""); /* default sync scope */
}
void TargetCodeGenInfo::addStackProbeTargetAttributes(
const Decl *D, llvm::GlobalValue *GV, CodeGen::CodeGenModule &CGM) const {
if (llvm::Function *Fn = dyn_cast_or_null<llvm::Function>(GV)) {
if (CGM.getCodeGenOpts().StackProbeSize != 4096)
Fn->addFnAttr("stack-probe-size",
llvm::utostr(CGM.getCodeGenOpts().StackProbeSize));
if (CGM.getCodeGenOpts().NoStackArgProbe)
Fn->addFnAttr("no-stack-arg-probe");
}
}
/// Create an OpenCL kernel for an enqueued block.
///
/// The kernel has the same function type as the block invoke function. Its
/// name is the name of the block invoke function postfixed with "_kernel".
/// It simply calls the block invoke function then returns.
llvm::Value *TargetCodeGenInfo::createEnqueuedBlockKernel(
CodeGenFunction &CGF, llvm::Function *Invoke, llvm::Type *BlockTy) const {
auto *InvokeFT = Invoke->getFunctionType();
auto &C = CGF.getLLVMContext();
std::string Name = Invoke->getName().str() + "_kernel";
auto *FT = llvm::FunctionType::get(llvm::Type::getVoidTy(C),
InvokeFT->params(), false);
auto *F = llvm::Function::Create(FT, llvm::GlobalValue::ExternalLinkage, Name,
&CGF.CGM.getModule());
llvm::CallingConv::ID KernelCC =
CGF.getTypes().ClangCallConvToLLVMCallConv(CallingConv::CC_OpenCLKernel);
F->setCallingConv(KernelCC);
llvm::AttrBuilder KernelAttrs(C);
// FIXME: This is missing setTargetAttributes
CGF.CGM.addDefaultFunctionDefinitionAttributes(KernelAttrs);
F->addFnAttrs(KernelAttrs);
auto IP = CGF.Builder.saveIP();
auto *BB = llvm::BasicBlock::Create(C, "entry", F);
auto &Builder = CGF.Builder;
Builder.SetInsertPoint(BB);
llvm::SmallVector<llvm::Value *, 2> Args(llvm::make_pointer_range(F->args()));
llvm::CallInst *Call = Builder.CreateCall(Invoke, Args);
Call->setCallingConv(Invoke->getCallingConv());
Builder.CreateRetVoid();
Builder.restoreIP(IP);
return F;
}
void TargetCodeGenInfo::setBranchProtectionFnAttributes(
const TargetInfo::BranchProtectionInfo &BPI, llvm::Function &F) {
// Called on already created and initialized function where attributes already
// set from command line attributes but some might need to be removed as the
// actual BPI is different.
if (BPI.SignReturnAddr != LangOptions::SignReturnAddressScopeKind::None) {
F.addFnAttr("sign-return-address", BPI.getSignReturnAddrStr());
F.addFnAttr("sign-return-address-key", BPI.getSignKeyStr());
} else {
if (F.hasFnAttribute("sign-return-address"))
F.removeFnAttr("sign-return-address");
if (F.hasFnAttribute("sign-return-address-key"))
F.removeFnAttr("sign-return-address-key");
}
auto AddRemoveAttributeAsSet = [&](bool Set, const StringRef &ModAttr) {
if (Set)
F.addFnAttr(ModAttr);
else if (F.hasFnAttribute(ModAttr))
F.removeFnAttr(ModAttr);
};
AddRemoveAttributeAsSet(BPI.BranchTargetEnforcement,
"branch-target-enforcement");
AddRemoveAttributeAsSet(BPI.BranchProtectionPAuthLR,
"branch-protection-pauth-lr");
AddRemoveAttributeAsSet(BPI.GuardedControlStack, "guarded-control-stack");
}
void TargetCodeGenInfo::initBranchProtectionFnAttributes(
const TargetInfo::BranchProtectionInfo &BPI, llvm::AttrBuilder &FuncAttrs) {
// Only used for initializing attributes in the AttrBuilder, which will not
// contain any of these attributes so no need to remove anything.
if (BPI.SignReturnAddr != LangOptions::SignReturnAddressScopeKind::None) {
FuncAttrs.addAttribute("sign-return-address", BPI.getSignReturnAddrStr());
FuncAttrs.addAttribute("sign-return-address-key", BPI.getSignKeyStr());
}
if (BPI.BranchTargetEnforcement)
FuncAttrs.addAttribute("branch-target-enforcement");
if (BPI.BranchProtectionPAuthLR)
FuncAttrs.addAttribute("branch-protection-pauth-lr");
if (BPI.GuardedControlStack)
FuncAttrs.addAttribute("guarded-control-stack");
}
namespace {
class DefaultTargetCodeGenInfo : public TargetCodeGenInfo {
public:
DefaultTargetCodeGenInfo(CodeGen::CodeGenTypes &CGT)
: TargetCodeGenInfo(std::make_unique<DefaultABIInfo>(CGT)) {}
};
} // namespace
std::unique_ptr<TargetCodeGenInfo>
CodeGen::createDefaultTargetCodeGenInfo(CodeGenModule &CGM) {
return std::make_unique<DefaultTargetCodeGenInfo>(CGM.getTypes());
}
|