1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694
|
//===- AMDGPU.cpp ---------------------------------------------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
#include "ABIInfoImpl.h"
#include "TargetInfo.h"
#include "clang/Basic/TargetOptions.h"
using namespace clang;
using namespace clang::CodeGen;
//===----------------------------------------------------------------------===//
// AMDGPU ABI Implementation
//===----------------------------------------------------------------------===//
namespace {
class AMDGPUABIInfo final : public DefaultABIInfo {
private:
static const unsigned MaxNumRegsForArgsRet = 16;
unsigned numRegsForType(QualType Ty) const;
bool isHomogeneousAggregateBaseType(QualType Ty) const override;
bool isHomogeneousAggregateSmallEnough(const Type *Base,
uint64_t Members) const override;
// Coerce HIP scalar pointer arguments from generic pointers to global ones.
llvm::Type *coerceKernelArgumentType(llvm::Type *Ty, unsigned FromAS,
unsigned ToAS) const {
// Single value types.
auto *PtrTy = llvm::dyn_cast<llvm::PointerType>(Ty);
if (PtrTy && PtrTy->getAddressSpace() == FromAS)
return llvm::PointerType::get(Ty->getContext(), ToAS);
return Ty;
}
public:
explicit AMDGPUABIInfo(CodeGen::CodeGenTypes &CGT) :
DefaultABIInfo(CGT) {}
ABIArgInfo classifyReturnType(QualType RetTy) const;
ABIArgInfo classifyKernelArgumentType(QualType Ty) const;
ABIArgInfo classifyArgumentType(QualType Ty, bool Variadic,
unsigned &NumRegsLeft) const;
void computeInfo(CGFunctionInfo &FI) const override;
RValue EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, QualType Ty,
AggValueSlot Slot) const override;
};
bool AMDGPUABIInfo::isHomogeneousAggregateBaseType(QualType Ty) const {
return true;
}
bool AMDGPUABIInfo::isHomogeneousAggregateSmallEnough(
const Type *Base, uint64_t Members) const {
uint32_t NumRegs = (getContext().getTypeSize(Base) + 31) / 32;
// Homogeneous Aggregates may occupy at most 16 registers.
return Members * NumRegs <= MaxNumRegsForArgsRet;
}
/// Estimate number of registers the type will use when passed in registers.
unsigned AMDGPUABIInfo::numRegsForType(QualType Ty) const {
unsigned NumRegs = 0;
if (const VectorType *VT = Ty->getAs<VectorType>()) {
// Compute from the number of elements. The reported size is based on the
// in-memory size, which includes the padding 4th element for 3-vectors.
QualType EltTy = VT->getElementType();
unsigned EltSize = getContext().getTypeSize(EltTy);
// 16-bit element vectors should be passed as packed.
if (EltSize == 16)
return (VT->getNumElements() + 1) / 2;
unsigned EltNumRegs = (EltSize + 31) / 32;
return EltNumRegs * VT->getNumElements();
}
if (const RecordType *RT = Ty->getAs<RecordType>()) {
const RecordDecl *RD = RT->getDecl();
assert(!RD->hasFlexibleArrayMember());
for (const FieldDecl *Field : RD->fields()) {
QualType FieldTy = Field->getType();
NumRegs += numRegsForType(FieldTy);
}
return NumRegs;
}
return (getContext().getTypeSize(Ty) + 31) / 32;
}
void AMDGPUABIInfo::computeInfo(CGFunctionInfo &FI) const {
llvm::CallingConv::ID CC = FI.getCallingConvention();
if (!getCXXABI().classifyReturnType(FI))
FI.getReturnInfo() = classifyReturnType(FI.getReturnType());
unsigned ArgumentIndex = 0;
const unsigned numFixedArguments = FI.getNumRequiredArgs();
unsigned NumRegsLeft = MaxNumRegsForArgsRet;
for (auto &Arg : FI.arguments()) {
if (CC == llvm::CallingConv::AMDGPU_KERNEL) {
Arg.info = classifyKernelArgumentType(Arg.type);
} else {
bool FixedArgument = ArgumentIndex++ < numFixedArguments;
Arg.info = classifyArgumentType(Arg.type, !FixedArgument, NumRegsLeft);
}
}
}
RValue AMDGPUABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
QualType Ty, AggValueSlot Slot) const {
const bool IsIndirect = false;
const bool AllowHigherAlign = false;
return emitVoidPtrVAArg(CGF, VAListAddr, Ty, IsIndirect,
getContext().getTypeInfoInChars(Ty),
CharUnits::fromQuantity(4), AllowHigherAlign, Slot);
}
ABIArgInfo AMDGPUABIInfo::classifyReturnType(QualType RetTy) const {
if (isAggregateTypeForABI(RetTy)) {
// Records with non-trivial destructors/copy-constructors should not be
// returned by value.
if (!getRecordArgABI(RetTy, getCXXABI())) {
// Ignore empty structs/unions.
if (isEmptyRecord(getContext(), RetTy, true))
return ABIArgInfo::getIgnore();
// Lower single-element structs to just return a regular value.
if (const Type *SeltTy = isSingleElementStruct(RetTy, getContext()))
return ABIArgInfo::getDirect(CGT.ConvertType(QualType(SeltTy, 0)));
if (const RecordType *RT = RetTy->getAs<RecordType>()) {
const RecordDecl *RD = RT->getDecl();
if (RD->hasFlexibleArrayMember())
return DefaultABIInfo::classifyReturnType(RetTy);
}
// Pack aggregates <= 4 bytes into single VGPR or pair.
uint64_t Size = getContext().getTypeSize(RetTy);
if (Size <= 16)
return ABIArgInfo::getDirect(llvm::Type::getInt16Ty(getVMContext()));
if (Size <= 32)
return ABIArgInfo::getDirect(llvm::Type::getInt32Ty(getVMContext()));
if (Size <= 64) {
llvm::Type *I32Ty = llvm::Type::getInt32Ty(getVMContext());
return ABIArgInfo::getDirect(llvm::ArrayType::get(I32Ty, 2));
}
if (numRegsForType(RetTy) <= MaxNumRegsForArgsRet)
return ABIArgInfo::getDirect();
}
}
// Otherwise just do the default thing.
return DefaultABIInfo::classifyReturnType(RetTy);
}
/// For kernels all parameters are really passed in a special buffer. It doesn't
/// make sense to pass anything byval, so everything must be direct.
ABIArgInfo AMDGPUABIInfo::classifyKernelArgumentType(QualType Ty) const {
Ty = useFirstFieldIfTransparentUnion(Ty);
// TODO: Can we omit empty structs?
if (const Type *SeltTy = isSingleElementStruct(Ty, getContext()))
Ty = QualType(SeltTy, 0);
llvm::Type *OrigLTy = CGT.ConvertType(Ty);
llvm::Type *LTy = OrigLTy;
if (getContext().getLangOpts().HIP) {
LTy = coerceKernelArgumentType(
OrigLTy, /*FromAS=*/getContext().getTargetAddressSpace(LangAS::Default),
/*ToAS=*/getContext().getTargetAddressSpace(LangAS::cuda_device));
}
// FIXME: Should also use this for OpenCL, but it requires addressing the
// problem of kernels being called.
//
// FIXME: This doesn't apply the optimization of coercing pointers in structs
// to global address space when using byref. This would require implementing a
// new kind of coercion of the in-memory type when for indirect arguments.
if (!getContext().getLangOpts().OpenCL && LTy == OrigLTy &&
isAggregateTypeForABI(Ty)) {
return ABIArgInfo::getIndirectAliased(
getContext().getTypeAlignInChars(Ty),
getContext().getTargetAddressSpace(LangAS::opencl_constant),
false /*Realign*/, nullptr /*Padding*/);
}
// If we set CanBeFlattened to true, CodeGen will expand the struct to its
// individual elements, which confuses the Clover OpenCL backend; therefore we
// have to set it to false here. Other args of getDirect() are just defaults.
return ABIArgInfo::getDirect(LTy, 0, nullptr, false);
}
ABIArgInfo AMDGPUABIInfo::classifyArgumentType(QualType Ty, bool Variadic,
unsigned &NumRegsLeft) const {
assert(NumRegsLeft <= MaxNumRegsForArgsRet && "register estimate underflow");
Ty = useFirstFieldIfTransparentUnion(Ty);
if (Variadic) {
return ABIArgInfo::getDirect(/*T=*/nullptr,
/*Offset=*/0,
/*Padding=*/nullptr,
/*CanBeFlattened=*/false,
/*Align=*/0);
}
if (isAggregateTypeForABI(Ty)) {
// Records with non-trivial destructors/copy-constructors should not be
// passed by value.
if (auto RAA = getRecordArgABI(Ty, getCXXABI()))
return getNaturalAlignIndirect(Ty, RAA == CGCXXABI::RAA_DirectInMemory);
// Ignore empty structs/unions.
if (isEmptyRecord(getContext(), Ty, true))
return ABIArgInfo::getIgnore();
// Lower single-element structs to just pass a regular value. TODO: We
// could do reasonable-size multiple-element structs too, using getExpand(),
// though watch out for things like bitfields.
if (const Type *SeltTy = isSingleElementStruct(Ty, getContext()))
return ABIArgInfo::getDirect(CGT.ConvertType(QualType(SeltTy, 0)));
if (const RecordType *RT = Ty->getAs<RecordType>()) {
const RecordDecl *RD = RT->getDecl();
if (RD->hasFlexibleArrayMember())
return DefaultABIInfo::classifyArgumentType(Ty);
}
// Pack aggregates <= 8 bytes into single VGPR or pair.
uint64_t Size = getContext().getTypeSize(Ty);
if (Size <= 64) {
unsigned NumRegs = (Size + 31) / 32;
NumRegsLeft -= std::min(NumRegsLeft, NumRegs);
if (Size <= 16)
return ABIArgInfo::getDirect(llvm::Type::getInt16Ty(getVMContext()));
if (Size <= 32)
return ABIArgInfo::getDirect(llvm::Type::getInt32Ty(getVMContext()));
// XXX: Should this be i64 instead, and should the limit increase?
llvm::Type *I32Ty = llvm::Type::getInt32Ty(getVMContext());
return ABIArgInfo::getDirect(llvm::ArrayType::get(I32Ty, 2));
}
if (NumRegsLeft > 0) {
unsigned NumRegs = numRegsForType(Ty);
if (NumRegsLeft >= NumRegs) {
NumRegsLeft -= NumRegs;
return ABIArgInfo::getDirect();
}
}
// Use pass-by-reference in stead of pass-by-value for struct arguments in
// function ABI.
return ABIArgInfo::getIndirectAliased(
getContext().getTypeAlignInChars(Ty),
getContext().getTargetAddressSpace(LangAS::opencl_private));
}
// Otherwise just do the default thing.
ABIArgInfo ArgInfo = DefaultABIInfo::classifyArgumentType(Ty);
if (!ArgInfo.isIndirect()) {
unsigned NumRegs = numRegsForType(Ty);
NumRegsLeft -= std::min(NumRegs, NumRegsLeft);
}
return ArgInfo;
}
class AMDGPUTargetCodeGenInfo : public TargetCodeGenInfo {
public:
AMDGPUTargetCodeGenInfo(CodeGenTypes &CGT)
: TargetCodeGenInfo(std::make_unique<AMDGPUABIInfo>(CGT)) {}
void setFunctionDeclAttributes(const FunctionDecl *FD, llvm::Function *F,
CodeGenModule &CGM) const;
void emitTargetGlobals(CodeGen::CodeGenModule &CGM) const override;
void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV,
CodeGen::CodeGenModule &M) const override;
unsigned getOpenCLKernelCallingConv() const override;
llvm::Constant *getNullPointer(const CodeGen::CodeGenModule &CGM,
llvm::PointerType *T, QualType QT) const override;
LangAS getASTAllocaAddressSpace() const override {
return getLangASFromTargetAS(
getABIInfo().getDataLayout().getAllocaAddrSpace());
}
LangAS getGlobalVarAddressSpace(CodeGenModule &CGM,
const VarDecl *D) const override;
llvm::SyncScope::ID getLLVMSyncScopeID(const LangOptions &LangOpts,
SyncScope Scope,
llvm::AtomicOrdering Ordering,
llvm::LLVMContext &Ctx) const override;
llvm::Value *createEnqueuedBlockKernel(CodeGenFunction &CGF,
llvm::Function *BlockInvokeFunc,
llvm::Type *BlockTy) const override;
bool shouldEmitStaticExternCAliases() const override;
bool shouldEmitDWARFBitFieldSeparators() const override;
void setCUDAKernelCallingConvention(const FunctionType *&FT) const override;
};
}
static bool requiresAMDGPUProtectedVisibility(const Decl *D,
llvm::GlobalValue *GV) {
if (GV->getVisibility() != llvm::GlobalValue::HiddenVisibility)
return false;
return !D->hasAttr<OMPDeclareTargetDeclAttr>() &&
(D->hasAttr<OpenCLKernelAttr>() ||
(isa<FunctionDecl>(D) && D->hasAttr<CUDAGlobalAttr>()) ||
(isa<VarDecl>(D) &&
(D->hasAttr<CUDADeviceAttr>() || D->hasAttr<CUDAConstantAttr>() ||
cast<VarDecl>(D)->getType()->isCUDADeviceBuiltinSurfaceType() ||
cast<VarDecl>(D)->getType()->isCUDADeviceBuiltinTextureType())));
}
void AMDGPUTargetCodeGenInfo::setFunctionDeclAttributes(
const FunctionDecl *FD, llvm::Function *F, CodeGenModule &M) const {
const auto *ReqdWGS =
M.getLangOpts().OpenCL ? FD->getAttr<ReqdWorkGroupSizeAttr>() : nullptr;
const bool IsOpenCLKernel =
M.getLangOpts().OpenCL && FD->hasAttr<OpenCLKernelAttr>();
const bool IsHIPKernel = M.getLangOpts().HIP && FD->hasAttr<CUDAGlobalAttr>();
const auto *FlatWGS = FD->getAttr<AMDGPUFlatWorkGroupSizeAttr>();
if (ReqdWGS || FlatWGS) {
M.handleAMDGPUFlatWorkGroupSizeAttr(F, FlatWGS, ReqdWGS);
} else if (IsOpenCLKernel || IsHIPKernel) {
// By default, restrict the maximum size to a value specified by
// --gpu-max-threads-per-block=n or its default value for HIP.
const unsigned OpenCLDefaultMaxWorkGroupSize = 256;
const unsigned DefaultMaxWorkGroupSize =
IsOpenCLKernel ? OpenCLDefaultMaxWorkGroupSize
: M.getLangOpts().GPUMaxThreadsPerBlock;
std::string AttrVal =
std::string("1,") + llvm::utostr(DefaultMaxWorkGroupSize);
F->addFnAttr("amdgpu-flat-work-group-size", AttrVal);
}
if (const auto *Attr = FD->getAttr<AMDGPUWavesPerEUAttr>())
M.handleAMDGPUWavesPerEUAttr(F, Attr);
if (const auto *Attr = FD->getAttr<AMDGPUNumSGPRAttr>()) {
unsigned NumSGPR = Attr->getNumSGPR();
if (NumSGPR != 0)
F->addFnAttr("amdgpu-num-sgpr", llvm::utostr(NumSGPR));
}
if (const auto *Attr = FD->getAttr<AMDGPUNumVGPRAttr>()) {
uint32_t NumVGPR = Attr->getNumVGPR();
if (NumVGPR != 0)
F->addFnAttr("amdgpu-num-vgpr", llvm::utostr(NumVGPR));
}
if (const auto *Attr = FD->getAttr<AMDGPUMaxNumWorkGroupsAttr>()) {
uint32_t X = Attr->getMaxNumWorkGroupsX()
->EvaluateKnownConstInt(M.getContext())
.getExtValue();
// Y and Z dimensions default to 1 if not specified
uint32_t Y = Attr->getMaxNumWorkGroupsY()
? Attr->getMaxNumWorkGroupsY()
->EvaluateKnownConstInt(M.getContext())
.getExtValue()
: 1;
uint32_t Z = Attr->getMaxNumWorkGroupsZ()
? Attr->getMaxNumWorkGroupsZ()
->EvaluateKnownConstInt(M.getContext())
.getExtValue()
: 1;
llvm::SmallString<32> AttrVal;
llvm::raw_svector_ostream OS(AttrVal);
OS << X << ',' << Y << ',' << Z;
F->addFnAttr("amdgpu-max-num-workgroups", AttrVal.str());
}
}
/// Emits control constants used to change per-architecture behaviour in the
/// AMDGPU ROCm device libraries.
void AMDGPUTargetCodeGenInfo::emitTargetGlobals(
CodeGen::CodeGenModule &CGM) const {
StringRef Name = "__oclc_ABI_version";
llvm::GlobalVariable *OriginalGV = CGM.getModule().getNamedGlobal(Name);
if (OriginalGV && !llvm::GlobalVariable::isExternalLinkage(OriginalGV->getLinkage()))
return;
if (CGM.getTarget().getTargetOpts().CodeObjectVersion ==
llvm::CodeObjectVersionKind::COV_None)
return;
auto *Type = llvm::IntegerType::getIntNTy(CGM.getModule().getContext(), 32);
llvm::Constant *COV = llvm::ConstantInt::get(
Type, CGM.getTarget().getTargetOpts().CodeObjectVersion);
// It needs to be constant weak_odr without externally_initialized so that
// the load instuction can be eliminated by the IPSCCP.
auto *GV = new llvm::GlobalVariable(
CGM.getModule(), Type, true, llvm::GlobalValue::WeakODRLinkage, COV, Name,
nullptr, llvm::GlobalValue::ThreadLocalMode::NotThreadLocal,
CGM.getContext().getTargetAddressSpace(LangAS::opencl_constant));
GV->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Local);
GV->setVisibility(llvm::GlobalValue::VisibilityTypes::HiddenVisibility);
// Replace any external references to this variable with the new global.
if (OriginalGV) {
OriginalGV->replaceAllUsesWith(GV);
GV->takeName(OriginalGV);
OriginalGV->eraseFromParent();
}
}
void AMDGPUTargetCodeGenInfo::setTargetAttributes(
const Decl *D, llvm::GlobalValue *GV, CodeGen::CodeGenModule &M) const {
if (requiresAMDGPUProtectedVisibility(D, GV)) {
GV->setVisibility(llvm::GlobalValue::ProtectedVisibility);
GV->setDSOLocal(true);
}
if (GV->isDeclaration())
return;
llvm::Function *F = dyn_cast<llvm::Function>(GV);
if (!F)
return;
const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D);
if (FD)
setFunctionDeclAttributes(FD, F, M);
if (M.getContext().getTargetInfo().allowAMDGPUUnsafeFPAtomics())
F->addFnAttr("amdgpu-unsafe-fp-atomics", "true");
if (!getABIInfo().getCodeGenOpts().EmitIEEENaNCompliantInsts)
F->addFnAttr("amdgpu-ieee", "false");
}
unsigned AMDGPUTargetCodeGenInfo::getOpenCLKernelCallingConv() const {
return llvm::CallingConv::AMDGPU_KERNEL;
}
// Currently LLVM assumes null pointers always have value 0,
// which results in incorrectly transformed IR. Therefore, instead of
// emitting null pointers in private and local address spaces, a null
// pointer in generic address space is emitted which is casted to a
// pointer in local or private address space.
llvm::Constant *AMDGPUTargetCodeGenInfo::getNullPointer(
const CodeGen::CodeGenModule &CGM, llvm::PointerType *PT,
QualType QT) const {
if (CGM.getContext().getTargetNullPointerValue(QT) == 0)
return llvm::ConstantPointerNull::get(PT);
auto &Ctx = CGM.getContext();
auto NPT = llvm::PointerType::get(
PT->getContext(), Ctx.getTargetAddressSpace(LangAS::opencl_generic));
return llvm::ConstantExpr::getAddrSpaceCast(
llvm::ConstantPointerNull::get(NPT), PT);
}
LangAS
AMDGPUTargetCodeGenInfo::getGlobalVarAddressSpace(CodeGenModule &CGM,
const VarDecl *D) const {
assert(!CGM.getLangOpts().OpenCL &&
!(CGM.getLangOpts().CUDA && CGM.getLangOpts().CUDAIsDevice) &&
"Address space agnostic languages only");
LangAS DefaultGlobalAS = getLangASFromTargetAS(
CGM.getContext().getTargetAddressSpace(LangAS::opencl_global));
if (!D)
return DefaultGlobalAS;
LangAS AddrSpace = D->getType().getAddressSpace();
if (AddrSpace != LangAS::Default)
return AddrSpace;
// Only promote to address space 4 if VarDecl has constant initialization.
if (D->getType().isConstantStorage(CGM.getContext(), false, false) &&
D->hasConstantInitialization()) {
if (auto ConstAS = CGM.getTarget().getConstantAddressSpace())
return *ConstAS;
}
return DefaultGlobalAS;
}
llvm::SyncScope::ID
AMDGPUTargetCodeGenInfo::getLLVMSyncScopeID(const LangOptions &LangOpts,
SyncScope Scope,
llvm::AtomicOrdering Ordering,
llvm::LLVMContext &Ctx) const {
std::string Name;
switch (Scope) {
case SyncScope::HIPSingleThread:
case SyncScope::SingleScope:
Name = "singlethread";
break;
case SyncScope::HIPWavefront:
case SyncScope::OpenCLSubGroup:
case SyncScope::WavefrontScope:
Name = "wavefront";
break;
case SyncScope::HIPWorkgroup:
case SyncScope::OpenCLWorkGroup:
case SyncScope::WorkgroupScope:
Name = "workgroup";
break;
case SyncScope::HIPAgent:
case SyncScope::OpenCLDevice:
case SyncScope::DeviceScope:
Name = "agent";
break;
case SyncScope::SystemScope:
case SyncScope::HIPSystem:
case SyncScope::OpenCLAllSVMDevices:
Name = "";
break;
}
if (Ordering != llvm::AtomicOrdering::SequentiallyConsistent) {
if (!Name.empty())
Name = Twine(Twine(Name) + Twine("-")).str();
Name = Twine(Twine(Name) + Twine("one-as")).str();
}
return Ctx.getOrInsertSyncScopeID(Name);
}
bool AMDGPUTargetCodeGenInfo::shouldEmitStaticExternCAliases() const {
return false;
}
bool AMDGPUTargetCodeGenInfo::shouldEmitDWARFBitFieldSeparators() const {
return true;
}
void AMDGPUTargetCodeGenInfo::setCUDAKernelCallingConvention(
const FunctionType *&FT) const {
FT = getABIInfo().getContext().adjustFunctionType(
FT, FT->getExtInfo().withCallingConv(CC_OpenCLKernel));
}
/// Create an OpenCL kernel for an enqueued block.
///
/// The type of the first argument (the block literal) is the struct type
/// of the block literal instead of a pointer type. The first argument
/// (block literal) is passed directly by value to the kernel. The kernel
/// allocates the same type of struct on stack and stores the block literal
/// to it and passes its pointer to the block invoke function. The kernel
/// has "enqueued-block" function attribute and kernel argument metadata.
llvm::Value *AMDGPUTargetCodeGenInfo::createEnqueuedBlockKernel(
CodeGenFunction &CGF, llvm::Function *Invoke, llvm::Type *BlockTy) const {
auto &Builder = CGF.Builder;
auto &C = CGF.getLLVMContext();
auto *InvokeFT = Invoke->getFunctionType();
llvm::SmallVector<llvm::Type *, 2> ArgTys;
llvm::SmallVector<llvm::Metadata *, 8> AddressQuals;
llvm::SmallVector<llvm::Metadata *, 8> AccessQuals;
llvm::SmallVector<llvm::Metadata *, 8> ArgTypeNames;
llvm::SmallVector<llvm::Metadata *, 8> ArgBaseTypeNames;
llvm::SmallVector<llvm::Metadata *, 8> ArgTypeQuals;
llvm::SmallVector<llvm::Metadata *, 8> ArgNames;
ArgTys.push_back(BlockTy);
ArgTypeNames.push_back(llvm::MDString::get(C, "__block_literal"));
AddressQuals.push_back(llvm::ConstantAsMetadata::get(Builder.getInt32(0)));
ArgBaseTypeNames.push_back(llvm::MDString::get(C, "__block_literal"));
ArgTypeQuals.push_back(llvm::MDString::get(C, ""));
AccessQuals.push_back(llvm::MDString::get(C, "none"));
ArgNames.push_back(llvm::MDString::get(C, "block_literal"));
for (unsigned I = 1, E = InvokeFT->getNumParams(); I < E; ++I) {
ArgTys.push_back(InvokeFT->getParamType(I));
ArgTypeNames.push_back(llvm::MDString::get(C, "void*"));
AddressQuals.push_back(llvm::ConstantAsMetadata::get(Builder.getInt32(3)));
AccessQuals.push_back(llvm::MDString::get(C, "none"));
ArgBaseTypeNames.push_back(llvm::MDString::get(C, "void*"));
ArgTypeQuals.push_back(llvm::MDString::get(C, ""));
ArgNames.push_back(
llvm::MDString::get(C, (Twine("local_arg") + Twine(I)).str()));
}
std::string Name = Invoke->getName().str() + "_kernel";
auto *FT = llvm::FunctionType::get(llvm::Type::getVoidTy(C), ArgTys, false);
auto *F = llvm::Function::Create(FT, llvm::GlobalValue::InternalLinkage, Name,
&CGF.CGM.getModule());
F->setCallingConv(llvm::CallingConv::AMDGPU_KERNEL);
llvm::AttrBuilder KernelAttrs(C);
// FIXME: The invoke isn't applying the right attributes either
// FIXME: This is missing setTargetAttributes
CGF.CGM.addDefaultFunctionDefinitionAttributes(KernelAttrs);
KernelAttrs.addAttribute("enqueued-block");
F->addFnAttrs(KernelAttrs);
auto IP = CGF.Builder.saveIP();
auto *BB = llvm::BasicBlock::Create(C, "entry", F);
Builder.SetInsertPoint(BB);
const auto BlockAlign = CGF.CGM.getDataLayout().getPrefTypeAlign(BlockTy);
auto *BlockPtr = Builder.CreateAlloca(BlockTy, nullptr);
BlockPtr->setAlignment(BlockAlign);
Builder.CreateAlignedStore(F->arg_begin(), BlockPtr, BlockAlign);
auto *Cast = Builder.CreatePointerCast(BlockPtr, InvokeFT->getParamType(0));
llvm::SmallVector<llvm::Value *, 2> Args;
Args.push_back(Cast);
for (llvm::Argument &A : llvm::drop_begin(F->args()))
Args.push_back(&A);
llvm::CallInst *call = Builder.CreateCall(Invoke, Args);
call->setCallingConv(Invoke->getCallingConv());
Builder.CreateRetVoid();
Builder.restoreIP(IP);
F->setMetadata("kernel_arg_addr_space", llvm::MDNode::get(C, AddressQuals));
F->setMetadata("kernel_arg_access_qual", llvm::MDNode::get(C, AccessQuals));
F->setMetadata("kernel_arg_type", llvm::MDNode::get(C, ArgTypeNames));
F->setMetadata("kernel_arg_base_type",
llvm::MDNode::get(C, ArgBaseTypeNames));
F->setMetadata("kernel_arg_type_qual", llvm::MDNode::get(C, ArgTypeQuals));
if (CGF.CGM.getCodeGenOpts().EmitOpenCLArgMetadata)
F->setMetadata("kernel_arg_name", llvm::MDNode::get(C, ArgNames));
return F;
}
void CodeGenModule::handleAMDGPUFlatWorkGroupSizeAttr(
llvm::Function *F, const AMDGPUFlatWorkGroupSizeAttr *FlatWGS,
const ReqdWorkGroupSizeAttr *ReqdWGS, int32_t *MinThreadsVal,
int32_t *MaxThreadsVal) {
unsigned Min = 0;
unsigned Max = 0;
if (FlatWGS) {
Min = FlatWGS->getMin()->EvaluateKnownConstInt(getContext()).getExtValue();
Max = FlatWGS->getMax()->EvaluateKnownConstInt(getContext()).getExtValue();
}
if (ReqdWGS && Min == 0 && Max == 0)
Min = Max = ReqdWGS->getXDim() * ReqdWGS->getYDim() * ReqdWGS->getZDim();
if (Min != 0) {
assert(Min <= Max && "Min must be less than or equal Max");
if (MinThreadsVal)
*MinThreadsVal = Min;
if (MaxThreadsVal)
*MaxThreadsVal = Max;
std::string AttrVal = llvm::utostr(Min) + "," + llvm::utostr(Max);
if (F)
F->addFnAttr("amdgpu-flat-work-group-size", AttrVal);
} else
assert(Max == 0 && "Max must be zero");
}
void CodeGenModule::handleAMDGPUWavesPerEUAttr(
llvm::Function *F, const AMDGPUWavesPerEUAttr *Attr) {
unsigned Min =
Attr->getMin()->EvaluateKnownConstInt(getContext()).getExtValue();
unsigned Max =
Attr->getMax()
? Attr->getMax()->EvaluateKnownConstInt(getContext()).getExtValue()
: 0;
if (Min != 0) {
assert((Max == 0 || Min <= Max) && "Min must be less than or equal Max");
std::string AttrVal = llvm::utostr(Min);
if (Max != 0)
AttrVal = AttrVal + "," + llvm::utostr(Max);
F->addFnAttr("amdgpu-waves-per-eu", AttrVal);
} else
assert(Max == 0 && "Max must be zero");
}
std::unique_ptr<TargetCodeGenInfo>
CodeGen::createAMDGPUTargetCodeGenInfo(CodeGenModule &CGM) {
return std::make_unique<AMDGPUTargetCodeGenInfo>(CGM.getTypes());
}
|