1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366
|
//===- NVPTX.cpp ----------------------------------------------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
#include "ABIInfoImpl.h"
#include "TargetInfo.h"
#include "llvm/IR/IntrinsicsNVPTX.h"
using namespace clang;
using namespace clang::CodeGen;
//===----------------------------------------------------------------------===//
// NVPTX ABI Implementation
//===----------------------------------------------------------------------===//
namespace {
class NVPTXTargetCodeGenInfo;
class NVPTXABIInfo : public ABIInfo {
NVPTXTargetCodeGenInfo &CGInfo;
public:
NVPTXABIInfo(CodeGenTypes &CGT, NVPTXTargetCodeGenInfo &Info)
: ABIInfo(CGT), CGInfo(Info) {}
ABIArgInfo classifyReturnType(QualType RetTy) const;
ABIArgInfo classifyArgumentType(QualType Ty) const;
void computeInfo(CGFunctionInfo &FI) const override;
RValue EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, QualType Ty,
AggValueSlot Slot) const override;
bool isUnsupportedType(QualType T) const;
ABIArgInfo coerceToIntArrayWithLimit(QualType Ty, unsigned MaxSize) const;
};
class NVPTXTargetCodeGenInfo : public TargetCodeGenInfo {
public:
NVPTXTargetCodeGenInfo(CodeGenTypes &CGT)
: TargetCodeGenInfo(std::make_unique<NVPTXABIInfo>(CGT, *this)) {}
void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV,
CodeGen::CodeGenModule &M) const override;
bool shouldEmitStaticExternCAliases() const override;
llvm::Constant *getNullPointer(const CodeGen::CodeGenModule &CGM,
llvm::PointerType *T,
QualType QT) const override;
llvm::Type *getCUDADeviceBuiltinSurfaceDeviceType() const override {
// On the device side, surface reference is represented as an object handle
// in 64-bit integer.
return llvm::Type::getInt64Ty(getABIInfo().getVMContext());
}
llvm::Type *getCUDADeviceBuiltinTextureDeviceType() const override {
// On the device side, texture reference is represented as an object handle
// in 64-bit integer.
return llvm::Type::getInt64Ty(getABIInfo().getVMContext());
}
bool emitCUDADeviceBuiltinSurfaceDeviceCopy(CodeGenFunction &CGF, LValue Dst,
LValue Src) const override {
emitBuiltinSurfTexDeviceCopy(CGF, Dst, Src);
return true;
}
bool emitCUDADeviceBuiltinTextureDeviceCopy(CodeGenFunction &CGF, LValue Dst,
LValue Src) const override {
emitBuiltinSurfTexDeviceCopy(CGF, Dst, Src);
return true;
}
// Adds a NamedMDNode with GV, Name, and Operand as operands, and adds the
// resulting MDNode to the nvvm.annotations MDNode.
static void addNVVMMetadata(llvm::GlobalValue *GV, StringRef Name,
int Operand);
private:
static void emitBuiltinSurfTexDeviceCopy(CodeGenFunction &CGF, LValue Dst,
LValue Src) {
llvm::Value *Handle = nullptr;
llvm::Constant *C =
llvm::dyn_cast<llvm::Constant>(Src.getAddress().emitRawPointer(CGF));
// Lookup `addrspacecast` through the constant pointer if any.
if (auto *ASC = llvm::dyn_cast_or_null<llvm::AddrSpaceCastOperator>(C))
C = llvm::cast<llvm::Constant>(ASC->getPointerOperand());
if (auto *GV = llvm::dyn_cast_or_null<llvm::GlobalVariable>(C)) {
// Load the handle from the specific global variable using
// `nvvm.texsurf.handle.internal` intrinsic.
Handle = CGF.EmitRuntimeCall(
CGF.CGM.getIntrinsic(llvm::Intrinsic::nvvm_texsurf_handle_internal,
{GV->getType()}),
{GV}, "texsurf_handle");
} else
Handle = CGF.EmitLoadOfScalar(Src, SourceLocation());
CGF.EmitStoreOfScalar(Handle, Dst);
}
};
/// Checks if the type is unsupported directly by the current target.
bool NVPTXABIInfo::isUnsupportedType(QualType T) const {
ASTContext &Context = getContext();
if (!Context.getTargetInfo().hasFloat16Type() && T->isFloat16Type())
return true;
if (!Context.getTargetInfo().hasFloat128Type() &&
(T->isFloat128Type() ||
(T->isRealFloatingType() && Context.getTypeSize(T) == 128)))
return true;
if (const auto *EIT = T->getAs<BitIntType>())
return EIT->getNumBits() >
(Context.getTargetInfo().hasInt128Type() ? 128U : 64U);
if (!Context.getTargetInfo().hasInt128Type() && T->isIntegerType() &&
Context.getTypeSize(T) > 64U)
return true;
if (const auto *AT = T->getAsArrayTypeUnsafe())
return isUnsupportedType(AT->getElementType());
const auto *RT = T->getAs<RecordType>();
if (!RT)
return false;
const RecordDecl *RD = RT->getDecl();
// If this is a C++ record, check the bases first.
if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD))
for (const CXXBaseSpecifier &I : CXXRD->bases())
if (isUnsupportedType(I.getType()))
return true;
for (const FieldDecl *I : RD->fields())
if (isUnsupportedType(I->getType()))
return true;
return false;
}
/// Coerce the given type into an array with maximum allowed size of elements.
ABIArgInfo NVPTXABIInfo::coerceToIntArrayWithLimit(QualType Ty,
unsigned MaxSize) const {
// Alignment and Size are measured in bits.
const uint64_t Size = getContext().getTypeSize(Ty);
const uint64_t Alignment = getContext().getTypeAlign(Ty);
const unsigned Div = std::min<unsigned>(MaxSize, Alignment);
llvm::Type *IntType = llvm::Type::getIntNTy(getVMContext(), Div);
const uint64_t NumElements = (Size + Div - 1) / Div;
return ABIArgInfo::getDirect(llvm::ArrayType::get(IntType, NumElements));
}
ABIArgInfo NVPTXABIInfo::classifyReturnType(QualType RetTy) const {
if (RetTy->isVoidType())
return ABIArgInfo::getIgnore();
if (getContext().getLangOpts().OpenMP &&
getContext().getLangOpts().OpenMPIsTargetDevice &&
isUnsupportedType(RetTy))
return coerceToIntArrayWithLimit(RetTy, 64);
// note: this is different from default ABI
if (!RetTy->isScalarType())
return ABIArgInfo::getDirect();
// Treat an enum type as its underlying type.
if (const EnumType *EnumTy = RetTy->getAs<EnumType>())
RetTy = EnumTy->getDecl()->getIntegerType();
return (isPromotableIntegerTypeForABI(RetTy) ? ABIArgInfo::getExtend(RetTy)
: ABIArgInfo::getDirect());
}
ABIArgInfo NVPTXABIInfo::classifyArgumentType(QualType Ty) const {
// Treat an enum type as its underlying type.
if (const EnumType *EnumTy = Ty->getAs<EnumType>())
Ty = EnumTy->getDecl()->getIntegerType();
// Return aggregates type as indirect by value
if (isAggregateTypeForABI(Ty)) {
// Under CUDA device compilation, tex/surf builtin types are replaced with
// object types and passed directly.
if (getContext().getLangOpts().CUDAIsDevice) {
if (Ty->isCUDADeviceBuiltinSurfaceType())
return ABIArgInfo::getDirect(
CGInfo.getCUDADeviceBuiltinSurfaceDeviceType());
if (Ty->isCUDADeviceBuiltinTextureType())
return ABIArgInfo::getDirect(
CGInfo.getCUDADeviceBuiltinTextureDeviceType());
}
return getNaturalAlignIndirect(Ty, /* byval */ true);
}
if (const auto *EIT = Ty->getAs<BitIntType>()) {
if ((EIT->getNumBits() > 128) ||
(!getContext().getTargetInfo().hasInt128Type() &&
EIT->getNumBits() > 64))
return getNaturalAlignIndirect(Ty, /* byval */ true);
}
return (isPromotableIntegerTypeForABI(Ty) ? ABIArgInfo::getExtend(Ty)
: ABIArgInfo::getDirect());
}
void NVPTXABIInfo::computeInfo(CGFunctionInfo &FI) const {
if (!getCXXABI().classifyReturnType(FI))
FI.getReturnInfo() = classifyReturnType(FI.getReturnType());
for (auto &&[ArgumentsCount, I] : llvm::enumerate(FI.arguments()))
I.info = ArgumentsCount < FI.getNumRequiredArgs()
? classifyArgumentType(I.type)
: ABIArgInfo::getDirect();
// Always honor user-specified calling convention.
if (FI.getCallingConvention() != llvm::CallingConv::C)
return;
FI.setEffectiveCallingConvention(getRuntimeCC());
}
RValue NVPTXABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
QualType Ty, AggValueSlot Slot) const {
return emitVoidPtrVAArg(CGF, VAListAddr, Ty, /*IsIndirect=*/false,
getContext().getTypeInfoInChars(Ty),
CharUnits::fromQuantity(1),
/*AllowHigherAlign=*/true, Slot);
}
void NVPTXTargetCodeGenInfo::setTargetAttributes(
const Decl *D, llvm::GlobalValue *GV, CodeGen::CodeGenModule &M) const {
if (GV->isDeclaration())
return;
const VarDecl *VD = dyn_cast_or_null<VarDecl>(D);
if (VD) {
if (M.getLangOpts().CUDA) {
if (VD->getType()->isCUDADeviceBuiltinSurfaceType())
addNVVMMetadata(GV, "surface", 1);
else if (VD->getType()->isCUDADeviceBuiltinTextureType())
addNVVMMetadata(GV, "texture", 1);
return;
}
}
const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D);
if (!FD) return;
llvm::Function *F = cast<llvm::Function>(GV);
// Perform special handling in OpenCL mode
if (M.getLangOpts().OpenCL) {
// Use OpenCL function attributes to check for kernel functions
// By default, all functions are device functions
if (FD->hasAttr<OpenCLKernelAttr>()) {
// OpenCL __kernel functions get kernel metadata
// Create !{<func-ref>, metadata !"kernel", i32 1} node
addNVVMMetadata(F, "kernel", 1);
// And kernel functions are not subject to inlining
F->addFnAttr(llvm::Attribute::NoInline);
}
}
// Perform special handling in CUDA mode.
if (M.getLangOpts().CUDA) {
// CUDA __global__ functions get a kernel metadata entry. Since
// __global__ functions cannot be called from the device, we do not
// need to set the noinline attribute.
if (FD->hasAttr<CUDAGlobalAttr>()) {
// Create !{<func-ref>, metadata !"kernel", i32 1} node
addNVVMMetadata(F, "kernel", 1);
}
if (CUDALaunchBoundsAttr *Attr = FD->getAttr<CUDALaunchBoundsAttr>())
M.handleCUDALaunchBoundsAttr(F, Attr);
}
// Attach kernel metadata directly if compiling for NVPTX.
if (FD->hasAttr<NVPTXKernelAttr>()) {
addNVVMMetadata(F, "kernel", 1);
}
}
void NVPTXTargetCodeGenInfo::addNVVMMetadata(llvm::GlobalValue *GV,
StringRef Name, int Operand) {
llvm::Module *M = GV->getParent();
llvm::LLVMContext &Ctx = M->getContext();
// Get "nvvm.annotations" metadata node
llvm::NamedMDNode *MD = M->getOrInsertNamedMetadata("nvvm.annotations");
llvm::Metadata *MDVals[] = {
llvm::ConstantAsMetadata::get(GV), llvm::MDString::get(Ctx, Name),
llvm::ConstantAsMetadata::get(
llvm::ConstantInt::get(llvm::Type::getInt32Ty(Ctx), Operand))};
// Append metadata to nvvm.annotations
MD->addOperand(llvm::MDNode::get(Ctx, MDVals));
}
bool NVPTXTargetCodeGenInfo::shouldEmitStaticExternCAliases() const {
return false;
}
llvm::Constant *
NVPTXTargetCodeGenInfo::getNullPointer(const CodeGen::CodeGenModule &CGM,
llvm::PointerType *PT,
QualType QT) const {
auto &Ctx = CGM.getContext();
if (PT->getAddressSpace() != Ctx.getTargetAddressSpace(LangAS::opencl_local))
return llvm::ConstantPointerNull::get(PT);
auto NPT = llvm::PointerType::get(
PT->getContext(), Ctx.getTargetAddressSpace(LangAS::opencl_generic));
return llvm::ConstantExpr::getAddrSpaceCast(
llvm::ConstantPointerNull::get(NPT), PT);
}
}
void CodeGenModule::handleCUDALaunchBoundsAttr(llvm::Function *F,
const CUDALaunchBoundsAttr *Attr,
int32_t *MaxThreadsVal,
int32_t *MinBlocksVal,
int32_t *MaxClusterRankVal) {
// Create !{<func-ref>, metadata !"maxntidx", i32 <val>} node
llvm::APSInt MaxThreads(32);
MaxThreads = Attr->getMaxThreads()->EvaluateKnownConstInt(getContext());
if (MaxThreads > 0) {
if (MaxThreadsVal)
*MaxThreadsVal = MaxThreads.getExtValue();
if (F) {
// Create !{<func-ref>, metadata !"maxntidx", i32 <val>} node
NVPTXTargetCodeGenInfo::addNVVMMetadata(F, "maxntidx",
MaxThreads.getExtValue());
}
}
// min and max blocks is an optional argument for CUDALaunchBoundsAttr. If it
// was not specified in __launch_bounds__ or if the user specified a 0 value,
// we don't have to add a PTX directive.
if (Attr->getMinBlocks()) {
llvm::APSInt MinBlocks(32);
MinBlocks = Attr->getMinBlocks()->EvaluateKnownConstInt(getContext());
if (MinBlocks > 0) {
if (MinBlocksVal)
*MinBlocksVal = MinBlocks.getExtValue();
if (F) {
// Create !{<func-ref>, metadata !"minctasm", i32 <val>} node
NVPTXTargetCodeGenInfo::addNVVMMetadata(F, "minctasm",
MinBlocks.getExtValue());
}
}
}
if (Attr->getMaxBlocks()) {
llvm::APSInt MaxBlocks(32);
MaxBlocks = Attr->getMaxBlocks()->EvaluateKnownConstInt(getContext());
if (MaxBlocks > 0) {
if (MaxClusterRankVal)
*MaxClusterRankVal = MaxBlocks.getExtValue();
if (F) {
// Create !{<func-ref>, metadata !"maxclusterrank", i32 <val>} node
NVPTXTargetCodeGenInfo::addNVVMMetadata(F, "maxclusterrank",
MaxBlocks.getExtValue());
}
}
}
}
std::unique_ptr<TargetCodeGenInfo>
CodeGen::createNVPTXTargetCodeGenInfo(CodeGenModule &CGM) {
return std::make_unique<NVPTXTargetCodeGenInfo>(CGM.getTypes());
}
|