1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540
|
//===- SystemZ.cpp --------------------------------------------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
#include "ABIInfoImpl.h"
#include "TargetInfo.h"
#include "clang/Basic/Builtins.h"
#include "llvm/IR/IntrinsicsS390.h"
using namespace clang;
using namespace clang::CodeGen;
//===----------------------------------------------------------------------===//
// SystemZ ABI Implementation
//===----------------------------------------------------------------------===//
namespace {
class SystemZABIInfo : public ABIInfo {
bool HasVector;
bool IsSoftFloatABI;
public:
SystemZABIInfo(CodeGenTypes &CGT, bool HV, bool SF)
: ABIInfo(CGT), HasVector(HV), IsSoftFloatABI(SF) {}
bool isPromotableIntegerTypeForABI(QualType Ty) const;
bool isCompoundType(QualType Ty) const;
bool isVectorArgumentType(QualType Ty) const;
bool isFPArgumentType(QualType Ty) const;
QualType GetSingleElementType(QualType Ty) const;
ABIArgInfo classifyReturnType(QualType RetTy) const;
ABIArgInfo classifyArgumentType(QualType ArgTy) const;
void computeInfo(CGFunctionInfo &FI) const override;
RValue EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, QualType Ty,
AggValueSlot Slot) const override;
};
class SystemZTargetCodeGenInfo : public TargetCodeGenInfo {
ASTContext &Ctx;
// These are used for speeding up the search for a visible vector ABI.
mutable bool HasVisibleVecABIFlag = false;
mutable std::set<const Type *> SeenTypes;
// Returns true (the first time) if Ty is, or is found to include, a vector
// type that exposes the vector ABI. This is any vector >=16 bytes which
// with vector support are aligned to only 8 bytes. When IsParam is true,
// the type belongs to a value as passed between functions. If it is a
// vector <=16 bytes it will be passed in a vector register (if supported).
bool isVectorTypeBased(const Type *Ty, bool IsParam) const;
public:
SystemZTargetCodeGenInfo(CodeGenTypes &CGT, bool HasVector, bool SoftFloatABI)
: TargetCodeGenInfo(
std::make_unique<SystemZABIInfo>(CGT, HasVector, SoftFloatABI)),
Ctx(CGT.getContext()) {
SwiftInfo =
std::make_unique<SwiftABIInfo>(CGT, /*SwiftErrorInRegister=*/false);
}
// The vector ABI is different when the vector facility is present and when
// a module e.g. defines an externally visible vector variable, a flag
// indicating a visible vector ABI is added. Eventually this will result in
// a GNU attribute indicating the vector ABI of the module. Ty is the type
// of a variable or function parameter that is globally visible.
void handleExternallyVisibleObjABI(const Type *Ty, CodeGen::CodeGenModule &M,
bool IsParam) const {
if (!HasVisibleVecABIFlag && isVectorTypeBased(Ty, IsParam)) {
M.getModule().addModuleFlag(llvm::Module::Warning,
"s390x-visible-vector-ABI", 1);
HasVisibleVecABIFlag = true;
}
}
void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV,
CodeGen::CodeGenModule &M) const override {
if (!D)
return;
// Check if the vector ABI becomes visible by an externally visible
// variable or function.
if (const auto *VD = dyn_cast<VarDecl>(D)) {
if (VD->isExternallyVisible())
handleExternallyVisibleObjABI(VD->getType().getTypePtr(), M,
/*IsParam*/false);
}
else if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
if (FD->isExternallyVisible())
handleExternallyVisibleObjABI(FD->getType().getTypePtr(), M,
/*IsParam*/false);
}
}
llvm::Value *testFPKind(llvm::Value *V, unsigned BuiltinID,
CGBuilderTy &Builder,
CodeGenModule &CGM) const override {
assert(V->getType()->isFloatingPointTy() && "V should have an FP type.");
// Only use TDC in constrained FP mode.
if (!Builder.getIsFPConstrained())
return nullptr;
llvm::Type *Ty = V->getType();
if (Ty->isFloatTy() || Ty->isDoubleTy() || Ty->isFP128Ty()) {
llvm::Module &M = CGM.getModule();
auto &Ctx = M.getContext();
llvm::Function *TDCFunc =
llvm::Intrinsic::getDeclaration(&M, llvm::Intrinsic::s390_tdc, Ty);
unsigned TDCBits = 0;
switch (BuiltinID) {
case Builtin::BI__builtin_isnan:
TDCBits = 0xf;
break;
case Builtin::BIfinite:
case Builtin::BI__finite:
case Builtin::BIfinitef:
case Builtin::BI__finitef:
case Builtin::BIfinitel:
case Builtin::BI__finitel:
case Builtin::BI__builtin_isfinite:
TDCBits = 0xfc0;
break;
case Builtin::BI__builtin_isinf:
TDCBits = 0x30;
break;
default:
break;
}
if (TDCBits)
return Builder.CreateCall(
TDCFunc,
{V, llvm::ConstantInt::get(llvm::Type::getInt64Ty(Ctx), TDCBits)});
}
return nullptr;
}
};
}
bool SystemZABIInfo::isPromotableIntegerTypeForABI(QualType Ty) const {
// Treat an enum type as its underlying type.
if (const EnumType *EnumTy = Ty->getAs<EnumType>())
Ty = EnumTy->getDecl()->getIntegerType();
// Promotable integer types are required to be promoted by the ABI.
if (ABIInfo::isPromotableIntegerTypeForABI(Ty))
return true;
if (const auto *EIT = Ty->getAs<BitIntType>())
if (EIT->getNumBits() < 64)
return true;
// 32-bit values must also be promoted.
if (const BuiltinType *BT = Ty->getAs<BuiltinType>())
switch (BT->getKind()) {
case BuiltinType::Int:
case BuiltinType::UInt:
return true;
default:
return false;
}
return false;
}
bool SystemZABIInfo::isCompoundType(QualType Ty) const {
return (Ty->isAnyComplexType() ||
Ty->isVectorType() ||
isAggregateTypeForABI(Ty));
}
bool SystemZABIInfo::isVectorArgumentType(QualType Ty) const {
return (HasVector &&
Ty->isVectorType() &&
getContext().getTypeSize(Ty) <= 128);
}
bool SystemZABIInfo::isFPArgumentType(QualType Ty) const {
if (IsSoftFloatABI)
return false;
if (const BuiltinType *BT = Ty->getAs<BuiltinType>())
switch (BT->getKind()) {
case BuiltinType::Float:
case BuiltinType::Double:
return true;
default:
return false;
}
return false;
}
QualType SystemZABIInfo::GetSingleElementType(QualType Ty) const {
const RecordType *RT = Ty->getAs<RecordType>();
if (RT && RT->isStructureOrClassType()) {
const RecordDecl *RD = RT->getDecl();
QualType Found;
// If this is a C++ record, check the bases first.
if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD))
if (CXXRD->hasDefinition())
for (const auto &I : CXXRD->bases()) {
QualType Base = I.getType();
// Empty bases don't affect things either way.
if (isEmptyRecord(getContext(), Base, true))
continue;
if (!Found.isNull())
return Ty;
Found = GetSingleElementType(Base);
}
// Check the fields.
for (const auto *FD : RD->fields()) {
// Unlike isSingleElementStruct(), empty structure and array fields
// do count. So do anonymous bitfields that aren't zero-sized.
// Like isSingleElementStruct(), ignore C++20 empty data members.
if (FD->hasAttr<NoUniqueAddressAttr>() &&
isEmptyRecord(getContext(), FD->getType(), true))
continue;
// Unlike isSingleElementStruct(), arrays do not count.
// Nested structures still do though.
if (!Found.isNull())
return Ty;
Found = GetSingleElementType(FD->getType());
}
// Unlike isSingleElementStruct(), trailing padding is allowed.
// An 8-byte aligned struct s { float f; } is passed as a double.
if (!Found.isNull())
return Found;
}
return Ty;
}
RValue SystemZABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
QualType Ty, AggValueSlot Slot) const {
// Assume that va_list type is correct; should be pointer to LLVM type:
// struct {
// i64 __gpr;
// i64 __fpr;
// i8 *__overflow_arg_area;
// i8 *__reg_save_area;
// };
// Every non-vector argument occupies 8 bytes and is passed by preference
// in either GPRs or FPRs. Vector arguments occupy 8 or 16 bytes and are
// always passed on the stack.
const SystemZTargetCodeGenInfo &SZCGI =
static_cast<const SystemZTargetCodeGenInfo &>(
CGT.getCGM().getTargetCodeGenInfo());
Ty = getContext().getCanonicalType(Ty);
auto TyInfo = getContext().getTypeInfoInChars(Ty);
llvm::Type *ArgTy = CGF.ConvertTypeForMem(Ty);
llvm::Type *DirectTy = ArgTy;
ABIArgInfo AI = classifyArgumentType(Ty);
bool IsIndirect = AI.isIndirect();
bool InFPRs = false;
bool IsVector = false;
CharUnits UnpaddedSize;
CharUnits DirectAlign;
SZCGI.handleExternallyVisibleObjABI(Ty.getTypePtr(), CGT.getCGM(),
/*IsParam*/true);
if (IsIndirect) {
DirectTy = llvm::PointerType::getUnqual(DirectTy);
UnpaddedSize = DirectAlign = CharUnits::fromQuantity(8);
} else {
if (AI.getCoerceToType())
ArgTy = AI.getCoerceToType();
InFPRs = (!IsSoftFloatABI && (ArgTy->isFloatTy() || ArgTy->isDoubleTy()));
IsVector = ArgTy->isVectorTy();
UnpaddedSize = TyInfo.Width;
DirectAlign = TyInfo.Align;
}
CharUnits PaddedSize = CharUnits::fromQuantity(8);
if (IsVector && UnpaddedSize > PaddedSize)
PaddedSize = CharUnits::fromQuantity(16);
assert((UnpaddedSize <= PaddedSize) && "Invalid argument size.");
CharUnits Padding = (PaddedSize - UnpaddedSize);
llvm::Type *IndexTy = CGF.Int64Ty;
llvm::Value *PaddedSizeV =
llvm::ConstantInt::get(IndexTy, PaddedSize.getQuantity());
if (IsVector) {
// Work out the address of a vector argument on the stack.
// Vector arguments are always passed in the high bits of a
// single (8 byte) or double (16 byte) stack slot.
Address OverflowArgAreaPtr =
CGF.Builder.CreateStructGEP(VAListAddr, 2, "overflow_arg_area_ptr");
Address OverflowArgArea =
Address(CGF.Builder.CreateLoad(OverflowArgAreaPtr, "overflow_arg_area"),
CGF.Int8Ty, TyInfo.Align);
Address MemAddr = OverflowArgArea.withElementType(DirectTy);
// Update overflow_arg_area_ptr pointer
llvm::Value *NewOverflowArgArea = CGF.Builder.CreateGEP(
OverflowArgArea.getElementType(), OverflowArgArea.emitRawPointer(CGF),
PaddedSizeV, "overflow_arg_area");
CGF.Builder.CreateStore(NewOverflowArgArea, OverflowArgAreaPtr);
return CGF.EmitLoadOfAnyValue(CGF.MakeAddrLValue(MemAddr, Ty), Slot);
}
assert(PaddedSize.getQuantity() == 8);
unsigned MaxRegs, RegCountField, RegSaveIndex;
CharUnits RegPadding;
if (InFPRs) {
MaxRegs = 4; // Maximum of 4 FPR arguments
RegCountField = 1; // __fpr
RegSaveIndex = 16; // save offset for f0
RegPadding = CharUnits(); // floats are passed in the high bits of an FPR
} else {
MaxRegs = 5; // Maximum of 5 GPR arguments
RegCountField = 0; // __gpr
RegSaveIndex = 2; // save offset for r2
RegPadding = Padding; // values are passed in the low bits of a GPR
}
Address RegCountPtr =
CGF.Builder.CreateStructGEP(VAListAddr, RegCountField, "reg_count_ptr");
llvm::Value *RegCount = CGF.Builder.CreateLoad(RegCountPtr, "reg_count");
llvm::Value *MaxRegsV = llvm::ConstantInt::get(IndexTy, MaxRegs);
llvm::Value *InRegs = CGF.Builder.CreateICmpULT(RegCount, MaxRegsV,
"fits_in_regs");
llvm::BasicBlock *InRegBlock = CGF.createBasicBlock("vaarg.in_reg");
llvm::BasicBlock *InMemBlock = CGF.createBasicBlock("vaarg.in_mem");
llvm::BasicBlock *ContBlock = CGF.createBasicBlock("vaarg.end");
CGF.Builder.CreateCondBr(InRegs, InRegBlock, InMemBlock);
// Emit code to load the value if it was passed in registers.
CGF.EmitBlock(InRegBlock);
// Work out the address of an argument register.
llvm::Value *ScaledRegCount =
CGF.Builder.CreateMul(RegCount, PaddedSizeV, "scaled_reg_count");
llvm::Value *RegBase =
llvm::ConstantInt::get(IndexTy, RegSaveIndex * PaddedSize.getQuantity()
+ RegPadding.getQuantity());
llvm::Value *RegOffset =
CGF.Builder.CreateAdd(ScaledRegCount, RegBase, "reg_offset");
Address RegSaveAreaPtr =
CGF.Builder.CreateStructGEP(VAListAddr, 3, "reg_save_area_ptr");
llvm::Value *RegSaveArea =
CGF.Builder.CreateLoad(RegSaveAreaPtr, "reg_save_area");
Address RawRegAddr(
CGF.Builder.CreateGEP(CGF.Int8Ty, RegSaveArea, RegOffset, "raw_reg_addr"),
CGF.Int8Ty, PaddedSize);
Address RegAddr = RawRegAddr.withElementType(DirectTy);
// Update the register count
llvm::Value *One = llvm::ConstantInt::get(IndexTy, 1);
llvm::Value *NewRegCount =
CGF.Builder.CreateAdd(RegCount, One, "reg_count");
CGF.Builder.CreateStore(NewRegCount, RegCountPtr);
CGF.EmitBranch(ContBlock);
// Emit code to load the value if it was passed in memory.
CGF.EmitBlock(InMemBlock);
// Work out the address of a stack argument.
Address OverflowArgAreaPtr =
CGF.Builder.CreateStructGEP(VAListAddr, 2, "overflow_arg_area_ptr");
Address OverflowArgArea =
Address(CGF.Builder.CreateLoad(OverflowArgAreaPtr, "overflow_arg_area"),
CGF.Int8Ty, PaddedSize);
Address RawMemAddr =
CGF.Builder.CreateConstByteGEP(OverflowArgArea, Padding, "raw_mem_addr");
Address MemAddr = RawMemAddr.withElementType(DirectTy);
// Update overflow_arg_area_ptr pointer
llvm::Value *NewOverflowArgArea = CGF.Builder.CreateGEP(
OverflowArgArea.getElementType(), OverflowArgArea.emitRawPointer(CGF),
PaddedSizeV, "overflow_arg_area");
CGF.Builder.CreateStore(NewOverflowArgArea, OverflowArgAreaPtr);
CGF.EmitBranch(ContBlock);
// Return the appropriate result.
CGF.EmitBlock(ContBlock);
Address ResAddr = emitMergePHI(CGF, RegAddr, InRegBlock, MemAddr, InMemBlock,
"va_arg.addr");
if (IsIndirect)
ResAddr = Address(CGF.Builder.CreateLoad(ResAddr, "indirect_arg"), ArgTy,
TyInfo.Align);
return CGF.EmitLoadOfAnyValue(CGF.MakeAddrLValue(ResAddr, Ty), Slot);
}
ABIArgInfo SystemZABIInfo::classifyReturnType(QualType RetTy) const {
if (RetTy->isVoidType())
return ABIArgInfo::getIgnore();
if (isVectorArgumentType(RetTy))
return ABIArgInfo::getDirect();
if (isCompoundType(RetTy) || getContext().getTypeSize(RetTy) > 64)
return getNaturalAlignIndirect(RetTy);
return (isPromotableIntegerTypeForABI(RetTy) ? ABIArgInfo::getExtend(RetTy)
: ABIArgInfo::getDirect());
}
ABIArgInfo SystemZABIInfo::classifyArgumentType(QualType Ty) const {
// Handle transparent union types.
Ty = useFirstFieldIfTransparentUnion(Ty);
// Handle the generic C++ ABI.
if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI()))
return getNaturalAlignIndirect(Ty, RAA == CGCXXABI::RAA_DirectInMemory);
// Integers and enums are extended to full register width.
if (isPromotableIntegerTypeForABI(Ty))
return ABIArgInfo::getExtend(Ty, CGT.ConvertType(Ty));
// Handle vector types and vector-like structure types. Note that
// as opposed to float-like structure types, we do not allow any
// padding for vector-like structures, so verify the sizes match.
uint64_t Size = getContext().getTypeSize(Ty);
QualType SingleElementTy = GetSingleElementType(Ty);
if (isVectorArgumentType(SingleElementTy) &&
getContext().getTypeSize(SingleElementTy) == Size)
return ABIArgInfo::getDirect(CGT.ConvertType(SingleElementTy));
// Values that are not 1, 2, 4 or 8 bytes in size are passed indirectly.
if (Size != 8 && Size != 16 && Size != 32 && Size != 64)
return getNaturalAlignIndirect(Ty, /*ByVal=*/false);
// Handle small structures.
if (const RecordType *RT = Ty->getAs<RecordType>()) {
// Structures with flexible arrays have variable length, so really
// fail the size test above.
const RecordDecl *RD = RT->getDecl();
if (RD->hasFlexibleArrayMember())
return getNaturalAlignIndirect(Ty, /*ByVal=*/false);
// The structure is passed as an unextended integer, a float, or a double.
llvm::Type *PassTy;
if (isFPArgumentType(SingleElementTy)) {
assert(Size == 32 || Size == 64);
if (Size == 32)
PassTy = llvm::Type::getFloatTy(getVMContext());
else
PassTy = llvm::Type::getDoubleTy(getVMContext());
} else
PassTy = llvm::IntegerType::get(getVMContext(), Size);
return ABIArgInfo::getDirect(PassTy);
}
// Non-structure compounds are passed indirectly.
if (isCompoundType(Ty))
return getNaturalAlignIndirect(Ty, /*ByVal=*/false);
return ABIArgInfo::getDirect(nullptr);
}
void SystemZABIInfo::computeInfo(CGFunctionInfo &FI) const {
const SystemZTargetCodeGenInfo &SZCGI =
static_cast<const SystemZTargetCodeGenInfo &>(
CGT.getCGM().getTargetCodeGenInfo());
if (!getCXXABI().classifyReturnType(FI))
FI.getReturnInfo() = classifyReturnType(FI.getReturnType());
unsigned Idx = 0;
for (auto &I : FI.arguments()) {
I.info = classifyArgumentType(I.type);
if (FI.isVariadic() && Idx++ >= FI.getNumRequiredArgs())
// Check if a vararg vector argument is passed, in which case the
// vector ABI becomes visible as the va_list could be passed on to
// other functions.
SZCGI.handleExternallyVisibleObjABI(I.type.getTypePtr(), CGT.getCGM(),
/*IsParam*/true);
}
}
bool SystemZTargetCodeGenInfo::isVectorTypeBased(const Type *Ty,
bool IsParam) const {
if (!SeenTypes.insert(Ty).second)
return false;
if (IsParam) {
// A narrow (<16 bytes) vector will as a parameter also expose the ABI as
// it will be passed in a vector register. A wide (>16 bytes) vector will
// be passed via "hidden" pointer where any extra alignment is not
// required (per GCC).
const Type *SingleEltTy = getABIInfo<SystemZABIInfo>()
.GetSingleElementType(QualType(Ty, 0))
.getTypePtr();
bool SingleVecEltStruct = SingleEltTy != Ty && SingleEltTy->isVectorType() &&
Ctx.getTypeSize(SingleEltTy) == Ctx.getTypeSize(Ty);
if (Ty->isVectorType() || SingleVecEltStruct)
return Ctx.getTypeSize(Ty) / 8 <= 16;
}
// Assume pointers are dereferenced.
while (Ty->isPointerType() || Ty->isArrayType())
Ty = Ty->getPointeeOrArrayElementType();
// Vectors >= 16 bytes expose the ABI through alignment requirements.
if (Ty->isVectorType() && Ctx.getTypeSize(Ty) / 8 >= 16)
return true;
if (const auto *RecordTy = Ty->getAs<RecordType>()) {
const RecordDecl *RD = RecordTy->getDecl();
if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD))
if (CXXRD->hasDefinition())
for (const auto &I : CXXRD->bases())
if (isVectorTypeBased(I.getType().getTypePtr(), /*IsParam*/false))
return true;
for (const auto *FD : RD->fields())
if (isVectorTypeBased(FD->getType().getTypePtr(), /*IsParam*/false))
return true;
}
if (const auto *FT = Ty->getAs<FunctionType>())
if (isVectorTypeBased(FT->getReturnType().getTypePtr(), /*IsParam*/true))
return true;
if (const FunctionProtoType *Proto = Ty->getAs<FunctionProtoType>())
for (const auto &ParamType : Proto->getParamTypes())
if (isVectorTypeBased(ParamType.getTypePtr(), /*IsParam*/true))
return true;
return false;
}
std::unique_ptr<TargetCodeGenInfo>
CodeGen::createSystemZTargetCodeGenInfo(CodeGenModule &CGM, bool HasVector,
bool SoftFloatABI) {
return std::make_unique<SystemZTargetCodeGenInfo>(CGM.getTypes(), HasVector,
SoftFloatABI);
}
|