1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662
|
//===- XCore.cpp ----------------------------------------------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
#include "ABIInfoImpl.h"
#include "TargetInfo.h"
using namespace clang;
using namespace clang::CodeGen;
//===----------------------------------------------------------------------===//
// XCore ABI Implementation
//===----------------------------------------------------------------------===//
namespace {
/// A SmallStringEnc instance is used to build up the TypeString by passing
/// it by reference between functions that append to it.
typedef llvm::SmallString<128> SmallStringEnc;
/// TypeStringCache caches the meta encodings of Types.
///
/// The reason for caching TypeStrings is two fold:
/// 1. To cache a type's encoding for later uses;
/// 2. As a means to break recursive member type inclusion.
///
/// A cache Entry can have a Status of:
/// NonRecursive: The type encoding is not recursive;
/// Recursive: The type encoding is recursive;
/// Incomplete: An incomplete TypeString;
/// IncompleteUsed: An incomplete TypeString that has been used in a
/// Recursive type encoding.
///
/// A NonRecursive entry will have all of its sub-members expanded as fully
/// as possible. Whilst it may contain types which are recursive, the type
/// itself is not recursive and thus its encoding may be safely used whenever
/// the type is encountered.
///
/// A Recursive entry will have all of its sub-members expanded as fully as
/// possible. The type itself is recursive and it may contain other types which
/// are recursive. The Recursive encoding must not be used during the expansion
/// of a recursive type's recursive branch. For simplicity the code uses
/// IncompleteCount to reject all usage of Recursive encodings for member types.
///
/// An Incomplete entry is always a RecordType and only encodes its
/// identifier e.g. "s(S){}". Incomplete 'StubEnc' entries are ephemeral and
/// are placed into the cache during type expansion as a means to identify and
/// handle recursive inclusion of types as sub-members. If there is recursion
/// the entry becomes IncompleteUsed.
///
/// During the expansion of a RecordType's members:
///
/// If the cache contains a NonRecursive encoding for the member type, the
/// cached encoding is used;
///
/// If the cache contains a Recursive encoding for the member type, the
/// cached encoding is 'Swapped' out, as it may be incorrect, and...
///
/// If the member is a RecordType, an Incomplete encoding is placed into the
/// cache to break potential recursive inclusion of itself as a sub-member;
///
/// Once a member RecordType has been expanded, its temporary incomplete
/// entry is removed from the cache. If a Recursive encoding was swapped out
/// it is swapped back in;
///
/// If an incomplete entry is used to expand a sub-member, the incomplete
/// entry is marked as IncompleteUsed. The cache keeps count of how many
/// IncompleteUsed entries it currently contains in IncompleteUsedCount;
///
/// If a member's encoding is found to be a NonRecursive or Recursive viz:
/// IncompleteUsedCount==0, the member's encoding is added to the cache.
/// Else the member is part of a recursive type and thus the recursion has
/// been exited too soon for the encoding to be correct for the member.
///
class TypeStringCache {
enum Status {NonRecursive, Recursive, Incomplete, IncompleteUsed};
struct Entry {
std::string Str; // The encoded TypeString for the type.
enum Status State; // Information about the encoding in 'Str'.
std::string Swapped; // A temporary place holder for a Recursive encoding
// during the expansion of RecordType's members.
};
std::map<const IdentifierInfo *, struct Entry> Map;
unsigned IncompleteCount; // Number of Incomplete entries in the Map.
unsigned IncompleteUsedCount; // Number of IncompleteUsed entries in the Map.
public:
TypeStringCache() : IncompleteCount(0), IncompleteUsedCount(0) {}
void addIncomplete(const IdentifierInfo *ID, std::string StubEnc);
bool removeIncomplete(const IdentifierInfo *ID);
void addIfComplete(const IdentifierInfo *ID, StringRef Str,
bool IsRecursive);
StringRef lookupStr(const IdentifierInfo *ID);
};
/// TypeString encodings for enum & union fields must be order.
/// FieldEncoding is a helper for this ordering process.
class FieldEncoding {
bool HasName;
std::string Enc;
public:
FieldEncoding(bool b, SmallStringEnc &e) : HasName(b), Enc(e.c_str()) {}
StringRef str() { return Enc; }
bool operator<(const FieldEncoding &rhs) const {
if (HasName != rhs.HasName) return HasName;
return Enc < rhs.Enc;
}
};
class XCoreABIInfo : public DefaultABIInfo {
public:
XCoreABIInfo(CodeGen::CodeGenTypes &CGT) : DefaultABIInfo(CGT) {}
RValue EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, QualType Ty,
AggValueSlot Slot) const override;
};
class XCoreTargetCodeGenInfo : public TargetCodeGenInfo {
mutable TypeStringCache TSC;
void emitTargetMD(const Decl *D, llvm::GlobalValue *GV,
const CodeGen::CodeGenModule &M) const;
public:
XCoreTargetCodeGenInfo(CodeGenTypes &CGT)
: TargetCodeGenInfo(std::make_unique<XCoreABIInfo>(CGT)) {}
void emitTargetMetadata(CodeGen::CodeGenModule &CGM,
const llvm::MapVector<GlobalDecl, StringRef>
&MangledDeclNames) const override;
};
} // End anonymous namespace.
// TODO: this implementation is likely now redundant with the default
// EmitVAArg.
RValue XCoreABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
QualType Ty, AggValueSlot Slot) const {
CGBuilderTy &Builder = CGF.Builder;
// Get the VAList.
CharUnits SlotSize = CharUnits::fromQuantity(4);
Address AP = Address(Builder.CreateLoad(VAListAddr),
getVAListElementType(CGF), SlotSize);
// Handle the argument.
ABIArgInfo AI = classifyArgumentType(Ty);
CharUnits TypeAlign = getContext().getTypeAlignInChars(Ty);
llvm::Type *ArgTy = CGT.ConvertType(Ty);
if (AI.canHaveCoerceToType() && !AI.getCoerceToType())
AI.setCoerceToType(ArgTy);
llvm::Type *ArgPtrTy = llvm::PointerType::getUnqual(ArgTy);
Address Val = Address::invalid();
CharUnits ArgSize = CharUnits::Zero();
switch (AI.getKind()) {
case ABIArgInfo::Expand:
case ABIArgInfo::CoerceAndExpand:
case ABIArgInfo::InAlloca:
llvm_unreachable("Unsupported ABI kind for va_arg");
case ABIArgInfo::Ignore:
Val = Address(llvm::UndefValue::get(ArgPtrTy), ArgTy, TypeAlign);
ArgSize = CharUnits::Zero();
break;
case ABIArgInfo::Extend:
case ABIArgInfo::Direct:
Val = AP.withElementType(ArgTy);
ArgSize = CharUnits::fromQuantity(
getDataLayout().getTypeAllocSize(AI.getCoerceToType()));
ArgSize = ArgSize.alignTo(SlotSize);
break;
case ABIArgInfo::Indirect:
case ABIArgInfo::IndirectAliased:
Val = AP.withElementType(ArgPtrTy);
Val = Address(Builder.CreateLoad(Val), ArgTy, TypeAlign);
ArgSize = SlotSize;
break;
}
// Increment the VAList.
if (!ArgSize.isZero()) {
Address APN = Builder.CreateConstInBoundsByteGEP(AP, ArgSize);
Builder.CreateStore(APN.emitRawPointer(CGF), VAListAddr);
}
return CGF.EmitLoadOfAnyValue(CGF.MakeAddrLValue(Val, Ty), Slot);
}
/// During the expansion of a RecordType, an incomplete TypeString is placed
/// into the cache as a means to identify and break recursion.
/// If there is a Recursive encoding in the cache, it is swapped out and will
/// be reinserted by removeIncomplete().
/// All other types of encoding should have been used rather than arriving here.
void TypeStringCache::addIncomplete(const IdentifierInfo *ID,
std::string StubEnc) {
if (!ID)
return;
Entry &E = Map[ID];
assert( (E.Str.empty() || E.State == Recursive) &&
"Incorrectly use of addIncomplete");
assert(!StubEnc.empty() && "Passing an empty string to addIncomplete()");
E.Swapped.swap(E.Str); // swap out the Recursive
E.Str.swap(StubEnc);
E.State = Incomplete;
++IncompleteCount;
}
/// Once the RecordType has been expanded, the temporary incomplete TypeString
/// must be removed from the cache.
/// If a Recursive was swapped out by addIncomplete(), it will be replaced.
/// Returns true if the RecordType was defined recursively.
bool TypeStringCache::removeIncomplete(const IdentifierInfo *ID) {
if (!ID)
return false;
auto I = Map.find(ID);
assert(I != Map.end() && "Entry not present");
Entry &E = I->second;
assert( (E.State == Incomplete ||
E.State == IncompleteUsed) &&
"Entry must be an incomplete type");
bool IsRecursive = false;
if (E.State == IncompleteUsed) {
// We made use of our Incomplete encoding, thus we are recursive.
IsRecursive = true;
--IncompleteUsedCount;
}
if (E.Swapped.empty())
Map.erase(I);
else {
// Swap the Recursive back.
E.Swapped.swap(E.Str);
E.Swapped.clear();
E.State = Recursive;
}
--IncompleteCount;
return IsRecursive;
}
/// Add the encoded TypeString to the cache only if it is NonRecursive or
/// Recursive (viz: all sub-members were expanded as fully as possible).
void TypeStringCache::addIfComplete(const IdentifierInfo *ID, StringRef Str,
bool IsRecursive) {
if (!ID || IncompleteUsedCount)
return; // No key or it is an incomplete sub-type so don't add.
Entry &E = Map[ID];
if (IsRecursive && !E.Str.empty()) {
assert(E.State==Recursive && E.Str.size() == Str.size() &&
"This is not the same Recursive entry");
// The parent container was not recursive after all, so we could have used
// this Recursive sub-member entry after all, but we assumed the worse when
// we started viz: IncompleteCount!=0.
return;
}
assert(E.Str.empty() && "Entry already present");
E.Str = Str.str();
E.State = IsRecursive? Recursive : NonRecursive;
}
/// Return a cached TypeString encoding for the ID. If there isn't one, or we
/// are recursively expanding a type (IncompleteCount != 0) and the cached
/// encoding is Recursive, return an empty StringRef.
StringRef TypeStringCache::lookupStr(const IdentifierInfo *ID) {
if (!ID)
return StringRef(); // We have no key.
auto I = Map.find(ID);
if (I == Map.end())
return StringRef(); // We have no encoding.
Entry &E = I->second;
if (E.State == Recursive && IncompleteCount)
return StringRef(); // We don't use Recursive encodings for member types.
if (E.State == Incomplete) {
// The incomplete type is being used to break out of recursion.
E.State = IncompleteUsed;
++IncompleteUsedCount;
}
return E.Str;
}
/// The XCore ABI includes a type information section that communicates symbol
/// type information to the linker. The linker uses this information to verify
/// safety/correctness of things such as array bound and pointers et al.
/// The ABI only requires C (and XC) language modules to emit TypeStrings.
/// This type information (TypeString) is emitted into meta data for all global
/// symbols: definitions, declarations, functions & variables.
///
/// The TypeString carries type, qualifier, name, size & value details.
/// Please see 'Tools Development Guide' section 2.16.2 for format details:
/// https://www.xmos.com/download/public/Tools-Development-Guide%28X9114A%29.pdf
/// The output is tested by test/CodeGen/xcore-stringtype.c.
///
static bool getTypeString(SmallStringEnc &Enc, const Decl *D,
const CodeGen::CodeGenModule &CGM,
TypeStringCache &TSC);
/// XCore uses emitTargetMD to emit TypeString metadata for global symbols.
void XCoreTargetCodeGenInfo::emitTargetMD(
const Decl *D, llvm::GlobalValue *GV,
const CodeGen::CodeGenModule &CGM) const {
SmallStringEnc Enc;
if (getTypeString(Enc, D, CGM, TSC)) {
llvm::LLVMContext &Ctx = CGM.getModule().getContext();
llvm::Metadata *MDVals[] = {llvm::ConstantAsMetadata::get(GV),
llvm::MDString::get(Ctx, Enc.str())};
llvm::NamedMDNode *MD =
CGM.getModule().getOrInsertNamedMetadata("xcore.typestrings");
MD->addOperand(llvm::MDNode::get(Ctx, MDVals));
}
}
void XCoreTargetCodeGenInfo::emitTargetMetadata(
CodeGen::CodeGenModule &CGM,
const llvm::MapVector<GlobalDecl, StringRef> &MangledDeclNames) const {
// Warning, new MangledDeclNames may be appended within this loop.
// We rely on MapVector insertions adding new elements to the end
// of the container.
for (unsigned I = 0; I != MangledDeclNames.size(); ++I) {
auto Val = *(MangledDeclNames.begin() + I);
llvm::GlobalValue *GV = CGM.GetGlobalValue(Val.second);
if (GV) {
const Decl *D = Val.first.getDecl()->getMostRecentDecl();
emitTargetMD(D, GV, CGM);
}
}
}
static bool appendType(SmallStringEnc &Enc, QualType QType,
const CodeGen::CodeGenModule &CGM,
TypeStringCache &TSC);
/// Helper function for appendRecordType().
/// Builds a SmallVector containing the encoded field types in declaration
/// order.
static bool extractFieldType(SmallVectorImpl<FieldEncoding> &FE,
const RecordDecl *RD,
const CodeGen::CodeGenModule &CGM,
TypeStringCache &TSC) {
for (const auto *Field : RD->fields()) {
SmallStringEnc Enc;
Enc += "m(";
Enc += Field->getName();
Enc += "){";
if (Field->isBitField()) {
Enc += "b(";
llvm::raw_svector_ostream OS(Enc);
OS << Field->getBitWidthValue(CGM.getContext());
Enc += ':';
}
if (!appendType(Enc, Field->getType(), CGM, TSC))
return false;
if (Field->isBitField())
Enc += ')';
Enc += '}';
FE.emplace_back(!Field->getName().empty(), Enc);
}
return true;
}
/// Appends structure and union types to Enc and adds encoding to cache.
/// Recursively calls appendType (via extractFieldType) for each field.
/// Union types have their fields ordered according to the ABI.
static bool appendRecordType(SmallStringEnc &Enc, const RecordType *RT,
const CodeGen::CodeGenModule &CGM,
TypeStringCache &TSC, const IdentifierInfo *ID) {
// Append the cached TypeString if we have one.
StringRef TypeString = TSC.lookupStr(ID);
if (!TypeString.empty()) {
Enc += TypeString;
return true;
}
// Start to emit an incomplete TypeString.
size_t Start = Enc.size();
Enc += (RT->isUnionType()? 'u' : 's');
Enc += '(';
if (ID)
Enc += ID->getName();
Enc += "){";
// We collect all encoded fields and order as necessary.
bool IsRecursive = false;
const RecordDecl *RD = RT->getDecl()->getDefinition();
if (RD && !RD->field_empty()) {
// An incomplete TypeString stub is placed in the cache for this RecordType
// so that recursive calls to this RecordType will use it whilst building a
// complete TypeString for this RecordType.
SmallVector<FieldEncoding, 16> FE;
std::string StubEnc(Enc.substr(Start).str());
StubEnc += '}'; // StubEnc now holds a valid incomplete TypeString.
TSC.addIncomplete(ID, std::move(StubEnc));
if (!extractFieldType(FE, RD, CGM, TSC)) {
(void) TSC.removeIncomplete(ID);
return false;
}
IsRecursive = TSC.removeIncomplete(ID);
// The ABI requires unions to be sorted but not structures.
// See FieldEncoding::operator< for sort algorithm.
if (RT->isUnionType())
llvm::sort(FE);
// We can now complete the TypeString.
unsigned E = FE.size();
for (unsigned I = 0; I != E; ++I) {
if (I)
Enc += ',';
Enc += FE[I].str();
}
}
Enc += '}';
TSC.addIfComplete(ID, Enc.substr(Start), IsRecursive);
return true;
}
/// Appends enum types to Enc and adds the encoding to the cache.
static bool appendEnumType(SmallStringEnc &Enc, const EnumType *ET,
TypeStringCache &TSC,
const IdentifierInfo *ID) {
// Append the cached TypeString if we have one.
StringRef TypeString = TSC.lookupStr(ID);
if (!TypeString.empty()) {
Enc += TypeString;
return true;
}
size_t Start = Enc.size();
Enc += "e(";
if (ID)
Enc += ID->getName();
Enc += "){";
// We collect all encoded enumerations and order them alphanumerically.
if (const EnumDecl *ED = ET->getDecl()->getDefinition()) {
SmallVector<FieldEncoding, 16> FE;
for (auto I = ED->enumerator_begin(), E = ED->enumerator_end(); I != E;
++I) {
SmallStringEnc EnumEnc;
EnumEnc += "m(";
EnumEnc += I->getName();
EnumEnc += "){";
I->getInitVal().toString(EnumEnc);
EnumEnc += '}';
FE.push_back(FieldEncoding(!I->getName().empty(), EnumEnc));
}
llvm::sort(FE);
unsigned E = FE.size();
for (unsigned I = 0; I != E; ++I) {
if (I)
Enc += ',';
Enc += FE[I].str();
}
}
Enc += '}';
TSC.addIfComplete(ID, Enc.substr(Start), false);
return true;
}
/// Appends type's qualifier to Enc.
/// This is done prior to appending the type's encoding.
static void appendQualifier(SmallStringEnc &Enc, QualType QT) {
// Qualifiers are emitted in alphabetical order.
static const char *const Table[]={"","c:","r:","cr:","v:","cv:","rv:","crv:"};
int Lookup = 0;
if (QT.isConstQualified())
Lookup += 1<<0;
if (QT.isRestrictQualified())
Lookup += 1<<1;
if (QT.isVolatileQualified())
Lookup += 1<<2;
Enc += Table[Lookup];
}
/// Appends built-in types to Enc.
static bool appendBuiltinType(SmallStringEnc &Enc, const BuiltinType *BT) {
const char *EncType;
switch (BT->getKind()) {
case BuiltinType::Void:
EncType = "0";
break;
case BuiltinType::Bool:
EncType = "b";
break;
case BuiltinType::Char_U:
EncType = "uc";
break;
case BuiltinType::UChar:
EncType = "uc";
break;
case BuiltinType::SChar:
EncType = "sc";
break;
case BuiltinType::UShort:
EncType = "us";
break;
case BuiltinType::Short:
EncType = "ss";
break;
case BuiltinType::UInt:
EncType = "ui";
break;
case BuiltinType::Int:
EncType = "si";
break;
case BuiltinType::ULong:
EncType = "ul";
break;
case BuiltinType::Long:
EncType = "sl";
break;
case BuiltinType::ULongLong:
EncType = "ull";
break;
case BuiltinType::LongLong:
EncType = "sll";
break;
case BuiltinType::Float:
EncType = "ft";
break;
case BuiltinType::Double:
EncType = "d";
break;
case BuiltinType::LongDouble:
EncType = "ld";
break;
default:
return false;
}
Enc += EncType;
return true;
}
/// Appends a pointer encoding to Enc before calling appendType for the pointee.
static bool appendPointerType(SmallStringEnc &Enc, const PointerType *PT,
const CodeGen::CodeGenModule &CGM,
TypeStringCache &TSC) {
Enc += "p(";
if (!appendType(Enc, PT->getPointeeType(), CGM, TSC))
return false;
Enc += ')';
return true;
}
/// Appends array encoding to Enc before calling appendType for the element.
static bool appendArrayType(SmallStringEnc &Enc, QualType QT,
const ArrayType *AT,
const CodeGen::CodeGenModule &CGM,
TypeStringCache &TSC, StringRef NoSizeEnc) {
if (AT->getSizeModifier() != ArraySizeModifier::Normal)
return false;
Enc += "a(";
if (const ConstantArrayType *CAT = dyn_cast<ConstantArrayType>(AT))
CAT->getSize().toStringUnsigned(Enc);
else
Enc += NoSizeEnc; // Global arrays use "*", otherwise it is "".
Enc += ':';
// The Qualifiers should be attached to the type rather than the array.
appendQualifier(Enc, QT);
if (!appendType(Enc, AT->getElementType(), CGM, TSC))
return false;
Enc += ')';
return true;
}
/// Appends a function encoding to Enc, calling appendType for the return type
/// and the arguments.
static bool appendFunctionType(SmallStringEnc &Enc, const FunctionType *FT,
const CodeGen::CodeGenModule &CGM,
TypeStringCache &TSC) {
Enc += "f{";
if (!appendType(Enc, FT->getReturnType(), CGM, TSC))
return false;
Enc += "}(";
if (const FunctionProtoType *FPT = FT->getAs<FunctionProtoType>()) {
// N.B. we are only interested in the adjusted param types.
auto I = FPT->param_type_begin();
auto E = FPT->param_type_end();
if (I != E) {
do {
if (!appendType(Enc, *I, CGM, TSC))
return false;
++I;
if (I != E)
Enc += ',';
} while (I != E);
if (FPT->isVariadic())
Enc += ",va";
} else {
if (FPT->isVariadic())
Enc += "va";
else
Enc += '0';
}
}
Enc += ')';
return true;
}
/// Handles the type's qualifier before dispatching a call to handle specific
/// type encodings.
static bool appendType(SmallStringEnc &Enc, QualType QType,
const CodeGen::CodeGenModule &CGM,
TypeStringCache &TSC) {
QualType QT = QType.getCanonicalType();
if (const ArrayType *AT = QT->getAsArrayTypeUnsafe())
// The Qualifiers should be attached to the type rather than the array.
// Thus we don't call appendQualifier() here.
return appendArrayType(Enc, QT, AT, CGM, TSC, "");
appendQualifier(Enc, QT);
if (const BuiltinType *BT = QT->getAs<BuiltinType>())
return appendBuiltinType(Enc, BT);
if (const PointerType *PT = QT->getAs<PointerType>())
return appendPointerType(Enc, PT, CGM, TSC);
if (const EnumType *ET = QT->getAs<EnumType>())
return appendEnumType(Enc, ET, TSC, QT.getBaseTypeIdentifier());
if (const RecordType *RT = QT->getAsStructureType())
return appendRecordType(Enc, RT, CGM, TSC, QT.getBaseTypeIdentifier());
if (const RecordType *RT = QT->getAsUnionType())
return appendRecordType(Enc, RT, CGM, TSC, QT.getBaseTypeIdentifier());
if (const FunctionType *FT = QT->getAs<FunctionType>())
return appendFunctionType(Enc, FT, CGM, TSC);
return false;
}
static bool getTypeString(SmallStringEnc &Enc, const Decl *D,
const CodeGen::CodeGenModule &CGM,
TypeStringCache &TSC) {
if (!D)
return false;
if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
if (FD->getLanguageLinkage() != CLanguageLinkage)
return false;
return appendType(Enc, FD->getType(), CGM, TSC);
}
if (const VarDecl *VD = dyn_cast<VarDecl>(D)) {
if (VD->getLanguageLinkage() != CLanguageLinkage)
return false;
QualType QT = VD->getType().getCanonicalType();
if (const ArrayType *AT = QT->getAsArrayTypeUnsafe()) {
// Global ArrayTypes are given a size of '*' if the size is unknown.
// The Qualifiers should be attached to the type rather than the array.
// Thus we don't call appendQualifier() here.
return appendArrayType(Enc, QT, AT, CGM, TSC, "*");
}
return appendType(Enc, QT, CGM, TSC);
}
return false;
}
std::unique_ptr<TargetCodeGenInfo>
CodeGen::createXCoreTargetCodeGenInfo(CodeGenModule &CGM) {
return std::make_unique<XCoreTargetCodeGenInfo>(CGM.getTypes());
}
|