1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238
|
/*===-------------------- sm3intrin.h - SM3 intrinsics ---------------------===
*
* Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
* See https://llvm.org/LICENSE.txt for license information.
* SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
*
*===-----------------------------------------------------------------------===
*/
#ifndef __IMMINTRIN_H
#error "Never use <sm3intrin.h> directly; include <immintrin.h> instead."
#endif // __IMMINTRIN_H
#ifndef __SM3INTRIN_H
#define __SM3INTRIN_H
#define __DEFAULT_FN_ATTRS128 \
__attribute__((__always_inline__, __nodebug__, __target__("sm3"), \
__min_vector_width__(128)))
/// This intrinisc is one of the two SM3 message scheduling intrinsics. The
/// intrinsic performs an initial calculation for the next four SM3 message
/// words. The calculated results are stored in \a dst.
///
/// \headerfile <immintrin.h>
///
/// \code
/// __m128i _mm_sm3msg1_epi32(__m128i __A, __m128i __B, __m128i __C)
/// \endcode
///
/// This intrinsic corresponds to the \c VSM3MSG1 instruction.
///
/// \param __A
/// A 128-bit vector of [4 x int].
/// \param __B
/// A 128-bit vector of [4 x int].
/// \param __C
/// A 128-bit vector of [4 x int].
/// \returns
/// A 128-bit vector of [4 x int].
///
/// \code{.operation}
/// DEFINE ROL32(dword, n) {
/// count := n % 32
/// dest := (dword << count) | (dword >> (32 - count))
/// RETURN dest
/// }
/// DEFINE P1(x) {
/// RETURN x ^ ROL32(x, 15) ^ ROL32(x, 23)
/// }
/// W[0] := __C.dword[0]
/// W[1] := __C.dword[1]
/// W[2] := __C.dword[2]
/// W[3] := __C.dword[3]
/// W[7] := __A.dword[0]
/// W[8] := __A.dword[1]
/// W[9] := __A.dword[2]
/// W[10] := __A.dword[3]
/// W[13] := __B.dword[0]
/// W[14] := __B.dword[1]
/// W[15] := __B.dword[2]
/// TMP0 := W[7] ^ W[0] ^ ROL32(W[13], 15)
/// TMP1 := W[8] ^ W[1] ^ ROL32(W[14], 15)
/// TMP2 := W[9] ^ W[2] ^ ROL32(W[15], 15)
/// TMP3 := W[10] ^ W[3]
/// dst.dword[0] := P1(TMP0)
/// dst.dword[1] := P1(TMP1)
/// dst.dword[2] := P1(TMP2)
/// dst.dword[3] := P1(TMP3)
/// dst[MAX:128] := 0
/// \endcode
static __inline__ __m128i __DEFAULT_FN_ATTRS128 _mm_sm3msg1_epi32(__m128i __A,
__m128i __B,
__m128i __C) {
return (__m128i)__builtin_ia32_vsm3msg1((__v4su)__A, (__v4su)__B,
(__v4su)__C);
}
/// This intrinisc is one of the two SM3 message scheduling intrinsics. The
/// intrinsic performs the final calculation for the next four SM3 message
/// words. The calculated results are stored in \a dst.
///
/// \headerfile <immintrin.h>
///
/// \code
/// __m128i _mm_sm3msg2_epi32(__m128i __A, __m128i __B, __m128i __C)
/// \endcode
///
/// This intrinsic corresponds to the \c VSM3MSG2 instruction.
///
/// \param __A
/// A 128-bit vector of [4 x int].
/// \param __B
/// A 128-bit vector of [4 x int].
/// \param __C
/// A 128-bit vector of [4 x int].
/// \returns
/// A 128-bit vector of [4 x int].
///
/// \code{.operation}
/// DEFINE ROL32(dword, n) {
/// count := n % 32
/// dest := (dword << count) | (dword >> (32-count))
/// RETURN dest
/// }
/// WTMP[0] := __A.dword[0]
/// WTMP[1] := __A.dword[1]
/// WTMP[2] := __A.dword[2]
/// WTMP[3] := __A.dword[3]
/// W[3] := __B.dword[0]
/// W[4] := __B.dword[1]
/// W[5] := __B.dword[2]
/// W[6] := __B.dword[3]
/// W[10] := __C.dword[0]
/// W[11] := __C.dword[1]
/// W[12] := __C.dword[2]
/// W[13] := __C.dword[3]
/// W[16] := ROL32(W[3], 7) ^ W[10] ^ WTMP[0]
/// W[17] := ROL32(W[4], 7) ^ W[11] ^ WTMP[1]
/// W[18] := ROL32(W[5], 7) ^ W[12] ^ WTMP[2]
/// W[19] := ROL32(W[6], 7) ^ W[13] ^ WTMP[3]
/// W[19] := W[19] ^ ROL32(W[16], 6) ^ ROL32(W[16], 15) ^ ROL32(W[16], 30)
/// dst.dword[0] := W[16]
/// dst.dword[1] := W[17]
/// dst.dword[2] := W[18]
/// dst.dword[3] := W[19]
/// dst[MAX:128] := 0
/// \endcode
static __inline__ __m128i __DEFAULT_FN_ATTRS128 _mm_sm3msg2_epi32(__m128i __A,
__m128i __B,
__m128i __C) {
return (__m128i)__builtin_ia32_vsm3msg2((__v4su)__A, (__v4su)__B,
(__v4su)__C);
}
/// This intrinsic performs two rounds of SM3 operation using initial SM3 state
/// (C, D, G, H) from \a __A, an initial SM3 states (A, B, E, F)
/// from \a __B and a pre-computed words from the \a __C. \a __A with
/// initial SM3 state of (C, D, G, H) assumes input of non-rotated left
/// variables from previous state. The updated SM3 state (A, B, E, F) is
/// written to \a __A. The \a imm8 should contain the even round number
/// for the first of the two rounds computed by this instruction. The
/// computation masks the \a imm8 value by AND’ing it with 0x3E so that only
/// even round numbers from 0 through 62 are used for this operation. The
/// calculated results are stored in \a dst.
///
/// \headerfile <immintrin.h>
///
/// \code
/// __m128i _mm_sm3rnds2_epi32(__m128i __A, __m128i __B, __m128i __C, const int
/// imm8) \endcode
///
/// This intrinsic corresponds to the \c VSM3RNDS2 instruction.
///
/// \param __A
/// A 128-bit vector of [4 x int].
/// \param __B
/// A 128-bit vector of [4 x int].
/// \param __C
/// A 128-bit vector of [4 x int].
/// \param imm8
/// A 8-bit constant integer.
/// \returns
/// A 128-bit vector of [4 x int].
///
/// \code{.operation}
/// DEFINE ROL32(dword, n) {
/// count := n % 32
/// dest := (dword << count) | (dword >> (32-count))
/// RETURN dest
/// }
/// DEFINE P0(dword) {
/// RETURN dword ^ ROL32(dword, 9) ^ ROL32(dword, 17)
/// }
/// DEFINE FF(x,y,z, round){
/// IF round < 16
/// RETURN (x ^ y ^ z)
/// ELSE
/// RETURN (x & y) | (x & z) | (y & z)
/// FI
/// }
/// DEFINE GG(x, y, z, round){
/// IF round < 16
/// RETURN (x ^ y ^ z)
/// ELSE
/// RETURN (x & y) | (~x & z)
/// FI
/// }
/// A[0] := __B.dword[3]
/// B[0] := __B.dword[2]
/// C[0] := __A.dword[3]
/// D[0] := __A.dword[2]
/// E[0] := __B.dword[1]
/// F[0] := __B.dword[0]
/// G[0] := __A.dword[1]
/// H[0] := __A.dword[0]
/// W[0] := __C.dword[0]
/// W[1] := __C.dword[1]
/// W[4] := __C.dword[2]
/// W[5] := __C.dword[3]
/// C[0] := ROL32(C[0], 9)
/// D[0] := ROL32(D[0], 9)
/// G[0] := ROL32(G[0], 19)
/// H[0] := ROL32(H[0], 19)
/// ROUND := __D & 0x3E
/// IF ROUND < 16
/// CONST := 0x79CC4519
/// ELSE
/// CONST := 0x7A879D8A
/// FI
/// CONST := ROL32(CONST,ROUND)
/// FOR i:= 0 to 1
/// S1 := ROL32((ROL32(A[i], 12) + E[i] + CONST), 7)
/// S2 := S1 ^ ROL32(A[i], 12)
/// T1 := FF(A[i], B[i], C[i], ROUND) + D[i] + S2 + (W[i] ^ W[i+4])
/// T2 := GG(E[i], F[i], G[i], ROUND) + H[i] + S1 + W[i]
/// D[i+1] := C[i]
/// C[i+1] := ROL32(B[i],9)
/// B[i+1] := A[i]
/// A[i+1] := T1
/// H[i+1] := G[i]
/// G[i+1] := ROL32(F[i], 19)
/// F[i+1] := E[i]
/// E[i+1] := P0(T2)
/// CONST := ROL32(CONST, 1)
/// ENDFOR
/// dst.dword[3] := A[2]
/// dst.dword[2] := B[2]
/// dst.dword[1] := E[2]
/// dst.dword[0] := F[2]
/// dst[MAX:128] := 0
/// \endcode
#define _mm_sm3rnds2_epi32(A, B, C, D) \
(__m128i) __builtin_ia32_vsm3rnds2((__v4su)A, (__v4su)B, (__v4su)C, (int)D)
#undef __DEFAULT_FN_ATTRS128
#endif // __SM3INTRIN_H
|