1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269
|
/*===--------------- sm4intrin.h - SM4 intrinsics -----------------===
*
* Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
* See https://llvm.org/LICENSE.txt for license information.
* SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
*
*===-----------------------------------------------------------------------===
*/
#ifndef __IMMINTRIN_H
#error "Never use <sm4intrin.h> directly; include <immintrin.h> instead."
#endif // __IMMINTRIN_H
#ifndef __SM4INTRIN_H
#define __SM4INTRIN_H
/// This intrinsic performs four rounds of SM4 key expansion. The intrinsic
/// operates on independent 128-bit lanes. The calculated results are
/// stored in \a dst.
/// \headerfile <immintrin.h>
///
/// \code
/// __m128i _mm_sm4key4_epi32(__m128i __A, __m128i __B)
/// \endcode
///
/// This intrinsic corresponds to the \c VSM4KEY4 instruction.
///
/// \param __A
/// A 128-bit vector of [4 x int].
/// \param __B
/// A 128-bit vector of [4 x int].
/// \returns
/// A 128-bit vector of [4 x int].
///
/// \code{.operation}
/// DEFINE ROL32(dword, n) {
/// count := n % 32
/// dest := (dword << count) | (dword >> (32-count))
/// RETURN dest
/// }
/// DEFINE SBOX_BYTE(dword, i) {
/// RETURN sbox[dword.byte[i]]
/// }
/// DEFINE lower_t(dword) {
/// tmp.byte[0] := SBOX_BYTE(dword, 0)
/// tmp.byte[1] := SBOX_BYTE(dword, 1)
/// tmp.byte[2] := SBOX_BYTE(dword, 2)
/// tmp.byte[3] := SBOX_BYTE(dword, 3)
/// RETURN tmp
/// }
/// DEFINE L_KEY(dword) {
/// RETURN dword ^ ROL32(dword, 13) ^ ROL32(dword, 23)
/// }
/// DEFINE T_KEY(dword) {
/// RETURN L_KEY(lower_t(dword))
/// }
/// DEFINE F_KEY(X0, X1, X2, X3, round_key) {
/// RETURN X0 ^ T_KEY(X1 ^ X2 ^ X3 ^ round_key)
/// }
/// FOR i:= 0 to 0
/// P[0] := __B.xmm[i].dword[0]
/// P[1] := __B.xmm[i].dword[1]
/// P[2] := __B.xmm[i].dword[2]
/// P[3] := __B.xmm[i].dword[3]
/// C[0] := F_KEY(P[0], P[1], P[2], P[3], __A.xmm[i].dword[0])
/// C[1] := F_KEY(P[1], P[2], P[3], C[0], __A.xmm[i].dword[1])
/// C[2] := F_KEY(P[2], P[3], C[0], C[1], __A.xmm[i].dword[2])
/// C[3] := F_KEY(P[3], C[0], C[1], C[2], __A.xmm[i].dword[3])
/// DEST.xmm[i].dword[0] := C[0]
/// DEST.xmm[i].dword[1] := C[1]
/// DEST.xmm[i].dword[2] := C[2]
/// DEST.xmm[i].dword[3] := C[3]
/// ENDFOR
/// DEST[MAX:128] := 0
/// \endcode
#define _mm_sm4key4_epi32(A, B) \
(__m128i) __builtin_ia32_vsm4key4128((__v4su)A, (__v4su)B)
/// This intrinsic performs four rounds of SM4 key expansion. The intrinsic
/// operates on independent 128-bit lanes. The calculated results are
/// stored in \a dst.
/// \headerfile <immintrin.h>
///
/// \code
/// __m256i _mm256_sm4key4_epi32(__m256i __A, __m256i __B)
/// \endcode
///
/// This intrinsic corresponds to the \c VSM4KEY4 instruction.
///
/// \param __A
/// A 256-bit vector of [8 x int].
/// \param __B
/// A 256-bit vector of [8 x int].
/// \returns
/// A 256-bit vector of [8 x int].
///
/// \code{.operation}
/// DEFINE ROL32(dword, n) {
/// count := n % 32
/// dest := (dword << count) | (dword >> (32-count))
/// RETURN dest
/// }
/// DEFINE SBOX_BYTE(dword, i) {
/// RETURN sbox[dword.byte[i]]
/// }
/// DEFINE lower_t(dword) {
/// tmp.byte[0] := SBOX_BYTE(dword, 0)
/// tmp.byte[1] := SBOX_BYTE(dword, 1)
/// tmp.byte[2] := SBOX_BYTE(dword, 2)
/// tmp.byte[3] := SBOX_BYTE(dword, 3)
/// RETURN tmp
/// }
/// DEFINE L_KEY(dword) {
/// RETURN dword ^ ROL32(dword, 13) ^ ROL32(dword, 23)
/// }
/// DEFINE T_KEY(dword) {
/// RETURN L_KEY(lower_t(dword))
/// }
/// DEFINE F_KEY(X0, X1, X2, X3, round_key) {
/// RETURN X0 ^ T_KEY(X1 ^ X2 ^ X3 ^ round_key)
/// }
/// FOR i:= 0 to 1
/// P[0] := __B.xmm[i].dword[0]
/// P[1] := __B.xmm[i].dword[1]
/// P[2] := __B.xmm[i].dword[2]
/// P[3] := __B.xmm[i].dword[3]
/// C[0] := F_KEY(P[0], P[1], P[2], P[3], __A.xmm[i].dword[0])
/// C[1] := F_KEY(P[1], P[2], P[3], C[0], __A.xmm[i].dword[1])
/// C[2] := F_KEY(P[2], P[3], C[0], C[1], __A.xmm[i].dword[2])
/// C[3] := F_KEY(P[3], C[0], C[1], C[2], __A.xmm[i].dword[3])
/// DEST.xmm[i].dword[0] := C[0]
/// DEST.xmm[i].dword[1] := C[1]
/// DEST.xmm[i].dword[2] := C[2]
/// DEST.xmm[i].dword[3] := C[3]
/// ENDFOR
/// DEST[MAX:256] := 0
/// \endcode
#define _mm256_sm4key4_epi32(A, B) \
(__m256i) __builtin_ia32_vsm4key4256((__v8su)A, (__v8su)B)
/// This intrinisc performs four rounds of SM4 encryption. The intrinisc
/// operates on independent 128-bit lanes. The calculated results are
/// stored in \a dst.
/// \headerfile <immintrin.h>
///
/// \code
/// __m128i _mm_sm4rnds4_epi32(__m128i __A, __m128i __B)
/// \endcode
///
/// This intrinsic corresponds to the \c VSM4RNDS4 instruction.
///
/// \param __A
/// A 128-bit vector of [4 x int].
/// \param __B
/// A 128-bit vector of [4 x int].
/// \returns
/// A 128-bit vector of [4 x int].
///
/// \code{.operation}
/// DEFINE ROL32(dword, n) {
/// count := n % 32
/// dest := (dword << count) | (dword >> (32-count))
/// RETURN dest
/// }
/// DEFINE lower_t(dword) {
/// tmp.byte[0] := SBOX_BYTE(dword, 0)
/// tmp.byte[1] := SBOX_BYTE(dword, 1)
/// tmp.byte[2] := SBOX_BYTE(dword, 2)
/// tmp.byte[3] := SBOX_BYTE(dword, 3)
/// RETURN tmp
/// }
/// DEFINE L_RND(dword) {
/// tmp := dword
/// tmp := tmp ^ ROL32(dword, 2)
/// tmp := tmp ^ ROL32(dword, 10)
/// tmp := tmp ^ ROL32(dword, 18)
/// tmp := tmp ^ ROL32(dword, 24)
/// RETURN tmp
/// }
/// DEFINE T_RND(dword) {
/// RETURN L_RND(lower_t(dword))
/// }
/// DEFINE F_RND(X0, X1, X2, X3, round_key) {
/// RETURN X0 ^ T_RND(X1 ^ X2 ^ X3 ^ round_key)
/// }
/// FOR i:= 0 to 0
/// P[0] := __B.xmm[i].dword[0]
/// P[1] := __B.xmm[i].dword[1]
/// P[2] := __B.xmm[i].dword[2]
/// P[3] := __B.xmm[i].dword[3]
/// C[0] := F_RND(P[0], P[1], P[2], P[3], __A.xmm[i].dword[0])
/// C[1] := F_RND(P[1], P[2], P[3], C[0], __A.xmm[i].dword[1])
/// C[2] := F_RND(P[2], P[3], C[0], C[1], __A.xmm[i].dword[2])
/// C[3] := F_RND(P[3], C[0], C[1], C[2], __A.xmm[i].dword[3])
/// DEST.xmm[i].dword[0] := C[0]
/// DEST.xmm[i].dword[1] := C[1]
/// DEST.xmm[i].dword[2] := C[2]
/// DEST.xmm[i].dword[3] := C[3]
/// ENDFOR
/// DEST[MAX:128] := 0
/// \endcode
#define _mm_sm4rnds4_epi32(A, B) \
(__m128i) __builtin_ia32_vsm4rnds4128((__v4su)A, (__v4su)B)
/// This intrinisc performs four rounds of SM4 encryption. The intrinisc
/// operates on independent 128-bit lanes. The calculated results are
/// stored in \a dst.
/// \headerfile <immintrin.h>
///
/// \code
/// __m256i _mm256_sm4rnds4_epi32(__m256i __A, __m256i __B)
/// \endcode
///
/// This intrinsic corresponds to the \c VSM4RNDS4 instruction.
///
/// \param __A
/// A 256-bit vector of [8 x int].
/// \param __B
/// A 256-bit vector of [8 x int].
/// \returns
/// A 256-bit vector of [8 x int].
///
/// \code{.operation}
/// DEFINE ROL32(dword, n) {
/// count := n % 32
/// dest := (dword << count) | (dword >> (32-count))
/// RETURN dest
/// }
/// DEFINE lower_t(dword) {
/// tmp.byte[0] := SBOX_BYTE(dword, 0)
/// tmp.byte[1] := SBOX_BYTE(dword, 1)
/// tmp.byte[2] := SBOX_BYTE(dword, 2)
/// tmp.byte[3] := SBOX_BYTE(dword, 3)
/// RETURN tmp
/// }
/// DEFINE L_RND(dword) {
/// tmp := dword
/// tmp := tmp ^ ROL32(dword, 2)
/// tmp := tmp ^ ROL32(dword, 10)
/// tmp := tmp ^ ROL32(dword, 18)
/// tmp := tmp ^ ROL32(dword, 24)
/// RETURN tmp
/// }
/// DEFINE T_RND(dword) {
/// RETURN L_RND(lower_t(dword))
/// }
/// DEFINE F_RND(X0, X1, X2, X3, round_key) {
/// RETURN X0 ^ T_RND(X1 ^ X2 ^ X3 ^ round_key)
/// }
/// FOR i:= 0 to 0
/// P[0] := __B.xmm[i].dword[0]
/// P[1] := __B.xmm[i].dword[1]
/// P[2] := __B.xmm[i].dword[2]
/// P[3] := __B.xmm[i].dword[3]
/// C[0] := F_RND(P[0], P[1], P[2], P[3], __A.xmm[i].dword[0])
/// C[1] := F_RND(P[1], P[2], P[3], C[0], __A.xmm[i].dword[1])
/// C[2] := F_RND(P[2], P[3], C[0], C[1], __A.xmm[i].dword[2])
/// C[3] := F_RND(P[3], C[0], C[1], C[2], __A.xmm[i].dword[3])
/// DEST.xmm[i].dword[0] := C[0]
/// DEST.xmm[i].dword[1] := C[1]
/// DEST.xmm[i].dword[2] := C[2]
/// DEST.xmm[i].dword[3] := C[3]
/// ENDFOR
/// DEST[MAX:256] := 0
/// \endcode
#define _mm256_sm4rnds4_epi32(A, B) \
(__m256i) __builtin_ia32_vsm4rnds4256((__v8su)A, (__v8su)B)
#endif // __SM4INTRIN_H
|