1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965
|
//===------ Interpreter.cpp - Incremental Compilation and Execution -------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This file implements the component which performs incremental code
// compilation and execution.
//
//===----------------------------------------------------------------------===//
#include "DeviceOffload.h"
#include "IncrementalExecutor.h"
#include "IncrementalParser.h"
#include "InterpreterUtils.h"
#ifdef __EMSCRIPTEN__
#include "Wasm.h"
#endif // __EMSCRIPTEN__
#include "clang/AST/ASTContext.h"
#include "clang/AST/Mangle.h"
#include "clang/AST/TypeVisitor.h"
#include "clang/Basic/DiagnosticSema.h"
#include "clang/Basic/TargetInfo.h"
#include "clang/CodeGen/CodeGenAction.h"
#include "clang/CodeGen/ModuleBuilder.h"
#include "clang/CodeGen/ObjectFilePCHContainerOperations.h"
#include "clang/Driver/Compilation.h"
#include "clang/Driver/Driver.h"
#include "clang/Driver/Job.h"
#include "clang/Driver/Options.h"
#include "clang/Driver/Tool.h"
#include "clang/Frontend/CompilerInstance.h"
#include "clang/Frontend/TextDiagnosticBuffer.h"
#include "clang/Interpreter/Interpreter.h"
#include "clang/Interpreter/Value.h"
#include "clang/Lex/PreprocessorOptions.h"
#include "clang/Sema/Lookup.h"
#include "llvm/ExecutionEngine/JITSymbol.h"
#include "llvm/ExecutionEngine/Orc/LLJIT.h"
#include "llvm/IR/Module.h"
#include "llvm/Support/Errc.h"
#include "llvm/Support/ErrorHandling.h"
#include "llvm/Support/raw_ostream.h"
#include "llvm/TargetParser/Host.h"
#include <cstdarg>
using namespace clang;
// FIXME: Figure out how to unify with namespace init_convenience from
// tools/clang-import-test/clang-import-test.cpp
namespace {
/// Retrieves the clang CC1 specific flags out of the compilation's jobs.
/// \returns NULL on error.
static llvm::Expected<const llvm::opt::ArgStringList *>
GetCC1Arguments(DiagnosticsEngine *Diagnostics,
driver::Compilation *Compilation) {
// We expect to get back exactly one Command job, if we didn't something
// failed. Extract that job from the Compilation.
const driver::JobList &Jobs = Compilation->getJobs();
if (!Jobs.size() || !isa<driver::Command>(*Jobs.begin()))
return llvm::createStringError(llvm::errc::not_supported,
"Driver initialization failed. "
"Unable to create a driver job");
// The one job we find should be to invoke clang again.
const driver::Command *Cmd = cast<driver::Command>(&(*Jobs.begin()));
if (llvm::StringRef(Cmd->getCreator().getName()) != "clang")
return llvm::createStringError(llvm::errc::not_supported,
"Driver initialization failed");
return &Cmd->getArguments();
}
static llvm::Expected<std::unique_ptr<CompilerInstance>>
CreateCI(const llvm::opt::ArgStringList &Argv) {
std::unique_ptr<CompilerInstance> Clang(new CompilerInstance());
IntrusiveRefCntPtr<DiagnosticIDs> DiagID(new DiagnosticIDs());
// Register the support for object-file-wrapped Clang modules.
// FIXME: Clang should register these container operations automatically.
auto PCHOps = Clang->getPCHContainerOperations();
PCHOps->registerWriter(std::make_unique<ObjectFilePCHContainerWriter>());
PCHOps->registerReader(std::make_unique<ObjectFilePCHContainerReader>());
// Buffer diagnostics from argument parsing so that we can output them using
// a well formed diagnostic object.
IntrusiveRefCntPtr<DiagnosticOptions> DiagOpts = new DiagnosticOptions();
TextDiagnosticBuffer *DiagsBuffer = new TextDiagnosticBuffer;
DiagnosticsEngine Diags(DiagID, &*DiagOpts, DiagsBuffer);
bool Success = CompilerInvocation::CreateFromArgs(
Clang->getInvocation(), llvm::ArrayRef(Argv.begin(), Argv.size()), Diags);
// Infer the builtin include path if unspecified.
if (Clang->getHeaderSearchOpts().UseBuiltinIncludes &&
Clang->getHeaderSearchOpts().ResourceDir.empty())
Clang->getHeaderSearchOpts().ResourceDir =
CompilerInvocation::GetResourcesPath(Argv[0], nullptr);
// Create the actual diagnostics engine.
Clang->createDiagnostics();
if (!Clang->hasDiagnostics())
return llvm::createStringError(llvm::errc::not_supported,
"Initialization failed. "
"Unable to create diagnostics engine");
DiagsBuffer->FlushDiagnostics(Clang->getDiagnostics());
if (!Success)
return llvm::createStringError(llvm::errc::not_supported,
"Initialization failed. "
"Unable to flush diagnostics");
// FIXME: Merge with CompilerInstance::ExecuteAction.
llvm::MemoryBuffer *MB = llvm::MemoryBuffer::getMemBuffer("").release();
Clang->getPreprocessorOpts().addRemappedFile("<<< inputs >>>", MB);
Clang->setTarget(TargetInfo::CreateTargetInfo(
Clang->getDiagnostics(), Clang->getInvocation().TargetOpts));
if (!Clang->hasTarget())
return llvm::createStringError(llvm::errc::not_supported,
"Initialization failed. "
"Target is missing");
Clang->getTarget().adjust(Clang->getDiagnostics(), Clang->getLangOpts());
// Don't clear the AST before backend codegen since we do codegen multiple
// times, reusing the same AST.
Clang->getCodeGenOpts().ClearASTBeforeBackend = false;
Clang->getFrontendOpts().DisableFree = false;
Clang->getCodeGenOpts().DisableFree = false;
return std::move(Clang);
}
} // anonymous namespace
llvm::Expected<std::unique_ptr<CompilerInstance>>
IncrementalCompilerBuilder::create(std::string TT,
std::vector<const char *> &ClangArgv) {
// If we don't know ClangArgv0 or the address of main() at this point, try
// to guess it anyway (it's possible on some platforms).
std::string MainExecutableName =
llvm::sys::fs::getMainExecutable(nullptr, nullptr);
ClangArgv.insert(ClangArgv.begin(), MainExecutableName.c_str());
// Prepending -c to force the driver to do something if no action was
// specified. By prepending we allow users to override the default
// action and use other actions in incremental mode.
// FIXME: Print proper driver diagnostics if the driver flags are wrong.
// We do C++ by default; append right after argv[0] if no "-x" given
ClangArgv.insert(ClangArgv.end(), "-Xclang");
ClangArgv.insert(ClangArgv.end(), "-fincremental-extensions");
ClangArgv.insert(ClangArgv.end(), "-c");
// Put a dummy C++ file on to ensure there's at least one compile job for the
// driver to construct.
ClangArgv.push_back("<<< inputs >>>");
// Buffer diagnostics from argument parsing so that we can output them using a
// well formed diagnostic object.
IntrusiveRefCntPtr<DiagnosticIDs> DiagID(new DiagnosticIDs());
IntrusiveRefCntPtr<DiagnosticOptions> DiagOpts =
CreateAndPopulateDiagOpts(ClangArgv);
TextDiagnosticBuffer *DiagsBuffer = new TextDiagnosticBuffer;
DiagnosticsEngine Diags(DiagID, &*DiagOpts, DiagsBuffer);
driver::Driver Driver(/*MainBinaryName=*/ClangArgv[0], TT, Diags);
Driver.setCheckInputsExist(false); // the input comes from mem buffers
llvm::ArrayRef<const char *> RF = llvm::ArrayRef(ClangArgv);
std::unique_ptr<driver::Compilation> Compilation(Driver.BuildCompilation(RF));
if (Compilation->getArgs().hasArg(driver::options::OPT_v))
Compilation->getJobs().Print(llvm::errs(), "\n", /*Quote=*/false);
auto ErrOrCC1Args = GetCC1Arguments(&Diags, Compilation.get());
if (auto Err = ErrOrCC1Args.takeError())
return std::move(Err);
return CreateCI(**ErrOrCC1Args);
}
llvm::Expected<std::unique_ptr<CompilerInstance>>
IncrementalCompilerBuilder::CreateCpp() {
std::vector<const char *> Argv;
Argv.reserve(5 + 1 + UserArgs.size());
Argv.push_back("-xc++");
#ifdef __EMSCRIPTEN__
Argv.push_back("-target");
Argv.push_back("wasm32-unknown-emscripten");
Argv.push_back("-shared");
Argv.push_back("-fvisibility=default");
#endif
Argv.insert(Argv.end(), UserArgs.begin(), UserArgs.end());
std::string TT = TargetTriple ? *TargetTriple : llvm::sys::getProcessTriple();
return IncrementalCompilerBuilder::create(TT, Argv);
}
llvm::Expected<std::unique_ptr<CompilerInstance>>
IncrementalCompilerBuilder::createCuda(bool device) {
std::vector<const char *> Argv;
Argv.reserve(5 + 4 + UserArgs.size());
Argv.push_back("-xcuda");
if (device)
Argv.push_back("--cuda-device-only");
else
Argv.push_back("--cuda-host-only");
std::string SDKPathArg = "--cuda-path=";
if (!CudaSDKPath.empty()) {
SDKPathArg += CudaSDKPath;
Argv.push_back(SDKPathArg.c_str());
}
std::string ArchArg = "--offload-arch=";
if (!OffloadArch.empty()) {
ArchArg += OffloadArch;
Argv.push_back(ArchArg.c_str());
}
Argv.insert(Argv.end(), UserArgs.begin(), UserArgs.end());
std::string TT = TargetTriple ? *TargetTriple : llvm::sys::getProcessTriple();
return IncrementalCompilerBuilder::create(TT, Argv);
}
llvm::Expected<std::unique_ptr<CompilerInstance>>
IncrementalCompilerBuilder::CreateCudaDevice() {
return IncrementalCompilerBuilder::createCuda(true);
}
llvm::Expected<std::unique_ptr<CompilerInstance>>
IncrementalCompilerBuilder::CreateCudaHost() {
return IncrementalCompilerBuilder::createCuda(false);
}
Interpreter::Interpreter(std::unique_ptr<CompilerInstance> CI,
llvm::Error &ErrOut,
std::unique_ptr<llvm::orc::LLJITBuilder> JITBuilder)
: JITBuilder(std::move(JITBuilder)) {
llvm::ErrorAsOutParameter EAO(&ErrOut);
auto LLVMCtx = std::make_unique<llvm::LLVMContext>();
TSCtx = std::make_unique<llvm::orc::ThreadSafeContext>(std::move(LLVMCtx));
IncrParser = std::make_unique<IncrementalParser>(
*this, std::move(CI), *TSCtx->getContext(), ErrOut);
if (ErrOut)
return;
// Not all frontends support code-generation, e.g. ast-dump actions don't
if (IncrParser->getCodeGen()) {
if (llvm::Error Err = CreateExecutor()) {
ErrOut = joinErrors(std::move(ErrOut), std::move(Err));
return;
}
// Process the PTUs that came from initialization. For example -include will
// give us a header that's processed at initialization of the preprocessor.
for (PartialTranslationUnit &PTU : IncrParser->getPTUs())
if (llvm::Error Err = Execute(PTU)) {
ErrOut = joinErrors(std::move(ErrOut), std::move(Err));
return;
}
}
}
Interpreter::~Interpreter() {
if (IncrExecutor) {
if (llvm::Error Err = IncrExecutor->cleanUp())
llvm::report_fatal_error(
llvm::Twine("Failed to clean up IncrementalExecutor: ") +
toString(std::move(Err)));
}
}
// These better to put in a runtime header but we can't. This is because we
// can't find the precise resource directory in unittests so we have to hard
// code them.
const char *const Runtimes = R"(
#define __CLANG_REPL__ 1
#ifdef __cplusplus
#define EXTERN_C extern "C"
void *__clang_Interpreter_SetValueWithAlloc(void*, void*, void*);
struct __clang_Interpreter_NewTag{} __ci_newtag;
void* operator new(__SIZE_TYPE__, void* __p, __clang_Interpreter_NewTag) noexcept;
template <class T, class = T (*)() /*disable for arrays*/>
void __clang_Interpreter_SetValueCopyArr(T* Src, void* Placement, unsigned long Size) {
for (auto Idx = 0; Idx < Size; ++Idx)
new ((void*)(((T*)Placement) + Idx), __ci_newtag) T(Src[Idx]);
}
template <class T, unsigned long N>
void __clang_Interpreter_SetValueCopyArr(const T (*Src)[N], void* Placement, unsigned long Size) {
__clang_Interpreter_SetValueCopyArr(Src[0], Placement, Size);
}
#else
#define EXTERN_C extern
#endif // __cplusplus
EXTERN_C void __clang_Interpreter_SetValueNoAlloc(void *This, void *OutVal, void *OpaqueType, ...);
)";
llvm::Expected<std::unique_ptr<Interpreter>>
Interpreter::create(std::unique_ptr<CompilerInstance> CI) {
llvm::Error Err = llvm::Error::success();
auto Interp =
std::unique_ptr<Interpreter>(new Interpreter(std::move(CI), Err));
if (Err)
return std::move(Err);
// Add runtime code and set a marker to hide it from user code. Undo will not
// go through that.
auto PTU = Interp->Parse(Runtimes);
if (!PTU)
return PTU.takeError();
Interp->markUserCodeStart();
Interp->ValuePrintingInfo.resize(4);
return std::move(Interp);
}
llvm::Expected<std::unique_ptr<Interpreter>>
Interpreter::createWithCUDA(std::unique_ptr<CompilerInstance> CI,
std::unique_ptr<CompilerInstance> DCI) {
// avoid writing fat binary to disk using an in-memory virtual file system
llvm::IntrusiveRefCntPtr<llvm::vfs::InMemoryFileSystem> IMVFS =
std::make_unique<llvm::vfs::InMemoryFileSystem>();
llvm::IntrusiveRefCntPtr<llvm::vfs::OverlayFileSystem> OverlayVFS =
std::make_unique<llvm::vfs::OverlayFileSystem>(
llvm::vfs::getRealFileSystem());
OverlayVFS->pushOverlay(IMVFS);
CI->createFileManager(OverlayVFS);
auto Interp = Interpreter::create(std::move(CI));
if (auto E = Interp.takeError())
return std::move(E);
llvm::Error Err = llvm::Error::success();
auto DeviceParser = std::make_unique<IncrementalCUDADeviceParser>(
**Interp, std::move(DCI), *(*Interp)->IncrParser.get(),
*(*Interp)->TSCtx->getContext(), IMVFS, Err);
if (Err)
return std::move(Err);
(*Interp)->DeviceParser = std::move(DeviceParser);
return Interp;
}
const CompilerInstance *Interpreter::getCompilerInstance() const {
return IncrParser->getCI();
}
CompilerInstance *Interpreter::getCompilerInstance() {
return IncrParser->getCI();
}
llvm::Expected<llvm::orc::LLJIT &> Interpreter::getExecutionEngine() {
if (!IncrExecutor) {
if (auto Err = CreateExecutor())
return std::move(Err);
}
return IncrExecutor->GetExecutionEngine();
}
ASTContext &Interpreter::getASTContext() {
return getCompilerInstance()->getASTContext();
}
const ASTContext &Interpreter::getASTContext() const {
return getCompilerInstance()->getASTContext();
}
void Interpreter::markUserCodeStart() {
assert(!InitPTUSize && "We only do this once");
InitPTUSize = IncrParser->getPTUs().size();
}
size_t Interpreter::getEffectivePTUSize() const {
std::list<PartialTranslationUnit> &PTUs = IncrParser->getPTUs();
assert(PTUs.size() >= InitPTUSize && "empty PTU list?");
return PTUs.size() - InitPTUSize;
}
llvm::Expected<PartialTranslationUnit &>
Interpreter::Parse(llvm::StringRef Code) {
// If we have a device parser, parse it first.
// The generated code will be included in the host compilation
if (DeviceParser) {
auto DevicePTU = DeviceParser->Parse(Code);
if (auto E = DevicePTU.takeError())
return std::move(E);
}
// Tell the interpreter sliently ignore unused expressions since value
// printing could cause it.
getCompilerInstance()->getDiagnostics().setSeverity(
clang::diag::warn_unused_expr, diag::Severity::Ignored, SourceLocation());
return IncrParser->Parse(Code);
}
static llvm::Expected<llvm::orc::JITTargetMachineBuilder>
createJITTargetMachineBuilder(const std::string &TT) {
if (TT == llvm::sys::getProcessTriple())
// This fails immediately if the target backend is not registered
return llvm::orc::JITTargetMachineBuilder::detectHost();
// If the target backend is not registered, LLJITBuilder::create() will fail
return llvm::orc::JITTargetMachineBuilder(llvm::Triple(TT));
}
llvm::Error Interpreter::CreateExecutor() {
if (IncrExecutor)
return llvm::make_error<llvm::StringError>("Operation failed. "
"Execution engine exists",
std::error_code());
if (!IncrParser->getCodeGen())
return llvm::make_error<llvm::StringError>("Operation failed. "
"No code generator available",
std::error_code());
if (!JITBuilder) {
const std::string &TT = getCompilerInstance()->getTargetOpts().Triple;
auto JTMB = createJITTargetMachineBuilder(TT);
if (!JTMB)
return JTMB.takeError();
auto JB = IncrementalExecutor::createDefaultJITBuilder(std::move(*JTMB));
if (!JB)
return JB.takeError();
JITBuilder = std::move(*JB);
}
llvm::Error Err = llvm::Error::success();
#ifdef __EMSCRIPTEN__
auto Executor = std::make_unique<WasmIncrementalExecutor>(*TSCtx);
#else
auto Executor =
std::make_unique<IncrementalExecutor>(*TSCtx, *JITBuilder, Err);
#endif
if (!Err)
IncrExecutor = std::move(Executor);
return Err;
}
void Interpreter::ResetExecutor() { IncrExecutor.reset(); }
llvm::Error Interpreter::Execute(PartialTranslationUnit &T) {
assert(T.TheModule);
if (!IncrExecutor) {
auto Err = CreateExecutor();
if (Err)
return Err;
}
// FIXME: Add a callback to retain the llvm::Module once the JIT is done.
if (auto Err = IncrExecutor->addModule(T))
return Err;
if (auto Err = IncrExecutor->runCtors())
return Err;
return llvm::Error::success();
}
llvm::Error Interpreter::ParseAndExecute(llvm::StringRef Code, Value *V) {
auto PTU = Parse(Code);
if (!PTU)
return PTU.takeError();
if (PTU->TheModule)
if (llvm::Error Err = Execute(*PTU))
return Err;
if (LastValue.isValid()) {
if (!V) {
LastValue.dump();
LastValue.clear();
} else
*V = std::move(LastValue);
}
return llvm::Error::success();
}
llvm::Expected<llvm::orc::ExecutorAddr>
Interpreter::getSymbolAddress(GlobalDecl GD) const {
if (!IncrExecutor)
return llvm::make_error<llvm::StringError>("Operation failed. "
"No execution engine",
std::error_code());
llvm::StringRef MangledName = IncrParser->GetMangledName(GD);
return getSymbolAddress(MangledName);
}
llvm::Expected<llvm::orc::ExecutorAddr>
Interpreter::getSymbolAddress(llvm::StringRef IRName) const {
if (!IncrExecutor)
return llvm::make_error<llvm::StringError>("Operation failed. "
"No execution engine",
std::error_code());
return IncrExecutor->getSymbolAddress(IRName, IncrementalExecutor::IRName);
}
llvm::Expected<llvm::orc::ExecutorAddr>
Interpreter::getSymbolAddressFromLinkerName(llvm::StringRef Name) const {
if (!IncrExecutor)
return llvm::make_error<llvm::StringError>("Operation failed. "
"No execution engine",
std::error_code());
return IncrExecutor->getSymbolAddress(Name, IncrementalExecutor::LinkerName);
}
llvm::Error Interpreter::Undo(unsigned N) {
std::list<PartialTranslationUnit> &PTUs = IncrParser->getPTUs();
if (N > getEffectivePTUSize())
return llvm::make_error<llvm::StringError>("Operation failed. "
"Too many undos",
std::error_code());
for (unsigned I = 0; I < N; I++) {
if (IncrExecutor) {
if (llvm::Error Err = IncrExecutor->removeModule(PTUs.back()))
return Err;
}
IncrParser->CleanUpPTU(PTUs.back());
PTUs.pop_back();
}
return llvm::Error::success();
}
llvm::Error Interpreter::LoadDynamicLibrary(const char *name) {
auto EE = getExecutionEngine();
if (!EE)
return EE.takeError();
auto &DL = EE->getDataLayout();
if (auto DLSG = llvm::orc::DynamicLibrarySearchGenerator::Load(
name, DL.getGlobalPrefix()))
EE->getMainJITDylib().addGenerator(std::move(*DLSG));
else
return DLSG.takeError();
return llvm::Error::success();
}
llvm::Expected<llvm::orc::ExecutorAddr>
Interpreter::CompileDtorCall(CXXRecordDecl *CXXRD) {
assert(CXXRD && "Cannot compile a destructor for a nullptr");
if (auto Dtor = Dtors.find(CXXRD); Dtor != Dtors.end())
return Dtor->getSecond();
if (CXXRD->hasIrrelevantDestructor())
return llvm::orc::ExecutorAddr{};
CXXDestructorDecl *DtorRD =
getCompilerInstance()->getSema().LookupDestructor(CXXRD);
llvm::StringRef Name =
IncrParser->GetMangledName(GlobalDecl(DtorRD, Dtor_Base));
auto AddrOrErr = getSymbolAddress(Name);
if (!AddrOrErr)
return AddrOrErr.takeError();
Dtors[CXXRD] = *AddrOrErr;
return AddrOrErr;
}
static constexpr llvm::StringRef MagicRuntimeInterface[] = {
"__clang_Interpreter_SetValueNoAlloc",
"__clang_Interpreter_SetValueWithAlloc",
"__clang_Interpreter_SetValueCopyArr", "__ci_newtag"};
static std::unique_ptr<RuntimeInterfaceBuilder>
createInProcessRuntimeInterfaceBuilder(Interpreter &Interp, ASTContext &Ctx,
Sema &S);
std::unique_ptr<RuntimeInterfaceBuilder> Interpreter::FindRuntimeInterface() {
if (llvm::all_of(ValuePrintingInfo, [](Expr *E) { return E != nullptr; }))
return nullptr;
Sema &S = getCompilerInstance()->getSema();
ASTContext &Ctx = S.getASTContext();
auto LookupInterface = [&](Expr *&Interface, llvm::StringRef Name) {
LookupResult R(S, &Ctx.Idents.get(Name), SourceLocation(),
Sema::LookupOrdinaryName,
RedeclarationKind::ForVisibleRedeclaration);
S.LookupQualifiedName(R, Ctx.getTranslationUnitDecl());
if (R.empty())
return false;
CXXScopeSpec CSS;
Interface = S.BuildDeclarationNameExpr(CSS, R, /*ADL=*/false).get();
return true;
};
if (!LookupInterface(ValuePrintingInfo[NoAlloc],
MagicRuntimeInterface[NoAlloc]))
return nullptr;
if (Ctx.getLangOpts().CPlusPlus) {
if (!LookupInterface(ValuePrintingInfo[WithAlloc],
MagicRuntimeInterface[WithAlloc]))
return nullptr;
if (!LookupInterface(ValuePrintingInfo[CopyArray],
MagicRuntimeInterface[CopyArray]))
return nullptr;
if (!LookupInterface(ValuePrintingInfo[NewTag],
MagicRuntimeInterface[NewTag]))
return nullptr;
}
return createInProcessRuntimeInterfaceBuilder(*this, Ctx, S);
}
namespace {
class InterfaceKindVisitor
: public TypeVisitor<InterfaceKindVisitor, Interpreter::InterfaceKind> {
friend class InProcessRuntimeInterfaceBuilder;
ASTContext &Ctx;
Sema &S;
Expr *E;
llvm::SmallVector<Expr *, 3> Args;
public:
InterfaceKindVisitor(ASTContext &Ctx, Sema &S, Expr *E)
: Ctx(Ctx), S(S), E(E) {}
Interpreter::InterfaceKind VisitRecordType(const RecordType *Ty) {
return Interpreter::InterfaceKind::WithAlloc;
}
Interpreter::InterfaceKind
VisitMemberPointerType(const MemberPointerType *Ty) {
return Interpreter::InterfaceKind::WithAlloc;
}
Interpreter::InterfaceKind
VisitConstantArrayType(const ConstantArrayType *Ty) {
return Interpreter::InterfaceKind::CopyArray;
}
Interpreter::InterfaceKind
VisitFunctionProtoType(const FunctionProtoType *Ty) {
HandlePtrType(Ty);
return Interpreter::InterfaceKind::NoAlloc;
}
Interpreter::InterfaceKind VisitPointerType(const PointerType *Ty) {
HandlePtrType(Ty);
return Interpreter::InterfaceKind::NoAlloc;
}
Interpreter::InterfaceKind VisitReferenceType(const ReferenceType *Ty) {
ExprResult AddrOfE = S.CreateBuiltinUnaryOp(SourceLocation(), UO_AddrOf, E);
assert(!AddrOfE.isInvalid() && "Can not create unary expression");
Args.push_back(AddrOfE.get());
return Interpreter::InterfaceKind::NoAlloc;
}
Interpreter::InterfaceKind VisitBuiltinType(const BuiltinType *Ty) {
if (Ty->isNullPtrType())
Args.push_back(E);
else if (Ty->isFloatingType())
Args.push_back(E);
else if (Ty->isIntegralOrEnumerationType())
HandleIntegralOrEnumType(Ty);
else if (Ty->isVoidType()) {
// Do we need to still run `E`?
}
return Interpreter::InterfaceKind::NoAlloc;
}
Interpreter::InterfaceKind VisitEnumType(const EnumType *Ty) {
HandleIntegralOrEnumType(Ty);
return Interpreter::InterfaceKind::NoAlloc;
}
private:
// Force cast these types to the uint that fits the register size. That way we
// reduce the number of overloads of `__clang_Interpreter_SetValueNoAlloc`.
void HandleIntegralOrEnumType(const Type *Ty) {
uint64_t PtrBits = Ctx.getTypeSize(Ctx.VoidPtrTy);
QualType UIntTy = Ctx.getBitIntType(/*Unsigned=*/true, PtrBits);
TypeSourceInfo *TSI = Ctx.getTrivialTypeSourceInfo(UIntTy);
ExprResult CastedExpr =
S.BuildCStyleCastExpr(SourceLocation(), TSI, SourceLocation(), E);
assert(!CastedExpr.isInvalid() && "Cannot create cstyle cast expr");
Args.push_back(CastedExpr.get());
}
void HandlePtrType(const Type *Ty) {
TypeSourceInfo *TSI = Ctx.getTrivialTypeSourceInfo(Ctx.VoidPtrTy);
ExprResult CastedExpr =
S.BuildCStyleCastExpr(SourceLocation(), TSI, SourceLocation(), E);
assert(!CastedExpr.isInvalid() && "Can not create cstyle cast expression");
Args.push_back(CastedExpr.get());
}
};
class InProcessRuntimeInterfaceBuilder : public RuntimeInterfaceBuilder {
Interpreter &Interp;
ASTContext &Ctx;
Sema &S;
public:
InProcessRuntimeInterfaceBuilder(Interpreter &Interp, ASTContext &C, Sema &S)
: Interp(Interp), Ctx(C), S(S) {}
TransformExprFunction *getPrintValueTransformer() override {
return &transformForValuePrinting;
}
private:
static ExprResult transformForValuePrinting(RuntimeInterfaceBuilder *Builder,
Expr *E,
ArrayRef<Expr *> FixedArgs) {
auto *B = static_cast<InProcessRuntimeInterfaceBuilder *>(Builder);
// Get rid of ExprWithCleanups.
if (auto *EWC = llvm::dyn_cast_if_present<ExprWithCleanups>(E))
E = EWC->getSubExpr();
InterfaceKindVisitor Visitor(B->Ctx, B->S, E);
// The Interpreter* parameter and the out parameter `OutVal`.
for (Expr *E : FixedArgs)
Visitor.Args.push_back(E);
QualType Ty = E->getType();
QualType DesugaredTy = Ty.getDesugaredType(B->Ctx);
// For lvalue struct, we treat it as a reference.
if (DesugaredTy->isRecordType() && E->isLValue()) {
DesugaredTy = B->Ctx.getLValueReferenceType(DesugaredTy);
Ty = B->Ctx.getLValueReferenceType(Ty);
}
Expr *TypeArg = CStyleCastPtrExpr(B->S, B->Ctx.VoidPtrTy,
(uintptr_t)Ty.getAsOpaquePtr());
// The QualType parameter `OpaqueType`, represented as `void*`.
Visitor.Args.push_back(TypeArg);
// We push the last parameter based on the type of the Expr. Note we need
// special care for rvalue struct.
Interpreter::InterfaceKind Kind = Visitor.Visit(&*DesugaredTy);
switch (Kind) {
case Interpreter::InterfaceKind::WithAlloc:
case Interpreter::InterfaceKind::CopyArray: {
// __clang_Interpreter_SetValueWithAlloc.
ExprResult AllocCall = B->S.ActOnCallExpr(
/*Scope=*/nullptr,
B->Interp
.getValuePrintingInfo()[Interpreter::InterfaceKind::WithAlloc],
E->getBeginLoc(), Visitor.Args, E->getEndLoc());
assert(!AllocCall.isInvalid() && "Can't create runtime interface call!");
TypeSourceInfo *TSI =
B->Ctx.getTrivialTypeSourceInfo(Ty, SourceLocation());
// Force CodeGen to emit destructor.
if (auto *RD = Ty->getAsCXXRecordDecl()) {
auto *Dtor = B->S.LookupDestructor(RD);
Dtor->addAttr(UsedAttr::CreateImplicit(B->Ctx));
B->Interp.getCompilerInstance()->getASTConsumer().HandleTopLevelDecl(
DeclGroupRef(Dtor));
}
// __clang_Interpreter_SetValueCopyArr.
if (Kind == Interpreter::InterfaceKind::CopyArray) {
const auto *ConstantArrTy =
cast<ConstantArrayType>(DesugaredTy.getTypePtr());
size_t ArrSize = B->Ctx.getConstantArrayElementCount(ConstantArrTy);
Expr *ArrSizeExpr = IntegerLiteralExpr(B->Ctx, ArrSize);
Expr *Args[] = {E, AllocCall.get(), ArrSizeExpr};
return B->S.ActOnCallExpr(
/*Scope *=*/nullptr,
B->Interp
.getValuePrintingInfo()[Interpreter::InterfaceKind::CopyArray],
SourceLocation(), Args, SourceLocation());
}
Expr *Args[] = {
AllocCall.get(),
B->Interp.getValuePrintingInfo()[Interpreter::InterfaceKind::NewTag]};
ExprResult CXXNewCall = B->S.BuildCXXNew(
E->getSourceRange(),
/*UseGlobal=*/true, /*PlacementLParen=*/SourceLocation(), Args,
/*PlacementRParen=*/SourceLocation(),
/*TypeIdParens=*/SourceRange(), TSI->getType(), TSI, std::nullopt,
E->getSourceRange(), E);
assert(!CXXNewCall.isInvalid() &&
"Can't create runtime placement new call!");
return B->S.ActOnFinishFullExpr(CXXNewCall.get(),
/*DiscardedValue=*/false);
}
// __clang_Interpreter_SetValueNoAlloc.
case Interpreter::InterfaceKind::NoAlloc: {
return B->S.ActOnCallExpr(
/*Scope=*/nullptr,
B->Interp.getValuePrintingInfo()[Interpreter::InterfaceKind::NoAlloc],
E->getBeginLoc(), Visitor.Args, E->getEndLoc());
}
default:
llvm_unreachable("Unhandled Interpreter::InterfaceKind");
}
}
};
} // namespace
static std::unique_ptr<RuntimeInterfaceBuilder>
createInProcessRuntimeInterfaceBuilder(Interpreter &Interp, ASTContext &Ctx,
Sema &S) {
return std::make_unique<InProcessRuntimeInterfaceBuilder>(Interp, Ctx, S);
}
// This synthesizes a call expression to a speciall
// function that is responsible for generating the Value.
// In general, we transform:
// clang-repl> x
// To:
// // 1. If x is a built-in type like int, float.
// __clang_Interpreter_SetValueNoAlloc(ThisInterp, OpaqueValue, xQualType, x);
// // 2. If x is a struct, and a lvalue.
// __clang_Interpreter_SetValueNoAlloc(ThisInterp, OpaqueValue, xQualType,
// &x);
// // 3. If x is a struct, but a rvalue.
// new (__clang_Interpreter_SetValueWithAlloc(ThisInterp, OpaqueValue,
// xQualType)) (x);
Expr *Interpreter::SynthesizeExpr(Expr *E) {
Sema &S = getCompilerInstance()->getSema();
ASTContext &Ctx = S.getASTContext();
if (!RuntimeIB) {
RuntimeIB = FindRuntimeInterface();
AddPrintValueCall = RuntimeIB->getPrintValueTransformer();
}
assert(AddPrintValueCall &&
"We don't have a runtime interface for pretty print!");
// Create parameter `ThisInterp`.
auto *ThisInterp = CStyleCastPtrExpr(S, Ctx.VoidPtrTy, (uintptr_t)this);
// Create parameter `OutVal`.
auto *OutValue = CStyleCastPtrExpr(S, Ctx.VoidPtrTy, (uintptr_t)&LastValue);
// Build `__clang_Interpreter_SetValue*` call.
ExprResult Result =
AddPrintValueCall(RuntimeIB.get(), E, {ThisInterp, OutValue});
// It could fail, like printing an array type in C. (not supported)
if (Result.isInvalid())
return E;
return Result.get();
}
// Temporary rvalue struct that need special care.
REPL_EXTERNAL_VISIBILITY void *
__clang_Interpreter_SetValueWithAlloc(void *This, void *OutVal,
void *OpaqueType) {
Value &VRef = *(Value *)OutVal;
VRef = Value(static_cast<Interpreter *>(This), OpaqueType);
return VRef.getPtr();
}
extern "C" void REPL_EXTERNAL_VISIBILITY __clang_Interpreter_SetValueNoAlloc(
void *This, void *OutVal, void *OpaqueType, ...) {
Value &VRef = *(Value *)OutVal;
Interpreter *I = static_cast<Interpreter *>(This);
VRef = Value(I, OpaqueType);
if (VRef.isVoid())
return;
va_list args;
va_start(args, /*last named param*/ OpaqueType);
QualType QT = VRef.getType();
if (VRef.getKind() == Value::K_PtrOrObj) {
VRef.setPtr(va_arg(args, void *));
} else {
if (const auto *ET = QT->getAs<EnumType>())
QT = ET->getDecl()->getIntegerType();
switch (QT->castAs<BuiltinType>()->getKind()) {
default:
llvm_unreachable("unknown type kind!");
break;
// Types shorter than int are resolved as int, else va_arg has UB.
case BuiltinType::Bool:
VRef.setBool(va_arg(args, int));
break;
case BuiltinType::Char_S:
VRef.setChar_S(va_arg(args, int));
break;
case BuiltinType::SChar:
VRef.setSChar(va_arg(args, int));
break;
case BuiltinType::Char_U:
VRef.setChar_U(va_arg(args, unsigned));
break;
case BuiltinType::UChar:
VRef.setUChar(va_arg(args, unsigned));
break;
case BuiltinType::Short:
VRef.setShort(va_arg(args, int));
break;
case BuiltinType::UShort:
VRef.setUShort(va_arg(args, unsigned));
break;
case BuiltinType::Int:
VRef.setInt(va_arg(args, int));
break;
case BuiltinType::UInt:
VRef.setUInt(va_arg(args, unsigned));
break;
case BuiltinType::Long:
VRef.setLong(va_arg(args, long));
break;
case BuiltinType::ULong:
VRef.setULong(va_arg(args, unsigned long));
break;
case BuiltinType::LongLong:
VRef.setLongLong(va_arg(args, long long));
break;
case BuiltinType::ULongLong:
VRef.setULongLong(va_arg(args, unsigned long long));
break;
// Types shorter than double are resolved as double, else va_arg has UB.
case BuiltinType::Float:
VRef.setFloat(va_arg(args, double));
break;
case BuiltinType::Double:
VRef.setDouble(va_arg(args, double));
break;
case BuiltinType::LongDouble:
VRef.setLongDouble(va_arg(args, long double));
break;
// See REPL_BUILTIN_TYPES.
}
}
va_end(args);
}
// A trampoline to work around the fact that operator placement new cannot
// really be forward declared due to libc++ and libstdc++ declaration mismatch.
// FIXME: __clang_Interpreter_NewTag is ODR violation because we get the same
// definition in the interpreter runtime. We should move it in a runtime header
// which gets included by the interpreter and here.
struct __clang_Interpreter_NewTag {};
REPL_EXTERNAL_VISIBILITY void *
operator new(size_t __sz, void *__p, __clang_Interpreter_NewTag) noexcept {
// Just forward to the standard operator placement new.
return operator new(__sz, __p);
}
|