File: SemaHLSL.cpp

package info (click to toggle)
llvm-toolchain-19 1%3A19.1.7-3
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 1,998,520 kB
  • sloc: cpp: 6,951,680; ansic: 1,486,157; asm: 913,598; python: 232,024; f90: 80,126; objc: 75,281; lisp: 37,276; pascal: 16,990; sh: 10,009; ml: 5,058; perl: 4,724; awk: 3,523; makefile: 3,167; javascript: 2,504; xml: 892; fortran: 664; cs: 573
file content (1123 lines) | stat: -rw-r--r-- 40,372 bytes parent folder | download | duplicates (3)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
//===- SemaHLSL.cpp - Semantic Analysis for HLSL constructs ---------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
// This implements Semantic Analysis for HLSL constructs.
//===----------------------------------------------------------------------===//

#include "clang/Sema/SemaHLSL.h"
#include "clang/AST/Decl.h"
#include "clang/AST/Expr.h"
#include "clang/AST/RecursiveASTVisitor.h"
#include "clang/Basic/DiagnosticSema.h"
#include "clang/Basic/LLVM.h"
#include "clang/Basic/TargetInfo.h"
#include "clang/Sema/ParsedAttr.h"
#include "clang/Sema/Sema.h"
#include "llvm/ADT/STLExtras.h"
#include "llvm/ADT/StringExtras.h"
#include "llvm/ADT/StringRef.h"
#include "llvm/Support/Casting.h"
#include "llvm/Support/ErrorHandling.h"
#include "llvm/TargetParser/Triple.h"
#include <iterator>

using namespace clang;

SemaHLSL::SemaHLSL(Sema &S) : SemaBase(S) {}

Decl *SemaHLSL::ActOnStartBuffer(Scope *BufferScope, bool CBuffer,
                                 SourceLocation KwLoc, IdentifierInfo *Ident,
                                 SourceLocation IdentLoc,
                                 SourceLocation LBrace) {
  // For anonymous namespace, take the location of the left brace.
  DeclContext *LexicalParent = SemaRef.getCurLexicalContext();
  HLSLBufferDecl *Result = HLSLBufferDecl::Create(
      getASTContext(), LexicalParent, CBuffer, KwLoc, Ident, IdentLoc, LBrace);

  SemaRef.PushOnScopeChains(Result, BufferScope);
  SemaRef.PushDeclContext(BufferScope, Result);

  return Result;
}

// Calculate the size of a legacy cbuffer type based on
// https://learn.microsoft.com/en-us/windows/win32/direct3dhlsl/dx-graphics-hlsl-packing-rules
static unsigned calculateLegacyCbufferSize(const ASTContext &Context,
                                           QualType T) {
  unsigned Size = 0;
  constexpr unsigned CBufferAlign = 128;
  if (const RecordType *RT = T->getAs<RecordType>()) {
    const RecordDecl *RD = RT->getDecl();
    for (const FieldDecl *Field : RD->fields()) {
      QualType Ty = Field->getType();
      unsigned FieldSize = calculateLegacyCbufferSize(Context, Ty);
      unsigned FieldAlign = 32;
      if (Ty->isAggregateType())
        FieldAlign = CBufferAlign;
      Size = llvm::alignTo(Size, FieldAlign);
      Size += FieldSize;
    }
  } else if (const ConstantArrayType *AT = Context.getAsConstantArrayType(T)) {
    if (unsigned ElementCount = AT->getSize().getZExtValue()) {
      unsigned ElementSize =
          calculateLegacyCbufferSize(Context, AT->getElementType());
      unsigned AlignedElementSize = llvm::alignTo(ElementSize, CBufferAlign);
      Size = AlignedElementSize * (ElementCount - 1) + ElementSize;
    }
  } else if (const VectorType *VT = T->getAs<VectorType>()) {
    unsigned ElementCount = VT->getNumElements();
    unsigned ElementSize =
        calculateLegacyCbufferSize(Context, VT->getElementType());
    Size = ElementSize * ElementCount;
  } else {
    Size = Context.getTypeSize(T);
  }
  return Size;
}

void SemaHLSL::ActOnFinishBuffer(Decl *Dcl, SourceLocation RBrace) {
  auto *BufDecl = cast<HLSLBufferDecl>(Dcl);
  BufDecl->setRBraceLoc(RBrace);

  // Validate packoffset.
  llvm::SmallVector<std::pair<VarDecl *, HLSLPackOffsetAttr *>> PackOffsetVec;
  bool HasPackOffset = false;
  bool HasNonPackOffset = false;
  for (auto *Field : BufDecl->decls()) {
    VarDecl *Var = dyn_cast<VarDecl>(Field);
    if (!Var)
      continue;
    if (Field->hasAttr<HLSLPackOffsetAttr>()) {
      PackOffsetVec.emplace_back(Var, Field->getAttr<HLSLPackOffsetAttr>());
      HasPackOffset = true;
    } else {
      HasNonPackOffset = true;
    }
  }

  if (HasPackOffset && HasNonPackOffset)
    Diag(BufDecl->getLocation(), diag::warn_hlsl_packoffset_mix);

  if (HasPackOffset) {
    ASTContext &Context = getASTContext();
    // Make sure no overlap in packoffset.
    // Sort PackOffsetVec by offset.
    std::sort(PackOffsetVec.begin(), PackOffsetVec.end(),
              [](const std::pair<VarDecl *, HLSLPackOffsetAttr *> &LHS,
                 const std::pair<VarDecl *, HLSLPackOffsetAttr *> &RHS) {
                return LHS.second->getOffset() < RHS.second->getOffset();
              });

    for (unsigned i = 0; i < PackOffsetVec.size() - 1; i++) {
      VarDecl *Var = PackOffsetVec[i].first;
      HLSLPackOffsetAttr *Attr = PackOffsetVec[i].second;
      unsigned Size = calculateLegacyCbufferSize(Context, Var->getType());
      unsigned Begin = Attr->getOffset() * 32;
      unsigned End = Begin + Size;
      unsigned NextBegin = PackOffsetVec[i + 1].second->getOffset() * 32;
      if (End > NextBegin) {
        VarDecl *NextVar = PackOffsetVec[i + 1].first;
        Diag(NextVar->getLocation(), diag::err_hlsl_packoffset_overlap)
            << NextVar << Var;
      }
    }
  }

  SemaRef.PopDeclContext();
}

HLSLNumThreadsAttr *SemaHLSL::mergeNumThreadsAttr(Decl *D,
                                                  const AttributeCommonInfo &AL,
                                                  int X, int Y, int Z) {
  if (HLSLNumThreadsAttr *NT = D->getAttr<HLSLNumThreadsAttr>()) {
    if (NT->getX() != X || NT->getY() != Y || NT->getZ() != Z) {
      Diag(NT->getLocation(), diag::err_hlsl_attribute_param_mismatch) << AL;
      Diag(AL.getLoc(), diag::note_conflicting_attribute);
    }
    return nullptr;
  }
  return ::new (getASTContext())
      HLSLNumThreadsAttr(getASTContext(), AL, X, Y, Z);
}

HLSLShaderAttr *
SemaHLSL::mergeShaderAttr(Decl *D, const AttributeCommonInfo &AL,
                          llvm::Triple::EnvironmentType ShaderType) {
  if (HLSLShaderAttr *NT = D->getAttr<HLSLShaderAttr>()) {
    if (NT->getType() != ShaderType) {
      Diag(NT->getLocation(), diag::err_hlsl_attribute_param_mismatch) << AL;
      Diag(AL.getLoc(), diag::note_conflicting_attribute);
    }
    return nullptr;
  }
  return HLSLShaderAttr::Create(getASTContext(), ShaderType, AL);
}

HLSLParamModifierAttr *
SemaHLSL::mergeParamModifierAttr(Decl *D, const AttributeCommonInfo &AL,
                                 HLSLParamModifierAttr::Spelling Spelling) {
  // We can only merge an `in` attribute with an `out` attribute. All other
  // combinations of duplicated attributes are ill-formed.
  if (HLSLParamModifierAttr *PA = D->getAttr<HLSLParamModifierAttr>()) {
    if ((PA->isIn() && Spelling == HLSLParamModifierAttr::Keyword_out) ||
        (PA->isOut() && Spelling == HLSLParamModifierAttr::Keyword_in)) {
      D->dropAttr<HLSLParamModifierAttr>();
      SourceRange AdjustedRange = {PA->getLocation(), AL.getRange().getEnd()};
      return HLSLParamModifierAttr::Create(
          getASTContext(), /*MergedSpelling=*/true, AdjustedRange,
          HLSLParamModifierAttr::Keyword_inout);
    }
    Diag(AL.getLoc(), diag::err_hlsl_duplicate_parameter_modifier) << AL;
    Diag(PA->getLocation(), diag::note_conflicting_attribute);
    return nullptr;
  }
  return HLSLParamModifierAttr::Create(getASTContext(), AL);
}

void SemaHLSL::ActOnTopLevelFunction(FunctionDecl *FD) {
  auto &TargetInfo = getASTContext().getTargetInfo();

  if (FD->getName() != TargetInfo.getTargetOpts().HLSLEntry)
    return;

  llvm::Triple::EnvironmentType Env = TargetInfo.getTriple().getEnvironment();
  if (HLSLShaderAttr::isValidShaderType(Env) && Env != llvm::Triple::Library) {
    if (const auto *Shader = FD->getAttr<HLSLShaderAttr>()) {
      // The entry point is already annotated - check that it matches the
      // triple.
      if (Shader->getType() != Env) {
        Diag(Shader->getLocation(), diag::err_hlsl_entry_shader_attr_mismatch)
            << Shader;
        FD->setInvalidDecl();
      }
    } else {
      // Implicitly add the shader attribute if the entry function isn't
      // explicitly annotated.
      FD->addAttr(HLSLShaderAttr::CreateImplicit(getASTContext(), Env,
                                                 FD->getBeginLoc()));
    }
  } else {
    switch (Env) {
    case llvm::Triple::UnknownEnvironment:
    case llvm::Triple::Library:
      break;
    default:
      llvm_unreachable("Unhandled environment in triple");
    }
  }
}

void SemaHLSL::CheckEntryPoint(FunctionDecl *FD) {
  const auto *ShaderAttr = FD->getAttr<HLSLShaderAttr>();
  assert(ShaderAttr && "Entry point has no shader attribute");
  llvm::Triple::EnvironmentType ST = ShaderAttr->getType();

  switch (ST) {
  case llvm::Triple::Pixel:
  case llvm::Triple::Vertex:
  case llvm::Triple::Geometry:
  case llvm::Triple::Hull:
  case llvm::Triple::Domain:
  case llvm::Triple::RayGeneration:
  case llvm::Triple::Intersection:
  case llvm::Triple::AnyHit:
  case llvm::Triple::ClosestHit:
  case llvm::Triple::Miss:
  case llvm::Triple::Callable:
    if (const auto *NT = FD->getAttr<HLSLNumThreadsAttr>()) {
      DiagnoseAttrStageMismatch(NT, ST,
                                {llvm::Triple::Compute,
                                 llvm::Triple::Amplification,
                                 llvm::Triple::Mesh});
      FD->setInvalidDecl();
    }
    break;

  case llvm::Triple::Compute:
  case llvm::Triple::Amplification:
  case llvm::Triple::Mesh:
    if (!FD->hasAttr<HLSLNumThreadsAttr>()) {
      Diag(FD->getLocation(), diag::err_hlsl_missing_numthreads)
          << llvm::Triple::getEnvironmentTypeName(ST);
      FD->setInvalidDecl();
    }
    break;
  default:
    llvm_unreachable("Unhandled environment in triple");
  }

  for (ParmVarDecl *Param : FD->parameters()) {
    if (const auto *AnnotationAttr = Param->getAttr<HLSLAnnotationAttr>()) {
      CheckSemanticAnnotation(FD, Param, AnnotationAttr);
    } else {
      // FIXME: Handle struct parameters where annotations are on struct fields.
      // See: https://github.com/llvm/llvm-project/issues/57875
      Diag(FD->getLocation(), diag::err_hlsl_missing_semantic_annotation);
      Diag(Param->getLocation(), diag::note_previous_decl) << Param;
      FD->setInvalidDecl();
    }
  }
  // FIXME: Verify return type semantic annotation.
}

void SemaHLSL::CheckSemanticAnnotation(
    FunctionDecl *EntryPoint, const Decl *Param,
    const HLSLAnnotationAttr *AnnotationAttr) {
  auto *ShaderAttr = EntryPoint->getAttr<HLSLShaderAttr>();
  assert(ShaderAttr && "Entry point has no shader attribute");
  llvm::Triple::EnvironmentType ST = ShaderAttr->getType();

  switch (AnnotationAttr->getKind()) {
  case attr::HLSLSV_DispatchThreadID:
  case attr::HLSLSV_GroupIndex:
    if (ST == llvm::Triple::Compute)
      return;
    DiagnoseAttrStageMismatch(AnnotationAttr, ST, {llvm::Triple::Compute});
    break;
  default:
    llvm_unreachable("Unknown HLSLAnnotationAttr");
  }
}

void SemaHLSL::DiagnoseAttrStageMismatch(
    const Attr *A, llvm::Triple::EnvironmentType Stage,
    std::initializer_list<llvm::Triple::EnvironmentType> AllowedStages) {
  SmallVector<StringRef, 8> StageStrings;
  llvm::transform(AllowedStages, std::back_inserter(StageStrings),
                  [](llvm::Triple::EnvironmentType ST) {
                    return StringRef(
                        HLSLShaderAttr::ConvertEnvironmentTypeToStr(ST));
                  });
  Diag(A->getLoc(), diag::err_hlsl_attr_unsupported_in_stage)
      << A << llvm::Triple::getEnvironmentTypeName(Stage)
      << (AllowedStages.size() != 1) << join(StageStrings, ", ");
}

void SemaHLSL::handleNumThreadsAttr(Decl *D, const ParsedAttr &AL) {
  llvm::VersionTuple SMVersion =
      getASTContext().getTargetInfo().getTriple().getOSVersion();
  uint32_t ZMax = 1024;
  uint32_t ThreadMax = 1024;
  if (SMVersion.getMajor() <= 4) {
    ZMax = 1;
    ThreadMax = 768;
  } else if (SMVersion.getMajor() == 5) {
    ZMax = 64;
    ThreadMax = 1024;
  }

  uint32_t X;
  if (!SemaRef.checkUInt32Argument(AL, AL.getArgAsExpr(0), X))
    return;
  if (X > 1024) {
    Diag(AL.getArgAsExpr(0)->getExprLoc(),
         diag::err_hlsl_numthreads_argument_oor)
        << 0 << 1024;
    return;
  }
  uint32_t Y;
  if (!SemaRef.checkUInt32Argument(AL, AL.getArgAsExpr(1), Y))
    return;
  if (Y > 1024) {
    Diag(AL.getArgAsExpr(1)->getExprLoc(),
         diag::err_hlsl_numthreads_argument_oor)
        << 1 << 1024;
    return;
  }
  uint32_t Z;
  if (!SemaRef.checkUInt32Argument(AL, AL.getArgAsExpr(2), Z))
    return;
  if (Z > ZMax) {
    SemaRef.Diag(AL.getArgAsExpr(2)->getExprLoc(),
                 diag::err_hlsl_numthreads_argument_oor)
        << 2 << ZMax;
    return;
  }

  if (X * Y * Z > ThreadMax) {
    Diag(AL.getLoc(), diag::err_hlsl_numthreads_invalid) << ThreadMax;
    return;
  }

  HLSLNumThreadsAttr *NewAttr = mergeNumThreadsAttr(D, AL, X, Y, Z);
  if (NewAttr)
    D->addAttr(NewAttr);
}

static bool isLegalTypeForHLSLSV_DispatchThreadID(QualType T) {
  if (!T->hasUnsignedIntegerRepresentation())
    return false;
  if (const auto *VT = T->getAs<VectorType>())
    return VT->getNumElements() <= 3;
  return true;
}

void SemaHLSL::handleSV_DispatchThreadIDAttr(Decl *D, const ParsedAttr &AL) {  
  auto *VD = cast<ValueDecl>(D);
  if (!isLegalTypeForHLSLSV_DispatchThreadID(VD->getType())) {
    Diag(AL.getLoc(), diag::err_hlsl_attr_invalid_type)
        << AL << "uint/uint2/uint3";
    return;
  }

  D->addAttr(::new (getASTContext())
                 HLSLSV_DispatchThreadIDAttr(getASTContext(), AL));
}

void SemaHLSL::handlePackOffsetAttr(Decl *D, const ParsedAttr &AL) {
  if (!isa<VarDecl>(D) || !isa<HLSLBufferDecl>(D->getDeclContext())) {
    Diag(AL.getLoc(), diag::err_hlsl_attr_invalid_ast_node)
        << AL << "shader constant in a constant buffer";
    return;
  }

  uint32_t SubComponent;
  if (!SemaRef.checkUInt32Argument(AL, AL.getArgAsExpr(0), SubComponent))
    return;
  uint32_t Component;
  if (!SemaRef.checkUInt32Argument(AL, AL.getArgAsExpr(1), Component))
    return;

  QualType T = cast<VarDecl>(D)->getType().getCanonicalType();
  // Check if T is an array or struct type.
  // TODO: mark matrix type as aggregate type.
  bool IsAggregateTy = (T->isArrayType() || T->isStructureType());

  // Check Component is valid for T.
  if (Component) {
    unsigned Size = getASTContext().getTypeSize(T);
    if (IsAggregateTy || Size > 128) {
      Diag(AL.getLoc(), diag::err_hlsl_packoffset_cross_reg_boundary);
      return;
    } else {
      // Make sure Component + sizeof(T) <= 4.
      if ((Component * 32 + Size) > 128) {
        Diag(AL.getLoc(), diag::err_hlsl_packoffset_cross_reg_boundary);
        return;
      }
      QualType EltTy = T;
      if (const auto *VT = T->getAs<VectorType>())
        EltTy = VT->getElementType();
      unsigned Align = getASTContext().getTypeAlign(EltTy);
      if (Align > 32 && Component == 1) {
        // NOTE: Component 3 will hit err_hlsl_packoffset_cross_reg_boundary.
        // So we only need to check Component 1 here.
        Diag(AL.getLoc(), diag::err_hlsl_packoffset_alignment_mismatch)
            << Align << EltTy;
        return;
      }
    }
  }

  D->addAttr(::new (getASTContext()) HLSLPackOffsetAttr(
      getASTContext(), AL, SubComponent, Component));
}

void SemaHLSL::handleShaderAttr(Decl *D, const ParsedAttr &AL) {
  StringRef Str;
  SourceLocation ArgLoc;
  if (!SemaRef.checkStringLiteralArgumentAttr(AL, 0, Str, &ArgLoc))
    return;

  llvm::Triple::EnvironmentType ShaderType;
  if (!HLSLShaderAttr::ConvertStrToEnvironmentType(Str, ShaderType)) {
    Diag(AL.getLoc(), diag::warn_attribute_type_not_supported)
        << AL << Str << ArgLoc;
    return;
  }

  // FIXME: check function match the shader stage.

  HLSLShaderAttr *NewAttr = mergeShaderAttr(D, AL, ShaderType);
  if (NewAttr)
    D->addAttr(NewAttr);
}

void SemaHLSL::handleResourceClassAttr(Decl *D, const ParsedAttr &AL) {
  if (!AL.isArgIdent(0)) {
    Diag(AL.getLoc(), diag::err_attribute_argument_type)
        << AL << AANT_ArgumentIdentifier;
    return;
  }

  IdentifierLoc *Loc = AL.getArgAsIdent(0);
  StringRef Identifier = Loc->Ident->getName();
  SourceLocation ArgLoc = Loc->Loc;

  // Validate.
  llvm::dxil::ResourceClass RC;
  if (!HLSLResourceClassAttr::ConvertStrToResourceClass(Identifier, RC)) {
    Diag(ArgLoc, diag::warn_attribute_type_not_supported)
        << "ResourceClass" << Identifier;
    return;
  }

  D->addAttr(HLSLResourceClassAttr::Create(getASTContext(), RC, ArgLoc));
}

void SemaHLSL::handleResourceBindingAttr(Decl *D, const ParsedAttr &AL) {
  StringRef Space = "space0";
  StringRef Slot = "";

  if (!AL.isArgIdent(0)) {
    Diag(AL.getLoc(), diag::err_attribute_argument_type)
        << AL << AANT_ArgumentIdentifier;
    return;
  }

  IdentifierLoc *Loc = AL.getArgAsIdent(0);
  StringRef Str = Loc->Ident->getName();
  SourceLocation ArgLoc = Loc->Loc;

  SourceLocation SpaceArgLoc;
  if (AL.getNumArgs() == 2) {
    Slot = Str;
    if (!AL.isArgIdent(1)) {
      Diag(AL.getLoc(), diag::err_attribute_argument_type)
          << AL << AANT_ArgumentIdentifier;
      return;
    }

    IdentifierLoc *Loc = AL.getArgAsIdent(1);
    Space = Loc->Ident->getName();
    SpaceArgLoc = Loc->Loc;
  } else {
    Slot = Str;
  }

  // Validate.
  if (!Slot.empty()) {
    switch (Slot[0]) {
    case 'u':
    case 'b':
    case 's':
    case 't':
      break;
    default:
      Diag(ArgLoc, diag::err_hlsl_unsupported_register_type)
          << Slot.substr(0, 1);
      return;
    }

    StringRef SlotNum = Slot.substr(1);
    unsigned Num = 0;
    if (SlotNum.getAsInteger(10, Num)) {
      Diag(ArgLoc, diag::err_hlsl_unsupported_register_number);
      return;
    }
  }

  if (!Space.starts_with("space")) {
    Diag(SpaceArgLoc, diag::err_hlsl_expected_space) << Space;
    return;
  }
  StringRef SpaceNum = Space.substr(5);
  unsigned Num = 0;
  if (SpaceNum.getAsInteger(10, Num)) {
    Diag(SpaceArgLoc, diag::err_hlsl_expected_space) << Space;
    return;
  }

  // FIXME: check reg type match decl. Issue
  // https://github.com/llvm/llvm-project/issues/57886.
  HLSLResourceBindingAttr *NewAttr =
      HLSLResourceBindingAttr::Create(getASTContext(), Slot, Space, AL);
  if (NewAttr)
    D->addAttr(NewAttr);
}

void SemaHLSL::handleParamModifierAttr(Decl *D, const ParsedAttr &AL) {
  HLSLParamModifierAttr *NewAttr = mergeParamModifierAttr(
      D, AL,
      static_cast<HLSLParamModifierAttr::Spelling>(AL.getSemanticSpelling()));
  if (NewAttr)
    D->addAttr(NewAttr);
}

namespace {

/// This class implements HLSL availability diagnostics for default
/// and relaxed mode
///
/// The goal of this diagnostic is to emit an error or warning when an
/// unavailable API is found in code that is reachable from the shader
/// entry function or from an exported function (when compiling a shader
/// library).
///
/// This is done by traversing the AST of all shader entry point functions
/// and of all exported functions, and any functions that are referenced
/// from this AST. In other words, any functions that are reachable from
/// the entry points.
class DiagnoseHLSLAvailability
    : public RecursiveASTVisitor<DiagnoseHLSLAvailability> {

  Sema &SemaRef;

  // Stack of functions to be scaned
  llvm::SmallVector<const FunctionDecl *, 8> DeclsToScan;

  // Tracks which environments functions have been scanned in.
  //
  // Maps FunctionDecl to an unsigned number that represents the set of shader
  // environments the function has been scanned for.
  // The llvm::Triple::EnvironmentType enum values for shader stages guaranteed
  // to be numbered from llvm::Triple::Pixel to llvm::Triple::Amplification
  // (verified by static_asserts in Triple.cpp), we can use it to index
  // individual bits in the set, as long as we shift the values to start with 0
  // by subtracting the value of llvm::Triple::Pixel first.
  //
  // The N'th bit in the set will be set if the function has been scanned
  // in shader environment whose llvm::Triple::EnvironmentType integer value
  // equals (llvm::Triple::Pixel + N).
  //
  // For example, if a function has been scanned in compute and pixel stage
  // environment, the value will be 0x21 (100001 binary) because:
  //
  //   (int)(llvm::Triple::Pixel - llvm::Triple::Pixel) == 0
  //   (int)(llvm::Triple::Compute - llvm::Triple::Pixel) == 5
  //
  // A FunctionDecl is mapped to 0 (or not included in the map) if it has not
  // been scanned in any environment.
  llvm::DenseMap<const FunctionDecl *, unsigned> ScannedDecls;

  // Do not access these directly, use the get/set methods below to make
  // sure the values are in sync
  llvm::Triple::EnvironmentType CurrentShaderEnvironment;
  unsigned CurrentShaderStageBit;

  // True if scanning a function that was already scanned in a different
  // shader stage context, and therefore we should not report issues that
  // depend only on shader model version because they would be duplicate.
  bool ReportOnlyShaderStageIssues;

  // Helper methods for dealing with current stage context / environment
  void SetShaderStageContext(llvm::Triple::EnvironmentType ShaderType) {
    static_assert(sizeof(unsigned) >= 4);
    assert(HLSLShaderAttr::isValidShaderType(ShaderType));
    assert((unsigned)(ShaderType - llvm::Triple::Pixel) < 31 &&
           "ShaderType is too big for this bitmap"); // 31 is reserved for
                                                     // "unknown"

    unsigned bitmapIndex = ShaderType - llvm::Triple::Pixel;
    CurrentShaderEnvironment = ShaderType;
    CurrentShaderStageBit = (1 << bitmapIndex);
  }

  void SetUnknownShaderStageContext() {
    CurrentShaderEnvironment = llvm::Triple::UnknownEnvironment;
    CurrentShaderStageBit = (1 << 31);
  }

  llvm::Triple::EnvironmentType GetCurrentShaderEnvironment() const {
    return CurrentShaderEnvironment;
  }

  bool InUnknownShaderStageContext() const {
    return CurrentShaderEnvironment == llvm::Triple::UnknownEnvironment;
  }

  // Helper methods for dealing with shader stage bitmap
  void AddToScannedFunctions(const FunctionDecl *FD) {
    unsigned &ScannedStages = ScannedDecls.getOrInsertDefault(FD);
    ScannedStages |= CurrentShaderStageBit;
  }

  unsigned GetScannedStages(const FunctionDecl *FD) {
    return ScannedDecls.getOrInsertDefault(FD);
  }

  bool WasAlreadyScannedInCurrentStage(const FunctionDecl *FD) {
    return WasAlreadyScannedInCurrentStage(GetScannedStages(FD));
  }

  bool WasAlreadyScannedInCurrentStage(unsigned ScannerStages) {
    return ScannerStages & CurrentShaderStageBit;
  }

  static bool NeverBeenScanned(unsigned ScannedStages) {
    return ScannedStages == 0;
  }

  // Scanning methods
  void HandleFunctionOrMethodRef(FunctionDecl *FD, Expr *RefExpr);
  void CheckDeclAvailability(NamedDecl *D, const AvailabilityAttr *AA,
                             SourceRange Range);
  const AvailabilityAttr *FindAvailabilityAttr(const Decl *D);
  bool HasMatchingEnvironmentOrNone(const AvailabilityAttr *AA);

public:
  DiagnoseHLSLAvailability(Sema &SemaRef) : SemaRef(SemaRef) {}

  // AST traversal methods
  void RunOnTranslationUnit(const TranslationUnitDecl *TU);
  void RunOnFunction(const FunctionDecl *FD);

  bool VisitDeclRefExpr(DeclRefExpr *DRE) {
    FunctionDecl *FD = llvm::dyn_cast<FunctionDecl>(DRE->getDecl());
    if (FD)
      HandleFunctionOrMethodRef(FD, DRE);
    return true;
  }

  bool VisitMemberExpr(MemberExpr *ME) {
    FunctionDecl *FD = llvm::dyn_cast<FunctionDecl>(ME->getMemberDecl());
    if (FD)
      HandleFunctionOrMethodRef(FD, ME);
    return true;
  }
};

void DiagnoseHLSLAvailability::HandleFunctionOrMethodRef(FunctionDecl *FD,
                                                         Expr *RefExpr) {
  assert((isa<DeclRefExpr>(RefExpr) || isa<MemberExpr>(RefExpr)) &&
         "expected DeclRefExpr or MemberExpr");

  // has a definition -> add to stack to be scanned
  const FunctionDecl *FDWithBody = nullptr;
  if (FD->hasBody(FDWithBody)) {
    if (!WasAlreadyScannedInCurrentStage(FDWithBody))
      DeclsToScan.push_back(FDWithBody);
    return;
  }

  // no body -> diagnose availability
  const AvailabilityAttr *AA = FindAvailabilityAttr(FD);
  if (AA)
    CheckDeclAvailability(
        FD, AA, SourceRange(RefExpr->getBeginLoc(), RefExpr->getEndLoc()));
}

void DiagnoseHLSLAvailability::RunOnTranslationUnit(
    const TranslationUnitDecl *TU) {

  // Iterate over all shader entry functions and library exports, and for those
  // that have a body (definiton), run diag scan on each, setting appropriate
  // shader environment context based on whether it is a shader entry function
  // or an exported function. Exported functions can be in namespaces and in
  // export declarations so we need to scan those declaration contexts as well.
  llvm::SmallVector<const DeclContext *, 8> DeclContextsToScan;
  DeclContextsToScan.push_back(TU);

  while (!DeclContextsToScan.empty()) {
    const DeclContext *DC = DeclContextsToScan.pop_back_val();
    for (auto &D : DC->decls()) {
      // do not scan implicit declaration generated by the implementation
      if (D->isImplicit())
        continue;

      // for namespace or export declaration add the context to the list to be
      // scanned later
      if (llvm::dyn_cast<NamespaceDecl>(D) || llvm::dyn_cast<ExportDecl>(D)) {
        DeclContextsToScan.push_back(llvm::dyn_cast<DeclContext>(D));
        continue;
      }

      // skip over other decls or function decls without body
      const FunctionDecl *FD = llvm::dyn_cast<FunctionDecl>(D);
      if (!FD || !FD->isThisDeclarationADefinition())
        continue;

      // shader entry point
      if (HLSLShaderAttr *ShaderAttr = FD->getAttr<HLSLShaderAttr>()) {
        SetShaderStageContext(ShaderAttr->getType());
        RunOnFunction(FD);
        continue;
      }
      // exported library function
      // FIXME: replace this loop with external linkage check once issue #92071
      // is resolved
      bool isExport = FD->isInExportDeclContext();
      if (!isExport) {
        for (const auto *Redecl : FD->redecls()) {
          if (Redecl->isInExportDeclContext()) {
            isExport = true;
            break;
          }
        }
      }
      if (isExport) {
        SetUnknownShaderStageContext();
        RunOnFunction(FD);
        continue;
      }
    }
  }
}

void DiagnoseHLSLAvailability::RunOnFunction(const FunctionDecl *FD) {
  assert(DeclsToScan.empty() && "DeclsToScan should be empty");
  DeclsToScan.push_back(FD);

  while (!DeclsToScan.empty()) {
    // Take one decl from the stack and check it by traversing its AST.
    // For any CallExpr found during the traversal add it's callee to the top of
    // the stack to be processed next. Functions already processed are stored in
    // ScannedDecls.
    const FunctionDecl *FD = DeclsToScan.pop_back_val();

    // Decl was already scanned
    const unsigned ScannedStages = GetScannedStages(FD);
    if (WasAlreadyScannedInCurrentStage(ScannedStages))
      continue;

    ReportOnlyShaderStageIssues = !NeverBeenScanned(ScannedStages);

    AddToScannedFunctions(FD);
    TraverseStmt(FD->getBody());
  }
}

bool DiagnoseHLSLAvailability::HasMatchingEnvironmentOrNone(
    const AvailabilityAttr *AA) {
  IdentifierInfo *IIEnvironment = AA->getEnvironment();
  if (!IIEnvironment)
    return true;

  llvm::Triple::EnvironmentType CurrentEnv = GetCurrentShaderEnvironment();
  if (CurrentEnv == llvm::Triple::UnknownEnvironment)
    return false;

  llvm::Triple::EnvironmentType AttrEnv =
      AvailabilityAttr::getEnvironmentType(IIEnvironment->getName());

  return CurrentEnv == AttrEnv;
}

const AvailabilityAttr *
DiagnoseHLSLAvailability::FindAvailabilityAttr(const Decl *D) {
  AvailabilityAttr const *PartialMatch = nullptr;
  // Check each AvailabilityAttr to find the one for this platform.
  // For multiple attributes with the same platform try to find one for this
  // environment.
  for (const auto *A : D->attrs()) {
    if (const auto *Avail = dyn_cast<AvailabilityAttr>(A)) {
      StringRef AttrPlatform = Avail->getPlatform()->getName();
      StringRef TargetPlatform =
          SemaRef.getASTContext().getTargetInfo().getPlatformName();

      // Match the platform name.
      if (AttrPlatform == TargetPlatform) {
        // Find the best matching attribute for this environment
        if (HasMatchingEnvironmentOrNone(Avail))
          return Avail;
        PartialMatch = Avail;
      }
    }
  }
  return PartialMatch;
}

// Check availability against target shader model version and current shader
// stage and emit diagnostic
void DiagnoseHLSLAvailability::CheckDeclAvailability(NamedDecl *D,
                                                     const AvailabilityAttr *AA,
                                                     SourceRange Range) {

  IdentifierInfo *IIEnv = AA->getEnvironment();

  if (!IIEnv) {
    // The availability attribute does not have environment -> it depends only
    // on shader model version and not on specific the shader stage.

    // Skip emitting the diagnostics if the diagnostic mode is set to
    // strict (-fhlsl-strict-availability) because all relevant diagnostics
    // were already emitted in the DiagnoseUnguardedAvailability scan
    // (SemaAvailability.cpp).
    if (SemaRef.getLangOpts().HLSLStrictAvailability)
      return;

    // Do not report shader-stage-independent issues if scanning a function
    // that was already scanned in a different shader stage context (they would
    // be duplicate)
    if (ReportOnlyShaderStageIssues)
      return;

  } else {
    // The availability attribute has environment -> we need to know
    // the current stage context to property diagnose it.
    if (InUnknownShaderStageContext())
      return;
  }

  // Check introduced version and if environment matches
  bool EnvironmentMatches = HasMatchingEnvironmentOrNone(AA);
  VersionTuple Introduced = AA->getIntroduced();
  VersionTuple TargetVersion =
      SemaRef.Context.getTargetInfo().getPlatformMinVersion();

  if (TargetVersion >= Introduced && EnvironmentMatches)
    return;

  // Emit diagnostic message
  const TargetInfo &TI = SemaRef.getASTContext().getTargetInfo();
  llvm::StringRef PlatformName(
      AvailabilityAttr::getPrettyPlatformName(TI.getPlatformName()));

  llvm::StringRef CurrentEnvStr =
      llvm::Triple::getEnvironmentTypeName(GetCurrentShaderEnvironment());

  llvm::StringRef AttrEnvStr =
      AA->getEnvironment() ? AA->getEnvironment()->getName() : "";
  bool UseEnvironment = !AttrEnvStr.empty();

  if (EnvironmentMatches) {
    SemaRef.Diag(Range.getBegin(), diag::warn_hlsl_availability)
        << Range << D << PlatformName << Introduced.getAsString()
        << UseEnvironment << CurrentEnvStr;
  } else {
    SemaRef.Diag(Range.getBegin(), diag::warn_hlsl_availability_unavailable)
        << Range << D;
  }

  SemaRef.Diag(D->getLocation(), diag::note_partial_availability_specified_here)
      << D << PlatformName << Introduced.getAsString()
      << SemaRef.Context.getTargetInfo().getPlatformMinVersion().getAsString()
      << UseEnvironment << AttrEnvStr << CurrentEnvStr;
}

} // namespace

void SemaHLSL::DiagnoseAvailabilityViolations(TranslationUnitDecl *TU) {
  // Skip running the diagnostics scan if the diagnostic mode is
  // strict (-fhlsl-strict-availability) and the target shader stage is known
  // because all relevant diagnostics were already emitted in the
  // DiagnoseUnguardedAvailability scan (SemaAvailability.cpp).
  const TargetInfo &TI = SemaRef.getASTContext().getTargetInfo();
  if (SemaRef.getLangOpts().HLSLStrictAvailability &&
      TI.getTriple().getEnvironment() != llvm::Triple::EnvironmentType::Library)
    return;

  DiagnoseHLSLAvailability(SemaRef).RunOnTranslationUnit(TU);
}

// Helper function for CheckHLSLBuiltinFunctionCall
bool CheckVectorElementCallArgs(Sema *S, CallExpr *TheCall) {
  assert(TheCall->getNumArgs() > 1);
  ExprResult A = TheCall->getArg(0);

  QualType ArgTyA = A.get()->getType();

  auto *VecTyA = ArgTyA->getAs<VectorType>();
  SourceLocation BuiltinLoc = TheCall->getBeginLoc();

  for (unsigned i = 1; i < TheCall->getNumArgs(); ++i) {
    ExprResult B = TheCall->getArg(i);
    QualType ArgTyB = B.get()->getType();
    auto *VecTyB = ArgTyB->getAs<VectorType>();
    if (VecTyA == nullptr && VecTyB == nullptr)
      return false;

    if (VecTyA && VecTyB) {
      bool retValue = false;
      if (VecTyA->getElementType() != VecTyB->getElementType()) {
        // Note: type promotion is intended to be handeled via the intrinsics
        //  and not the builtin itself.
        S->Diag(TheCall->getBeginLoc(),
                diag::err_vec_builtin_incompatible_vector)
            << TheCall->getDirectCallee() << /*useAllTerminology*/ true
            << SourceRange(A.get()->getBeginLoc(), B.get()->getEndLoc());
        retValue = true;
      }
      if (VecTyA->getNumElements() != VecTyB->getNumElements()) {
        // You should only be hitting this case if you are calling the builtin
        // directly. HLSL intrinsics should avoid this case via a
        // HLSLVectorTruncation.
        S->Diag(BuiltinLoc, diag::err_vec_builtin_incompatible_vector)
            << TheCall->getDirectCallee() << /*useAllTerminology*/ true
            << SourceRange(TheCall->getArg(0)->getBeginLoc(),
                           TheCall->getArg(1)->getEndLoc());
        retValue = true;
      }
      return retValue;
    }
  }

  // Note: if we get here one of the args is a scalar which
  // requires a VectorSplat on Arg0 or Arg1
  S->Diag(BuiltinLoc, diag::err_vec_builtin_non_vector)
      << TheCall->getDirectCallee() << /*useAllTerminology*/ true
      << SourceRange(TheCall->getArg(0)->getBeginLoc(),
                     TheCall->getArg(1)->getEndLoc());
  return true;
}

bool CheckArgsTypesAreCorrect(
    Sema *S, CallExpr *TheCall, QualType ExpectedType,
    llvm::function_ref<bool(clang::QualType PassedType)> Check) {
  for (unsigned i = 0; i < TheCall->getNumArgs(); ++i) {
    QualType PassedType = TheCall->getArg(i)->getType();
    if (Check(PassedType)) {
      if (auto *VecTyA = PassedType->getAs<VectorType>())
        ExpectedType = S->Context.getVectorType(
            ExpectedType, VecTyA->getNumElements(), VecTyA->getVectorKind());
      S->Diag(TheCall->getArg(0)->getBeginLoc(),
              diag::err_typecheck_convert_incompatible)
          << PassedType << ExpectedType << 1 << 0 << 0;
      return true;
    }
  }
  return false;
}

bool CheckAllArgsHaveFloatRepresentation(Sema *S, CallExpr *TheCall) {
  auto checkAllFloatTypes = [](clang::QualType PassedType) -> bool {
    return !PassedType->hasFloatingRepresentation();
  };
  return CheckArgsTypesAreCorrect(S, TheCall, S->Context.FloatTy,
                                  checkAllFloatTypes);
}

bool CheckFloatOrHalfRepresentations(Sema *S, CallExpr *TheCall) {
  auto checkFloatorHalf = [](clang::QualType PassedType) -> bool {
    clang::QualType BaseType =
        PassedType->isVectorType()
            ? PassedType->getAs<clang::VectorType>()->getElementType()
            : PassedType;
    return !BaseType->isHalfType() && !BaseType->isFloat32Type();
  };
  return CheckArgsTypesAreCorrect(S, TheCall, S->Context.FloatTy,
                                  checkFloatorHalf);
}

bool CheckNoDoubleVectors(Sema *S, CallExpr *TheCall) {
  auto checkDoubleVector = [](clang::QualType PassedType) -> bool {
    if (const auto *VecTy = PassedType->getAs<VectorType>())
      return VecTy->getElementType()->isDoubleType();
    return false;
  };
  return CheckArgsTypesAreCorrect(S, TheCall, S->Context.FloatTy,
                                  checkDoubleVector);
}

bool CheckUnsignedIntRepresentation(Sema *S, CallExpr *TheCall) {
  auto checkAllUnsignedTypes = [](clang::QualType PassedType) -> bool {
    return !PassedType->hasUnsignedIntegerRepresentation();
  };
  return CheckArgsTypesAreCorrect(S, TheCall, S->Context.UnsignedIntTy,
                                  checkAllUnsignedTypes);
}

void SetElementTypeAsReturnType(Sema *S, CallExpr *TheCall,
                                QualType ReturnType) {
  auto *VecTyA = TheCall->getArg(0)->getType()->getAs<VectorType>();
  if (VecTyA)
    ReturnType = S->Context.getVectorType(ReturnType, VecTyA->getNumElements(),
                                          VectorKind::Generic);
  TheCall->setType(ReturnType);
}

// Note: returning true in this case results in CheckBuiltinFunctionCall
// returning an ExprError
bool SemaHLSL::CheckBuiltinFunctionCall(unsigned BuiltinID, CallExpr *TheCall) {
  switch (BuiltinID) {
  case Builtin::BI__builtin_hlsl_elementwise_all:
  case Builtin::BI__builtin_hlsl_elementwise_any: {
    if (SemaRef.checkArgCount(TheCall, 1))
      return true;
    break;
  }
  case Builtin::BI__builtin_hlsl_elementwise_clamp: {
    if (SemaRef.checkArgCount(TheCall, 3))
      return true;
    if (CheckVectorElementCallArgs(&SemaRef, TheCall))
      return true;
    if (SemaRef.BuiltinElementwiseTernaryMath(
            TheCall, /*CheckForFloatArgs*/
            TheCall->getArg(0)->getType()->hasFloatingRepresentation()))
      return true;
    break;
  }
  case Builtin::BI__builtin_hlsl_dot: {
    if (SemaRef.checkArgCount(TheCall, 2))
      return true;
    if (CheckVectorElementCallArgs(&SemaRef, TheCall))
      return true;
    if (SemaRef.BuiltinVectorToScalarMath(TheCall))
      return true;
    if (CheckNoDoubleVectors(&SemaRef, TheCall))
      return true;
    break;
  }
  case Builtin::BI__builtin_hlsl_elementwise_rcp: {
    if (CheckAllArgsHaveFloatRepresentation(&SemaRef, TheCall))
      return true;
    if (SemaRef.PrepareBuiltinElementwiseMathOneArgCall(TheCall))
      return true;
    break;
  }
  case Builtin::BI__builtin_hlsl_elementwise_rsqrt:
  case Builtin::BI__builtin_hlsl_elementwise_frac: {
    if (CheckFloatOrHalfRepresentations(&SemaRef, TheCall))
      return true;
    if (SemaRef.PrepareBuiltinElementwiseMathOneArgCall(TheCall))
      return true;
    break;
  }
  case Builtin::BI__builtin_hlsl_elementwise_isinf: {
    if (CheckFloatOrHalfRepresentations(&SemaRef, TheCall))
      return true;
    if (SemaRef.PrepareBuiltinElementwiseMathOneArgCall(TheCall))
      return true;
    SetElementTypeAsReturnType(&SemaRef, TheCall, getASTContext().BoolTy);
    break;
  }
  case Builtin::BI__builtin_hlsl_lerp: {
    if (SemaRef.checkArgCount(TheCall, 3))
      return true;
    if (CheckVectorElementCallArgs(&SemaRef, TheCall))
      return true;
    if (SemaRef.BuiltinElementwiseTernaryMath(TheCall))
      return true;
    if (CheckFloatOrHalfRepresentations(&SemaRef, TheCall))
      return true;
    break;
  }
  case Builtin::BI__builtin_hlsl_mad: {
    if (SemaRef.checkArgCount(TheCall, 3))
      return true;
    if (CheckVectorElementCallArgs(&SemaRef, TheCall))
      return true;
    if (SemaRef.BuiltinElementwiseTernaryMath(
            TheCall, /*CheckForFloatArgs*/
            TheCall->getArg(0)->getType()->hasFloatingRepresentation()))
      return true;
    break;
  }
  // Note these are llvm builtins that we want to catch invalid intrinsic
  // generation. Normal handling of these builitns will occur elsewhere.
  case Builtin::BI__builtin_elementwise_bitreverse: {
    if (CheckUnsignedIntRepresentation(&SemaRef, TheCall))
      return true;
    break;
  }
  case Builtin::BI__builtin_elementwise_acos:
  case Builtin::BI__builtin_elementwise_asin:
  case Builtin::BI__builtin_elementwise_atan:
  case Builtin::BI__builtin_elementwise_ceil:
  case Builtin::BI__builtin_elementwise_cos:
  case Builtin::BI__builtin_elementwise_cosh:
  case Builtin::BI__builtin_elementwise_exp:
  case Builtin::BI__builtin_elementwise_exp2:
  case Builtin::BI__builtin_elementwise_floor:
  case Builtin::BI__builtin_elementwise_log:
  case Builtin::BI__builtin_elementwise_log2:
  case Builtin::BI__builtin_elementwise_log10:
  case Builtin::BI__builtin_elementwise_pow:
  case Builtin::BI__builtin_elementwise_roundeven:
  case Builtin::BI__builtin_elementwise_sin:
  case Builtin::BI__builtin_elementwise_sinh:
  case Builtin::BI__builtin_elementwise_sqrt:
  case Builtin::BI__builtin_elementwise_tan:
  case Builtin::BI__builtin_elementwise_tanh:
  case Builtin::BI__builtin_elementwise_trunc: {
    if (CheckFloatOrHalfRepresentations(&SemaRef, TheCall))
      return true;
    break;
  }
  }
  return false;
}