File: SemaSYCL.cpp

package info (click to toggle)
llvm-toolchain-19 1%3A19.1.7-3
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 1,998,520 kB
  • sloc: cpp: 6,951,680; ansic: 1,486,157; asm: 913,598; python: 232,024; f90: 80,126; objc: 75,281; lisp: 37,276; pascal: 16,990; sh: 10,009; ml: 5,058; perl: 4,724; awk: 3,523; makefile: 3,167; javascript: 2,504; xml: 892; fortran: 664; cs: 573
file content (199 lines) | stat: -rw-r--r-- 7,300 bytes parent folder | download | duplicates (3)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
//===- SemaSYCL.cpp - Semantic Analysis for SYCL constructs ---------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
// This implements Semantic Analysis for SYCL constructs.
//===----------------------------------------------------------------------===//

#include "clang/Sema/SemaSYCL.h"
#include "clang/AST/Mangle.h"
#include "clang/Sema/Attr.h"
#include "clang/Sema/ParsedAttr.h"
#include "clang/Sema/Sema.h"
#include "clang/Sema/SemaDiagnostic.h"

using namespace clang;

// -----------------------------------------------------------------------------
// SYCL device specific diagnostics implementation
// -----------------------------------------------------------------------------

SemaSYCL::SemaSYCL(Sema &S) : SemaBase(S) {}

Sema::SemaDiagnosticBuilder SemaSYCL::DiagIfDeviceCode(SourceLocation Loc,
                                                       unsigned DiagID) {
  assert(getLangOpts().SYCLIsDevice &&
         "Should only be called during SYCL compilation");
  FunctionDecl *FD = dyn_cast<FunctionDecl>(SemaRef.getCurLexicalContext());
  SemaDiagnosticBuilder::Kind DiagKind = [this, FD] {
    if (!FD)
      return SemaDiagnosticBuilder::K_Nop;
    if (SemaRef.getEmissionStatus(FD) == Sema::FunctionEmissionStatus::Emitted)
      return SemaDiagnosticBuilder::K_ImmediateWithCallStack;
    return SemaDiagnosticBuilder::K_Deferred;
  }();
  return SemaDiagnosticBuilder(DiagKind, Loc, DiagID, FD, SemaRef);
}

static bool isZeroSizedArray(SemaSYCL &S, QualType Ty) {
  if (const auto *CAT = S.getASTContext().getAsConstantArrayType(Ty))
    return CAT->isZeroSize();
  return false;
}

void SemaSYCL::deepTypeCheckForDevice(SourceLocation UsedAt,
                                      llvm::DenseSet<QualType> Visited,
                                      ValueDecl *DeclToCheck) {
  assert(getLangOpts().SYCLIsDevice &&
         "Should only be called during SYCL compilation");
  // Emit notes only for the first discovered declaration of unsupported type
  // to avoid mess of notes. This flag is to track that error already happened.
  bool NeedToEmitNotes = true;

  auto Check = [&](QualType TypeToCheck, const ValueDecl *D) {
    bool ErrorFound = false;
    if (isZeroSizedArray(*this, TypeToCheck)) {
      DiagIfDeviceCode(UsedAt, diag::err_typecheck_zero_array_size) << 1;
      ErrorFound = true;
    }
    // Checks for other types can also be done here.
    if (ErrorFound) {
      if (NeedToEmitNotes) {
        if (auto *FD = dyn_cast<FieldDecl>(D))
          DiagIfDeviceCode(FD->getLocation(),
                           diag::note_illegal_field_declared_here)
              << FD->getType()->isPointerType() << FD->getType();
        else
          DiagIfDeviceCode(D->getLocation(), diag::note_declared_at);
      }
    }

    return ErrorFound;
  };

  // In case we have a Record used do the DFS for a bad field.
  SmallVector<const ValueDecl *, 4> StackForRecursion;
  StackForRecursion.push_back(DeclToCheck);

  // While doing DFS save how we get there to emit a nice set of notes.
  SmallVector<const FieldDecl *, 4> History;
  History.push_back(nullptr);

  do {
    const ValueDecl *Next = StackForRecursion.pop_back_val();
    if (!Next) {
      assert(!History.empty());
      // Found a marker, we have gone up a level.
      History.pop_back();
      continue;
    }
    QualType NextTy = Next->getType();

    if (!Visited.insert(NextTy).second)
      continue;

    auto EmitHistory = [&]() {
      // The first element is always nullptr.
      for (uint64_t Index = 1; Index < History.size(); ++Index) {
        DiagIfDeviceCode(History[Index]->getLocation(),
                         diag::note_within_field_of_type)
            << History[Index]->getType();
      }
    };

    if (Check(NextTy, Next)) {
      if (NeedToEmitNotes)
        EmitHistory();
      NeedToEmitNotes = false;
    }

    // In case pointer/array/reference type is met get pointee type, then
    // proceed with that type.
    while (NextTy->isAnyPointerType() || NextTy->isArrayType() ||
           NextTy->isReferenceType()) {
      if (NextTy->isArrayType())
        NextTy = QualType{NextTy->getArrayElementTypeNoTypeQual(), 0};
      else
        NextTy = NextTy->getPointeeType();
      if (Check(NextTy, Next)) {
        if (NeedToEmitNotes)
          EmitHistory();
        NeedToEmitNotes = false;
      }
    }

    if (const auto *RecDecl = NextTy->getAsRecordDecl()) {
      if (auto *NextFD = dyn_cast<FieldDecl>(Next))
        History.push_back(NextFD);
      // When nullptr is discovered, this means we've gone back up a level, so
      // the history should be cleaned.
      StackForRecursion.push_back(nullptr);
      llvm::copy(RecDecl->fields(), std::back_inserter(StackForRecursion));
    }
  } while (!StackForRecursion.empty());
}

ExprResult SemaSYCL::BuildUniqueStableNameExpr(SourceLocation OpLoc,
                                               SourceLocation LParen,
                                               SourceLocation RParen,
                                               TypeSourceInfo *TSI) {
  return SYCLUniqueStableNameExpr::Create(getASTContext(), OpLoc, LParen,
                                          RParen, TSI);
}

ExprResult SemaSYCL::ActOnUniqueStableNameExpr(SourceLocation OpLoc,
                                               SourceLocation LParen,
                                               SourceLocation RParen,
                                               ParsedType ParsedTy) {
  TypeSourceInfo *TSI = nullptr;
  QualType Ty = SemaRef.GetTypeFromParser(ParsedTy, &TSI);

  if (Ty.isNull())
    return ExprError();
  if (!TSI)
    TSI = getASTContext().getTrivialTypeSourceInfo(Ty, LParen);

  return BuildUniqueStableNameExpr(OpLoc, LParen, RParen, TSI);
}

void SemaSYCL::handleKernelAttr(Decl *D, const ParsedAttr &AL) {
  // The 'sycl_kernel' attribute applies only to function templates.
  const auto *FD = cast<FunctionDecl>(D);
  const FunctionTemplateDecl *FT = FD->getDescribedFunctionTemplate();
  assert(FT && "Function template is expected");

  // Function template must have at least two template parameters.
  const TemplateParameterList *TL = FT->getTemplateParameters();
  if (TL->size() < 2) {
    Diag(FT->getLocation(), diag::warn_sycl_kernel_num_of_template_params);
    return;
  }

  // Template parameters must be typenames.
  for (unsigned I = 0; I < 2; ++I) {
    const NamedDecl *TParam = TL->getParam(I);
    if (isa<NonTypeTemplateParmDecl>(TParam)) {
      Diag(FT->getLocation(),
           diag::warn_sycl_kernel_invalid_template_param_type);
      return;
    }
  }

  // Function must have at least one argument.
  if (getFunctionOrMethodNumParams(D) != 1) {
    Diag(FT->getLocation(), diag::warn_sycl_kernel_num_of_function_params);
    return;
  }

  // Function must return void.
  QualType RetTy = getFunctionOrMethodResultType(D);
  if (!RetTy->isVoidType()) {
    Diag(FT->getLocation(), diag::warn_sycl_kernel_return_type);
    return;
  }

  handleSimpleAttribute<SYCLKernelAttr>(*this, D, AL);
}