1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664
|
// RUN: %clang_cc1 -fexperimental-new-constant-interpreter -pedantic -verify=expected,both %s
// RUN: %clang_cc1 -std=c++14 -fexperimental-new-constant-interpreter -pedantic -verify=expected,both %s
// RUN: %clang_cc1 -std=c++20 -fexperimental-new-constant-interpreter -pedantic -verify=expected,both %s
// RUN: %clang_cc1 -pedantic -verify=ref,both %s
// RUN: %clang_cc1 -pedantic -std=c++14 -verify=ref,both %s
// RUN: %clang_cc1 -pedantic -std=c++20 -verify=ref,both %s
constexpr void doNothing() {}
constexpr int gimme5() {
doNothing();
return 5;
}
static_assert(gimme5() == 5, "");
template<typename T> constexpr T identity(T t) {
static_assert(true, "");
return t;
}
static_assert(identity(true), "");
static_assert(identity(true), ""); /// Compiled bytecode should be cached
static_assert(!identity(false), "");
template<typename A, typename B>
constexpr bool sameSize() {
static_assert(sizeof(A) == sizeof(B), ""); // both-error {{static assertion failed}} \
// both-note {{evaluates to}}
return true;
}
static_assert(sameSize<int, int>(), "");
static_assert(sameSize<unsigned int, int>(), "");
static_assert(sameSize<char, long>(), ""); // both-note {{in instantiation of function template specialization}}
constexpr auto add(int a, int b) -> int {
return identity(a) + identity(b);
}
constexpr int sub(int a, int b) {
return a - b;
}
static_assert(sub(5, 2) == 3, "");
static_assert(sub(0, 5) == -5, "");
constexpr int norm(int n) {
if (n >= 0) {
return identity(n);
}
return -identity(n);
}
static_assert(norm(5) == norm(-5), "");
constexpr int square(int n) {
return norm(n) * norm(n);
}
static_assert(square(2) == 4, "");
constexpr int add_second(int a, int b, bool doAdd = true) {
if (doAdd)
return a + b;
return a;
}
static_assert(add_second(10, 3, true) == 13, "");
static_assert(add_second(10, 3) == 13, "");
static_assert(add_second(300, -20, false) == 300, "");
constexpr int sub(int a, int b, int c) {
return a - b - c;
}
static_assert(sub(10, 8, 2) == 0, "");
constexpr int recursion(int i) {
doNothing();
i = i - 1;
if (i == 0)
return identity(0);
return recursion(i);
}
static_assert(recursion(10) == 0, "");
template<int N = 5>
constexpr decltype(N) getNum() {
return N;
}
static_assert(getNum<-2>() == -2, "");
static_assert(getNum<10>() == 10, "");
static_assert(getNum() == 5, "");
constexpr int f(); // both-note {{declared here}}
static_assert(f() == 5, ""); // both-error {{not an integral constant expression}} \
// both-note {{undefined function 'f'}}
constexpr int a() {
return f();
}
constexpr int f() {
return 5;
}
static_assert(a() == 5, "");
constexpr int invalid() {
// Invalid expression in visit().
while(huh) {} // both-error {{use of undeclared identifier}}
return 0;
}
constexpr void invalid2() {
int i = 0;
// Invalid expression in discard().
huh(); // both-error {{use of undeclared identifier}}
}
namespace FunctionPointers {
constexpr int add(int a, int b) {
return a + b;
}
struct S { int a; };
constexpr S getS() {
return S{12};
}
constexpr int applyBinOp(int a, int b, int (*op)(int, int)) {
return op(a, b); // both-note {{evaluates to a null function pointer}}
}
static_assert(applyBinOp(1, 2, add) == 3, "");
static_assert(applyBinOp(1, 2, nullptr) == 3, ""); // both-error {{not an integral constant expression}} \
// both-note {{in call to}}
constexpr int ignoreReturnValue() {
int (*foo)(int, int) = add;
foo(1, 2);
return 1;
}
static_assert(ignoreReturnValue() == 1, "");
constexpr int createS(S (*gimme)()) {
gimme(); // Ignored return value
return gimme().a;
}
static_assert(createS(getS) == 12, "");
namespace FunctionReturnType {
typedef int (*ptr)(int*);
typedef ptr (*pm)();
constexpr int fun1(int* y) {
return *y + 10;
}
constexpr ptr fun() {
return &fun1;
}
static_assert(fun() == nullptr, ""); // both-error {{static assertion failed}}
constexpr int foo() {
int (*f)(int *) = fun();
int m = 0;
m = f(&m);
return m;
}
static_assert(foo() == 10, "");
struct S {
int i;
void (*fp)();
};
constexpr S s{ 12 };
static_assert(s.fp == nullptr, ""); // zero-initialized function pointer.
constexpr int (*op)(int, int) = add;
constexpr bool b = op;
static_assert(op, "");
static_assert(!!op, "");
constexpr int (*op2)(int, int) = nullptr;
static_assert(!op2, "");
int m() { return 5;} // both-note {{declared here}}
constexpr int (*invalidFnPtr)() = m;
static_assert(invalidFnPtr() == 5, ""); // both-error {{not an integral constant expression}} \
// both-note {{non-constexpr function 'm'}}
namespace ToBool {
void mismatched(int x) {}
typedef void (*callback_t)(int);
void foo() {
callback_t callback = (callback_t)mismatched; // warns
/// Casts a function pointer to a boolean and then back to a function pointer.
/// This is extracted from test/Sema/callingconv-cast.c
callback = (callback_t)!mismatched; // both-warning {{address of function 'mismatched' will always evaluate to 'true'}} \
// both-note {{prefix with the address-of operator to silence this warning}}
}
}
}
namespace Comparison {
void f(), g();
constexpr void (*pf)() = &f, (*pg)() = &g;
constexpr bool u13 = pf < pg; // both-warning {{ordered comparison of function pointers}} \
// both-error {{must be initialized by a constant expression}} \
// both-note {{comparison between '&f' and '&g' has unspecified value}}
constexpr bool u14 = pf < (void(*)())nullptr; // both-warning {{ordered comparison of function pointers}} \
// both-error {{must be initialized by a constant expression}} \
// both-note {{comparison between '&f' and 'nullptr' has unspecified value}}
static_assert(pf != pg, "");
static_assert(pf == &f, "");
static_assert(pg == &g, "");
}
}
struct F {
constexpr bool ok() const {
return okRecurse();
}
constexpr bool okRecurse() const {
return true;
}
};
struct BodylessMemberFunction {
constexpr int first() const {
return second();
}
constexpr int second() const {
return 1;
}
};
constexpr int nyd(int m);
constexpr int doit() { return nyd(10); }
constexpr int nyd(int m) { return m; }
static_assert(doit() == 10, "");
namespace InvalidCall {
struct S {
constexpr int a() const { // both-error {{never produces a constant expression}}
return 1 / 0; // both-note 2{{division by zero}} \
// both-warning {{is undefined}}
}
};
constexpr S s;
static_assert(s.a() == 1, ""); // both-error {{not an integral constant expression}} \
// both-note {{in call to}}
/// This used to cause an assertion failure in the new constant interpreter.
constexpr void func(); // both-note {{declared here}}
struct SS {
constexpr SS() { func(); } // both-note {{undefined function }}
};
constexpr SS ss; // both-error {{must be initialized by a constant expression}} \
// both-note {{in call to 'SS()'}}
/// This should not emit a diagnostic.
constexpr int f();
constexpr int a() {
return f();
}
constexpr int f() {
return 5;
}
static_assert(a() == 5, "");
}
namespace CallWithArgs {
/// This used to call problems during checkPotentialConstantExpression() runs.
constexpr void g(int a) {}
constexpr void f() {
g(0);
}
}
namespace ReturnLocalPtr {
constexpr int *p() {
int a = 12;
return &a; // both-warning {{address of stack memory}}
}
/// GCC rejects the expression below, just like the new interpreter. The current interpreter
/// however accepts it and only warns about the function above returning an address to stack
/// memory. If we change the condition to 'p() != nullptr', it even succeeds.
static_assert(p() == nullptr, ""); // ref-error {{static assertion failed}} \
// expected-error {{not an integral constant expression}}
/// FIXME: The current interpreter emits diagnostics in the reference case below, but the
/// new one does not.
constexpr const int &p2() {
int a = 12; // ref-note {{declared here}}
return a; // both-warning {{reference to stack memory associated with local variable}}
}
static_assert(p2() == 12, ""); // both-error {{not an integral constant expression}} \
// ref-note {{read of variable whose lifetime has ended}}
}
namespace VoidReturn {
/// ReturnStmt with an expression in a void function used to cause problems.
constexpr void bar() {}
constexpr void foo() {
return bar();
}
static_assert((foo(),1) == 1, "");
}
namespace InvalidReclRefs {
void param(bool b) { // both-note {{declared here}}
static_assert(b, ""); // both-error {{not an integral constant expression}} \
// both-note {{function parameter 'b' with unknown value}}
static_assert(true ? true : b, "");
}
#if __cplusplus >= 202002L
consteval void param2(bool b) { // both-note {{declared here}}
static_assert(b, ""); // both-error {{not an integral constant expression}} \
// both-note {{function parameter 'b' with unknown value}}
}
#endif
}
namespace TemplateUndefined {
template<typename T> constexpr int consume(T);
// ok, not a constant expression.
const int k = consume(0);
template<typename T> constexpr int consume(T) { return 0; }
// ok, constant expression.
constexpr int l = consume(0);
static_assert(l == 0, "");
}
namespace PtrReturn {
constexpr void *a() {
return nullptr;
}
static_assert(a() == nullptr, "");
}
namespace Variadic {
struct S { int a; bool b; };
constexpr void variadic_function(int a, ...) {}
constexpr int f1() {
variadic_function(1, S{'a', false});
return 1;
}
static_assert(f1() == 1, "");
constexpr int variadic_function2(...) {
return 12;
}
static_assert(variadic_function2() == 12, "");
static_assert(variadic_function2(1, 2, 3, 4, 5) == 12, "");
static_assert(variadic_function2(1, variadic_function2()) == 12, "");
constexpr int (*VFP)(...) = variadic_function2;
static_assert(VFP() == 12, "");
/// Member functions
struct Foo {
int a = 0;
constexpr void bla(...) {}
constexpr S bla2(...) {
return S{12, true};
}
constexpr Foo(...) : a(1337) {}
constexpr Foo(void *c, bool b, void*p, ...) : a('a' + b) {}
constexpr Foo(int a, const S* s, ...) : a(a) {}
};
constexpr int foo2() {
Foo f(1, nullptr);
auto s = f.bla2(1, 2, S{1, false});
return s.a + s.b;
}
static_assert(foo2() == 13, "");
constexpr Foo _f = 123;
static_assert(_f.a == 1337, "");
constexpr Foo __f(nullptr, false, nullptr, nullptr, 'a', Foo());
static_assert(__f.a == 'a', "");
#if __cplusplus >= 202002L
namespace VariadicVirtual {
class A {
public:
constexpr virtual void foo(int &a, ...) {
a = 1;
}
};
class B : public A {
public:
constexpr void foo(int &a, ...) override {
a = 2;
}
};
constexpr int foo() {
B b;
int a;
b.foo(a, 1,2,nullptr);
return a;
}
static_assert(foo() == 2, "");
} // VariadicVirtual
namespace VariadicQualified {
class A {
public:
constexpr virtual int foo(...) const {
return 5;
}
};
class B : public A {};
class C : public B {
public:
constexpr int foo(...) const override {
return B::foo(1,2,3); // B doesn't have a foo(), so this should call A::foo().
}
constexpr int foo2() const {
return this->A::foo(1,2,3,this);
}
};
constexpr C c;
static_assert(c.foo() == 5);
static_assert(c.foo2() == 5);
} // VariadicQualified
#endif
}
namespace Packs {
template<typename...T>
constexpr int foo() { return sizeof...(T); }
static_assert(foo<int, char>() == 2, "");
static_assert(foo<>() == 0, "");
}
namespace AddressOf {
struct S {} s;
static_assert(__builtin_addressof(s) == &s, "");
struct T { constexpr T *operator&() const { return nullptr; } int n; } t;
constexpr T *pt = __builtin_addressof(t);
static_assert(&pt->n == &t.n, "");
struct U { int n : 5; } u;
int *pbf = __builtin_addressof(u.n); // both-error {{address of bit-field requested}}
S *ptmp = __builtin_addressof(S{}); // both-error {{taking the address of a temporary}} \
// both-warning {{temporary whose address is used as value of local variable 'ptmp' will be destroyed at the end of the full-expression}}
constexpr int foo() {return 1;}
static_assert(__builtin_addressof(foo) == foo, "");
constexpr _Complex float F = {3, 4}; // both-warning {{'_Complex' is a C99 extension}}
static_assert(__builtin_addressof(F) == &F, "");
void testAddressof(int x) {
static_assert(&x == __builtin_addressof(x), "");
}
}
namespace std {
template <typename T> struct remove_reference { using type = T; };
template <typename T> struct remove_reference<T &> { using type = T; };
template <typename T> struct remove_reference<T &&> { using type = T; };
template <typename T>
constexpr typename std::remove_reference<T>::type&& move(T &&t) noexcept {
return static_cast<typename std::remove_reference<T>::type &&>(t);
}
}
/// The std::move declaration above gets translated to a builtin function.
namespace Move {
#if __cplusplus >= 202002L
consteval int f_eval() { // both-note 12{{declared here}}
return 0;
}
/// From test/SemaCXX/cxx2a-consteval.
struct Copy {
int(*ptr)();
constexpr Copy(int(*p)() = nullptr) : ptr(p) {}
consteval Copy(const Copy&) = default;
};
constexpr const Copy &to_lvalue_ref(const Copy &&a) {
return a;
}
void test() {
constexpr const Copy C;
// there is no the copy constructor call when its argument is a prvalue because of garanteed copy elision.
// so we need to test with both prvalue and xvalues.
{ Copy c(C); }
{ Copy c((Copy(&f_eval))); } // both-error {{cannot take address of consteval}}
{ Copy c(std::move(C)); }
{ Copy c(std::move(Copy(&f_eval))); } // both-error {{is not a constant expression}} \
// both-note {{to a consteval}}
{ Copy c(to_lvalue_ref((Copy(&f_eval)))); } // both-error {{is not a constant expression}} \
// both-note {{to a consteval}}
{ Copy c(to_lvalue_ref(std::move(C))); }
{ Copy c(to_lvalue_ref(std::move(Copy(&f_eval)))); } // both-error {{is not a constant expression}} \
// both-note {{to a consteval}}
{ Copy c = Copy(C); }
{ Copy c = Copy(Copy(&f_eval)); } // both-error {{cannot take address of consteval}}
{ Copy c = Copy(std::move(C)); }
{ Copy c = Copy(std::move(Copy(&f_eval))); } // both-error {{is not a constant expression}} \
// both-note {{to a consteval}}
{ Copy c = Copy(to_lvalue_ref(Copy(&f_eval))); } // both-error {{is not a constant expression}} \
// both-note {{to a consteval}}
{ Copy c = Copy(to_lvalue_ref(std::move(C))); }
{ Copy c = Copy(to_lvalue_ref(std::move(Copy(&f_eval)))); } // both-error {{is not a constant expression}} \
// both-note {{to a consteval}}
{ Copy c; c = Copy(C); }
{ Copy c; c = Copy(Copy(&f_eval)); } // both-error {{cannot take address of consteval}}
{ Copy c; c = Copy(std::move(C)); }
{ Copy c; c = Copy(std::move(Copy(&f_eval))); } // both-error {{is not a constant expression}} \
// both-note {{to a consteval}}
{ Copy c; c = Copy(to_lvalue_ref(Copy(&f_eval))); } // both-error {{is not a constant expression}} \
// both-note {{to a consteval}}
{ Copy c; c = Copy(to_lvalue_ref(std::move(C))); }
{ Copy c; c = Copy(to_lvalue_ref(std::move(Copy(&f_eval)))); } // both-error {{is not a constant expression}} \
// both-note {{to a consteval}}
}
#endif
constexpr int A = std::move(5);
static_assert(A == 5, "");
}
namespace StaticLocals {
void test() {
static int j; // both-note {{declared here}}
static_assert(&j != nullptr, ""); // both-warning {{always true}}
static_assert(j == 0, ""); // both-error {{not an integral constant expression}} \
// both-note {{read of non-const variable 'j'}}
static int k = 0; // both-note {{declared here}}
static_assert(k == 0, ""); // both-error {{not an integral constant expression}} \
// both-note {{read of non-const variable 'k'}}
static const int l = 12;
static_assert(l == 12, "");
static const int m; // both-error {{default initialization}}
static_assert(m == 0, "");
}
}
namespace Local {
/// We used to run into infinite recursin here because we were
/// trying to evaluate t's initializer while evaluating t's initializer.
int a() {
const int t=t;
return t;
}
}
namespace VariadicOperator {
struct Callable {
float& operator()(...);
};
void test_callable(Callable c) {
float &fr = c(10);
}
}
namespace WeakCompare {
[[gnu::weak]]void weak_method();
static_assert(weak_method != nullptr, ""); // both-error {{not an integral constant expression}} \
// both-note {{comparison against address of weak declaration '&weak_method' can only be performed at runtim}}
constexpr auto A = &weak_method;
static_assert(A != nullptr, ""); // both-error {{not an integral constant expression}} \
// both-note {{comparison against address of weak declaration '&weak_method' can only be performed at runtim}}
}
namespace FromIntegral {
#if __cplusplus >= 202002L
typedef double (*DoubleFn)();
int a[(int)DoubleFn((void*)-1)()]; // both-error {{not allowed at file scope}} \
// both-warning {{variable length arrays}}
int b[(int)DoubleFn((void*)(-1 + 1))()]; // both-error {{not allowed at file scope}} \
// expected-note {{evaluates to a null function pointer}} \
// both-warning {{variable length arrays}}
#endif
}
namespace {
template <typename T> using id = T;
template <typename T>
constexpr void g() {
constexpr id<void (T)> f;
}
static_assert((g<int>(), true), "");
}
namespace {
/// The InitListExpr here is of void type.
void bir [[clang::annotate("B", {1, 2, 3, 4})]] (); // both-error {{'annotate' attribute requires parameter 1 to be a constant expression}} \
// both-note {{subexpression not valid in a constant expression}}
}
namespace FuncPtrParam {
void foo(int(&a)()) {
*a; // both-warning {{expression result unused}}
}
}
namespace {
void f() noexcept;
void (&r)() = f;
void (&cond3)() = r;
}
namespace FunctionCast {
// When folding, we allow functions to be cast to different types. Such
// cast functions cannot be called, even if they're constexpr.
constexpr int f() { return 1; }
typedef double (*DoubleFn)();
typedef int (*IntFn)();
int a[(int)DoubleFn(f)()]; // both-error {{variable length array}} \
// both-warning {{are a Clang extension}}
int b[(int)IntFn(f)()]; // ok
}
#if __cplusplus >= 202002L
namespace StableAddress {
template<unsigned N> struct str {
char arr[N];
};
// FIXME: Deduction guide not needed with P1816R0.
template<unsigned N> str(const char (&)[N]) -> str<N>;
template<str s> constexpr int sum() {
int n = 0;
for (char c : s.arr)
n += c;
return n;
}
static_assert(sum<str{"$hello $world."}>() == 1234, "");
}
#endif
|