1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568
|
// RUN: %clang_cc1 -fexperimental-new-constant-interpreter -verify=expected,both %s
// RUN: %clang_cc1 -std=c++20 -fexperimental-new-constant-interpreter -verify=expected,both %s
// RUN: %clang_cc1 -triple=i686-linux-gnu -std=c++20 -fexperimental-new-constant-interpreter -verify=expected,both %s
// RUN: %clang_cc1 -verify=ref,both %s
// RUN: %clang_cc1 -std=c++20 -verify=ref,both %s
// RUN: %clang_cc1 -triple=i686-linux-gnu -std=c++20 -verify=ref,both %s
#if __cplusplus >= 202002L
constexpr int *Global = new int(12); // both-error {{must be initialized by a constant expression}} \
// both-note {{pointer to heap-allocated object}} \
// both-note {{heap allocation performed here}}
static_assert(*(new int(12)) == 12); // both-error {{not an integral constant expression}} \
// both-note {{allocation performed here was not deallocated}}
constexpr int a() {
new int(12); // both-note {{allocation performed here was not deallocated}}
return 1;
}
static_assert(a() == 1, ""); // both-error {{not an integral constant expression}}
constexpr int b() {
int *i = new int(12);
int m = *i;
delete(i);
return m;
}
static_assert(b() == 12, "");
struct S {
int a;
int b;
static constexpr S *create(int a, int b) {
return new S(a, b);
}
};
constexpr int c() {
S *s = new S(12, 13);
int i = s->a;
delete s;
return i;
}
static_assert(c() == 12, "");
/// Dynamic allocation in function ::create(), freed in function d().
constexpr int d() {
S* s = S::create(12, 14);
int sum = s->a + s->b;
delete s;
return sum;
}
static_assert(d() == 26);
/// Test we emit the right diagnostic for several allocations done on
/// the same site.
constexpr int loop() {
for (int i = 0; i < 10; ++i) {
int *a = new int[10]; // both-note {{not deallocated (along with 9 other memory leaks)}}
}
return 1;
}
static_assert(loop() == 1, ""); // both-error {{not an integral constant expression}}
/// No initializer.
constexpr int noInit() {
int *i = new int;
delete i;
return 0;
}
static_assert(noInit() == 0, "");
/// Try to delete a pointer that hasn't been heap allocated.
constexpr int notHeapAllocated() { // both-error {{never produces a constant expression}}
int A = 0; // both-note 2{{declared here}}
delete &A; // ref-note 2{{delete of pointer '&A' that does not point to a heap-allocated object}} \
// expected-note 2{{delete of pointer '&A' that does not point to a heap-allocated object}}
return 1;
}
static_assert(notHeapAllocated() == 1, ""); // both-error {{not an integral constant expression}} \
// both-note {{in call to 'notHeapAllocated()'}}
consteval int deleteNull() {
int *A = nullptr;
delete A;
return 1;
}
static_assert(deleteNull() == 1, "");
consteval int doubleDelete() { // both-error {{never produces a constant expression}}
int *A = new int;
delete A;
delete A; // both-note 2{{delete of pointer that has already been deleted}}
return 1;
}
static_assert(doubleDelete() == 1); // both-error {{not an integral constant expression}} \
// both-note {{in call to 'doubleDelete()'}}
constexpr int AutoArray() {
auto array = new int[]{0, 1, 2, 3};
int ret = array[3];
delete [] array;
return ret;
}
static_assert(AutoArray() == 3);
#if 0
consteval int largeArray1(bool b) {
if (b) {
int *a = new int[1ull<<32]; // both-note {{cannot allocate array; evaluated array bound 4294967296 is too large}}
delete[] a;
}
return 1;
}
static_assert(largeArray1(false) == 1, "");
static_assert(largeArray1(true) == 1, ""); // both-error {{not an integral constant expression}} \
// both-note {{in call to 'largeArray1(true)'}}
consteval int largeArray2(bool b) {
if (b) {
S *a = new S[1ull<<32]; // both-note {{cannot allocate array; evaluated array bound 4294967296 is too large}}
delete[] a;
}
return 1;
}
static_assert(largeArray2(false) == 1, "");
static_assert(largeArray2(true) == 1, ""); // both-error {{not an integral constant expression}} \
// both-note {{in call to 'largeArray2(true)'}}
#endif
namespace Arrays {
constexpr int d() {
int *Arr = new int[12];
Arr[0] = 1;
Arr[1] = 5;
int sum = Arr[0] + Arr[1];
delete[] Arr;
return sum;
}
static_assert(d() == 6);
constexpr int mismatch1() { // both-error {{never produces a constant expression}}
int *i = new int(12); // both-note {{allocated with 'new' here}} \
// both-note 2{{heap allocation performed here}}
delete[] i; // both-warning {{'delete[]' applied to a pointer that was allocated with 'new'}} \
// both-note 2{{array delete used to delete pointer to non-array object of type 'int'}}
return 6;
}
static_assert(mismatch1() == 6); // both-error {{not an integral constant expression}} \
// both-note {{in call to 'mismatch1()'}}
constexpr int mismatch2() { // both-error {{never produces a constant expression}}
int *i = new int[12]; // both-note {{allocated with 'new[]' here}} \
// both-note 2{{heap allocation performed here}}
delete i; // both-warning {{'delete' applied to a pointer that was allocated with 'new[]'}} \
// both-note 2{{non-array delete used to delete pointer to array object of type 'int[12]'}}
return 6;
}
static_assert(mismatch2() == 6); // both-error {{not an integral constant expression}} \
// both-note {{in call to 'mismatch2()'}}
/// Array of composite elements.
constexpr int foo() {
S *ss = new S[12];
ss[0].a = 12;
int m = ss[0].a;
delete[] ss;
return m;
}
static_assert(foo() == 12);
constexpr int ArrayInit() {
auto array = new int[4]{0, 1, 2, 3};
int ret = array[0];
delete [] array;
return ret;
}
static_assert(ArrayInit() == 0, "");
struct S {
float F;
};
constexpr float ArrayInit2() {
auto array = new S[4]{};
float ret = array[0].F;
delete [] array;
return ret;
}
static_assert(ArrayInit2() == 0.0f, "");
}
namespace std {
struct type_info;
struct destroying_delete_t {
explicit destroying_delete_t() = default;
} inline constexpr destroying_delete{};
struct nothrow_t {
explicit nothrow_t() = default;
} inline constexpr nothrow{};
using size_t = decltype(sizeof(0));
enum class align_val_t : size_t {};
};
[[nodiscard]] void *operator new(std::size_t, const std::nothrow_t&) noexcept;
[[nodiscard]] void *operator new(std::size_t, std::align_val_t, const std::nothrow_t&) noexcept;
[[nodiscard]] void *operator new[](std::size_t, const std::nothrow_t&) noexcept;
[[nodiscard]] void *operator new[](std::size_t, std::align_val_t, const std::nothrow_t&) noexcept;
[[nodiscard]] void *operator new[](std::size_t, std::align_val_t);
void operator delete(void*, const std::nothrow_t&) noexcept;
void operator delete(void*, std::align_val_t, const std::nothrow_t&) noexcept;
void operator delete[](void*, const std::nothrow_t&) noexcept;
void operator delete[](void*, std::align_val_t, const std::nothrow_t&) noexcept;
struct placement_new_arg {};
void *operator new(std::size_t, placement_new_arg);
void operator delete(void*, placement_new_arg);
constexpr void *operator new(std::size_t, void *p) { return p; }
namespace std {
template<typename T> constexpr T *construct(T *p) { return new (p) T; }
template<typename T> constexpr void destroy(T *p) { p->~T(); }
}
/// FIXME: The new interpreter produces the wrong diagnostic.
namespace PlacementNew {
constexpr int foo() { // both-error {{never produces a constant expression}}
char c[sizeof(int)];
new (c) int{12}; // ref-note {{call to placement 'operator new'}} \
// expected-note {{subexpression not valid in a constant expression}}
return 0;
}
}
namespace NowThrowNew {
constexpr bool erroneous_array_bound_nothrow(long long n) {
int *p = new (std::nothrow) int[n];
bool result = p != nullptr;
delete[] p;
return result;
}
static_assert(erroneous_array_bound_nothrow(3));
static_assert(erroneous_array_bound_nothrow(0));
static_assert(erroneous_array_bound_nothrow(-1) == 0);
static_assert(!erroneous_array_bound_nothrow(1LL << 62));
struct S { int a; };
constexpr bool erroneous_array_bound_nothrow2(long long n) {
S *p = new (std::nothrow) S[n];
bool result = p != nullptr;
delete[] p;
return result;
}
/// This needs support for CXXConstrucExprs with non-constant array sizes.
static_assert(erroneous_array_bound_nothrow2(3)); // expected-error {{not an integral constant expression}}
static_assert(erroneous_array_bound_nothrow2(0));// expected-error {{not an integral constant expression}}
static_assert(erroneous_array_bound_nothrow2(-1) == 0);// expected-error {{not an integral constant expression}}
static_assert(!erroneous_array_bound_nothrow2(1LL << 62));// expected-error {{not an integral constant expression}}
constexpr bool evaluate_nothrow_arg() {
bool ok = false;
delete new ((ok = true, std::nothrow)) int;
return ok;
}
static_assert(evaluate_nothrow_arg());
}
namespace placement_new_delete {
struct ClassSpecificNew {
void *operator new(std::size_t);
};
struct ClassSpecificDelete {
void operator delete(void*);
};
struct DestroyingDelete {
void operator delete(DestroyingDelete*, std::destroying_delete_t);
};
struct alignas(64) Overaligned {};
constexpr bool ok() {
delete new Overaligned;
delete ::new ClassSpecificNew;
::delete new ClassSpecificDelete;
::delete new DestroyingDelete;
return true;
}
static_assert(ok());
/// FIXME: Diagnosting placement new.
constexpr bool bad(int which) {
switch (which) {
case 0:
delete new (placement_new_arg{}) int; // ref-note {{call to placement 'operator new'}} \
// expected-note {{subexpression not valid in a constant expression}}
break;
case 1:
delete new ClassSpecificNew; // ref-note {{call to class-specific 'operator new'}}
break;
case 2:
delete new ClassSpecificDelete; // ref-note {{call to class-specific 'operator delete'}}
break;
case 3:
delete new DestroyingDelete; // ref-note {{call to class-specific 'operator delete'}}
break;
case 4:
// FIXME: This technically follows the standard's rules, but it seems
// unreasonable to expect implementations to support this.
delete new (std::align_val_t{64}) Overaligned; // ref-note {{placement new expression is not yet supported}} \
// expected-note {{subexpression not valid in a constant expression}}
break;
}
return true;
}
static_assert(bad(0)); // both-error {{constant expression}} \
// both-note {{in call}}
static_assert(bad(1)); // ref-error {{constant expression}} ref-note {{in call}}
static_assert(bad(2)); // ref-error {{constant expression}} ref-note {{in call}}
static_assert(bad(3)); // ref-error {{constant expression}} ref-note {{in call}}
static_assert(bad(4)); // both-error {{constant expression}} \
// both-note {{in call}}
}
namespace delete_random_things {
static_assert((delete new int, true));
static_assert((delete (int*)0, true));
int n; // both-note {{declared here}}
static_assert((delete &n, true)); // both-error {{}} \
// both-note {{delete of pointer '&n' that does not point to a heap-allocated object}}
struct A { int n; };
static_assert((delete &(new A)->n, true)); // both-error {{}} \
// both-note {{delete of pointer to subobject }}
static_assert((delete (new int + 1), true)); // both-error {{}} \
// ref-note {{delete of pointer '&{*new int#0} + 1' that does not point to complete object}} \
// expected-note {{delete of pointer '&new int + 1' that does not point to complete object}}
static_assert((delete[] (new int[3] + 1), true)); // both-error {{}} \
// both-note {{delete of pointer to subobject}}
static_assert((delete &(int&)(int&&)0, true)); // both-error {{}} \
// both-note {{delete of pointer '&0' that does not point to a heap-allocated object}} \
// both-note {{temporary created here}}
}
namespace value_dependent_delete {
template<typename T> void f(T *p) {
int arr[(delete p, 0)];
}
}
namespace memory_leaks {
static_assert(*new bool(true)); // both-error {{}} both-note {{allocation performed here was not deallocated}}
constexpr bool *f() { return new bool(true); } // both-note {{allocation performed here was not deallocated}}
static_assert(*f()); // both-error {{}}
struct UP {
bool *p;
constexpr ~UP() { delete p; }
constexpr bool &operator*() { return *p; }
};
constexpr UP g() { return {new bool(true)}; }
static_assert(*g()); // ok
constexpr bool h(UP p) { return *p; }
static_assert(h({new bool(true)})); // ok
}
/// From test/SemaCXX/cxx2a-consteval.cpp
namespace std {
template <typename T> struct remove_reference { using type = T; };
template <typename T> struct remove_reference<T &> { using type = T; };
template <typename T> struct remove_reference<T &&> { using type = T; };
template <typename T>
constexpr typename std::remove_reference<T>::type&& move(T &&t) noexcept {
return static_cast<typename std::remove_reference<T>::type &&>(t);
}
}
namespace cxx2a {
struct A {
int* p = new int(42); // both-note 7{{heap allocation performed here}}
consteval int ret_i() const { return p ? *p : 0; }
consteval A ret_a() const { return A{}; }
constexpr ~A() { delete p; }
};
consteval int by_value_a(A a) { return a.ret_i(); }
consteval int const_a_ref(const A &a) {
return a.ret_i();
}
consteval int rvalue_ref(const A &&a) {
return a.ret_i();
}
consteval const A &to_lvalue_ref(const A &&a) {
return a;
}
void test() {
constexpr A a{ nullptr };
{ int k = A().ret_i(); }
{ A k = A().ret_a(); } // both-error {{'cxx2a::A::ret_a' is not a constant expression}} \
// both-note {{heap-allocated object is not a constant expression}}
{ A k = to_lvalue_ref(A()); } // both-error {{'cxx2a::to_lvalue_ref' is not a constant expression}} \
// both-note {{reference to temporary is not a constant expression}} \
// both-note {{temporary created here}}
{ A k = to_lvalue_ref(A().ret_a()); } // both-error {{'cxx2a::A::ret_a' is not a constant expression}} \
// both-note {{heap-allocated object is not a constant expression}} \
// both-error {{'cxx2a::to_lvalue_ref' is not a constant expression}} \
// both-note {{reference to temporary is not a constant expression}} \
// both-note {{temporary created here}}
{ int k = A().ret_a().ret_i(); } // both-error {{'cxx2a::A::ret_a' is not a constant expression}} \
// both-note {{heap-allocated object is not a constant expression}}
{ int k = by_value_a(A()); }
{ int k = const_a_ref(A()); }
{ int k = const_a_ref(a); }
{ int k = rvalue_ref(A()); }
{ int k = rvalue_ref(std::move(a)); }
{ int k = const_a_ref(A().ret_a()); } // both-error {{'cxx2a::A::ret_a' is not a constant expression}} \
// both-note {{is not a constant expression}}
{ int k = const_a_ref(to_lvalue_ref(A().ret_a())); } // both-error {{'cxx2a::A::ret_a' is not a constant expression}} \
// both-note {{is not a constant expression}}
{ int k = const_a_ref(to_lvalue_ref(std::move(a))); }
{ int k = by_value_a(A().ret_a()); }
{ int k = by_value_a(to_lvalue_ref(static_cast<const A&&>(a))); }
{ int k = (A().ret_a(), A().ret_i()); } // both-error {{'cxx2a::A::ret_a' is not a constant expression}} \
// both-note {{is not a constant expression}} \
// both-warning {{left operand of comma operator has no effect}}
{ int k = (const_a_ref(A().ret_a()), A().ret_i()); } // both-error {{'cxx2a::A::ret_a' is not a constant expression}} \
// both-note {{is not a constant expression}} \
// both-warning {{left operand of comma operator has no effect}}
}
}
constexpr int *const &p = new int; // both-error {{must be initialized by a constant expression}} \
// both-note {{pointer to heap-allocated object}} \
// both-note {{allocation performed here}}
constexpr const int *A[] = {nullptr, nullptr, new int{12}}; // both-error {{must be initialized by a constant expression}} \
// both-note {{pointer to heap-allocated object}} \
// both-note {{allocation performed here}}
struct Sp {
const int *p;
};
constexpr Sp ss[] = {Sp{new int{154}}}; // both-error {{must be initialized by a constant expression}} \
// both-note {{pointer to heap-allocated object}} \
// both-note {{allocation performed here}}
namespace DeleteRunsDtors {
struct InnerFoo {
int *mem;
constexpr ~InnerFoo() {
delete mem;
}
};
struct Foo {
int *a;
InnerFoo IF;
constexpr Foo() {
a = new int(13);
IF.mem = new int(100);
}
constexpr ~Foo() { delete a; }
};
constexpr int abc() {
Foo *F = new Foo();
int n = *F->a;
delete F;
return n;
}
static_assert(abc() == 13);
constexpr int abc2() {
Foo *f = new Foo[3];
delete[] f;
return 1;
}
static_assert(abc2() == 1);
}
/// FIXME: There is a slight difference in diagnostics here, because we don't
/// create a new frame when we delete record fields or bases at all.
namespace FaultyDtorCalledByDelete {
struct InnerFoo {
int *mem;
constexpr ~InnerFoo() {
if (mem) {
(void)(1/0); // both-warning {{division by zero is undefined}} \
// both-note {{division by zero}}
}
delete mem;
}
};
struct Foo {
int *a;
InnerFoo IF;
constexpr Foo() {
a = new int(13);
IF.mem = new int(100);
}
constexpr ~Foo() { delete a; }
};
constexpr int abc() {
Foo *F = new Foo();
int n = *F->a;
delete F; // both-note {{in call to}} \
// ref-note {{in call to}}
return n;
}
static_assert(abc() == 13); // both-error {{not an integral constant expression}} \
// both-note {{in call to 'abc()'}}
}
#else
/// Make sure we reject this prior to C++20
constexpr int a() { // both-error {{never produces a constant expression}}
delete new int(12); // both-note 2{{dynamic memory allocation is not permitted in constant expressions until C++20}}
return 1;
}
static_assert(a() == 1, ""); // both-error {{not an integral constant expression}} \
// both-note {{in call to 'a()'}}
static_assert(true ? *new int : 4, ""); // both-error {{expression is not an integral constant expression}} \
// both-note {{read of uninitialized object is not allowed in a constant expression}}
#endif
|