1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479
|
// NOTE: Assertions have been autogenerated by utils/update_cc_test_checks.py
// REQUIRES: webassembly-registered-target
// RUN: %clang_cc1 -triple wasm32-unknown-unknown -emit-llvm -o - %s | FileCheck %s
// Multiple targets use emitVoidPtrVAArg to lower va_arg instructions in clang
// PPC is complicated, excluding from this case analysis
// ForceRightAdjust is false for all non-PPC targets
// AllowHigherAlign is only false for two Microsoft targets, both of which
// pass most things by reference.
//
// Address emitVoidPtrVAArg(CodeGenFunction &CGF, Address VAListAddr,
// QualType ValueTy, bool IsIndirect,
// TypeInfoChars ValueInfo, CharUnits SlotSizeAndAlign,
// bool AllowHigherAlign, bool ForceRightAdjust =
// false);
//
// Target IsIndirect SlotSize AllowHigher ForceRightAdjust
// ARC false four true false
// ARM varies four true false
// Mips false 4 or 8 true false
// RISCV varies register true false
// PPC elided
// LoongArch varies register true false
// NVPTX WIP
// AMDGPU WIP
// X86_32 false four true false
// X86_64 MS varies eight false false
// CSKY false four true false
// Webassembly varies four true false
// AArch64 false eight true false
// AArch64 MS false eight false false
//
// Webassembly passes indirectly iff it's an aggregate of multiple values
// Choosing this as a representative architecture to check IR generation
// partly because it has a relatively simple variadic calling convention.
// Int, by itself and packed in structs
// CHECK-LABEL: @raw_int(
// CHECK-NEXT: entry:
// CHECK-NEXT: [[LIST_ADDR:%.*]] = alloca ptr, align 4
// CHECK-NEXT: store ptr [[LIST:%.*]], ptr [[LIST_ADDR]], align 4
// CHECK-NEXT: [[ARGP_CUR:%.*]] = load ptr, ptr [[LIST_ADDR]], align 4
// CHECK-NEXT: [[ARGP_NEXT:%.*]] = getelementptr inbounds i8, ptr [[ARGP_CUR]], i32 4
// CHECK-NEXT: store ptr [[ARGP_NEXT]], ptr [[LIST_ADDR]], align 4
// CHECK-NEXT: [[TMP0:%.*]] = load i32, ptr [[ARGP_CUR]], align 4
// CHECK-NEXT: ret i32 [[TMP0]]
//
int raw_int(__builtin_va_list list) { return __builtin_va_arg(list, int); }
typedef struct {
int x;
} one_int_t;
// CHECK-LABEL: @one_int(
// CHECK-NEXT: entry:
// CHECK-NEXT: [[RETVAL:%.*]] = alloca [[STRUCT_ONE_INT_T:%.*]], align 4
// CHECK-NEXT: [[LIST_ADDR:%.*]] = alloca ptr, align 4
// CHECK-NEXT: store ptr [[LIST:%.*]], ptr [[LIST_ADDR]], align 4
// CHECK-NEXT: [[ARGP_CUR:%.*]] = load ptr, ptr [[LIST_ADDR]], align 4
// CHECK-NEXT: [[ARGP_NEXT:%.*]] = getelementptr inbounds i8, ptr [[ARGP_CUR]], i32 4
// CHECK-NEXT: store ptr [[ARGP_NEXT]], ptr [[LIST_ADDR]], align 4
// CHECK-NEXT: call void @llvm.memcpy.p0.p0.i32(ptr align 4 [[RETVAL]], ptr align 4 [[ARGP_CUR]], i32 4, i1 false)
// CHECK-NEXT: [[COERCE_DIVE:%.*]] = getelementptr inbounds [[STRUCT_ONE_INT_T]], ptr [[RETVAL]], i32 0, i32 0
// CHECK-NEXT: [[TMP0:%.*]] = load i32, ptr [[COERCE_DIVE]], align 4
// CHECK-NEXT: ret i32 [[TMP0]]
//
one_int_t one_int(__builtin_va_list list) {
return __builtin_va_arg(list, one_int_t);
}
typedef struct {
int x;
int y;
} two_int_t;
// CHECK-LABEL: @two_int(
// CHECK-NEXT: entry:
// CHECK-NEXT: [[LIST_ADDR:%.*]] = alloca ptr, align 4
// CHECK-NEXT: store ptr [[LIST:%.*]], ptr [[LIST_ADDR]], align 4
// CHECK-NEXT: [[ARGP_CUR:%.*]] = load ptr, ptr [[LIST_ADDR]], align 4
// CHECK-NEXT: [[ARGP_NEXT:%.*]] = getelementptr inbounds i8, ptr [[ARGP_CUR]], i32 4
// CHECK-NEXT: store ptr [[ARGP_NEXT]], ptr [[LIST_ADDR]], align 4
// CHECK-NEXT: [[TMP0:%.*]] = load ptr, ptr [[ARGP_CUR]], align 4
// CHECK-NEXT: call void @llvm.memcpy.p0.p0.i32(ptr align 4 [[AGG_RESULT:%.*]], ptr align 4 [[TMP0]], i32 8, i1 false)
// CHECK-NEXT: ret void
//
two_int_t two_int(__builtin_va_list list) {
return __builtin_va_arg(list, two_int_t);
}
// Double, by itself and packed in structs
// CHECK-LABEL: @raw_double(
// CHECK-NEXT: entry:
// CHECK-NEXT: [[LIST_ADDR:%.*]] = alloca ptr, align 4
// CHECK-NEXT: store ptr [[LIST:%.*]], ptr [[LIST_ADDR]], align 4
// CHECK-NEXT: [[ARGP_CUR:%.*]] = load ptr, ptr [[LIST_ADDR]], align 4
// CHECK-NEXT: [[TMP0:%.*]] = getelementptr inbounds i8, ptr [[ARGP_CUR]], i32 7
// CHECK-NEXT: [[ARGP_CUR_ALIGNED:%.*]] = call ptr @llvm.ptrmask.p0.i32(ptr [[TMP0]], i32 -8)
// CHECK-NEXT: [[ARGP_NEXT:%.*]] = getelementptr inbounds i8, ptr [[ARGP_CUR_ALIGNED]], i32 8
// CHECK-NEXT: store ptr [[ARGP_NEXT]], ptr [[LIST_ADDR]], align 4
// CHECK-NEXT: [[TMP1:%.*]] = load double, ptr [[ARGP_CUR_ALIGNED]], align 8
// CHECK-NEXT: ret double [[TMP1]]
//
double raw_double(__builtin_va_list list) {
return __builtin_va_arg(list, double);
}
typedef struct {
double x;
} one_double_t;
// CHECK-LABEL: @one_double(
// CHECK-NEXT: entry:
// CHECK-NEXT: [[RETVAL:%.*]] = alloca [[STRUCT_ONE_DOUBLE_T:%.*]], align 8
// CHECK-NEXT: [[LIST_ADDR:%.*]] = alloca ptr, align 4
// CHECK-NEXT: store ptr [[LIST:%.*]], ptr [[LIST_ADDR]], align 4
// CHECK-NEXT: [[ARGP_CUR:%.*]] = load ptr, ptr [[LIST_ADDR]], align 4
// CHECK-NEXT: [[TMP0:%.*]] = getelementptr inbounds i8, ptr [[ARGP_CUR]], i32 7
// CHECK-NEXT: [[ARGP_CUR_ALIGNED:%.*]] = call ptr @llvm.ptrmask.p0.i32(ptr [[TMP0]], i32 -8)
// CHECK-NEXT: [[ARGP_NEXT:%.*]] = getelementptr inbounds i8, ptr [[ARGP_CUR_ALIGNED]], i32 8
// CHECK-NEXT: store ptr [[ARGP_NEXT]], ptr [[LIST_ADDR]], align 4
// CHECK-NEXT: call void @llvm.memcpy.p0.p0.i32(ptr align 8 [[RETVAL]], ptr align 8 [[ARGP_CUR_ALIGNED]], i32 8, i1 false)
// CHECK-NEXT: [[COERCE_DIVE:%.*]] = getelementptr inbounds [[STRUCT_ONE_DOUBLE_T]], ptr [[RETVAL]], i32 0, i32 0
// CHECK-NEXT: [[TMP1:%.*]] = load double, ptr [[COERCE_DIVE]], align 8
// CHECK-NEXT: ret double [[TMP1]]
//
one_double_t one_double(__builtin_va_list list) {
return __builtin_va_arg(list, one_double_t);
}
typedef struct {
double x;
double y;
} two_double_t;
// CHECK-LABEL: @two_double(
// CHECK-NEXT: entry:
// CHECK-NEXT: [[LIST_ADDR:%.*]] = alloca ptr, align 4
// CHECK-NEXT: store ptr [[LIST:%.*]], ptr [[LIST_ADDR]], align 4
// CHECK-NEXT: [[ARGP_CUR:%.*]] = load ptr, ptr [[LIST_ADDR]], align 4
// CHECK-NEXT: [[ARGP_NEXT:%.*]] = getelementptr inbounds i8, ptr [[ARGP_CUR]], i32 4
// CHECK-NEXT: store ptr [[ARGP_NEXT]], ptr [[LIST_ADDR]], align 4
// CHECK-NEXT: [[TMP0:%.*]] = load ptr, ptr [[ARGP_CUR]], align 4
// CHECK-NEXT: call void @llvm.memcpy.p0.p0.i32(ptr align 8 [[AGG_RESULT:%.*]], ptr align 8 [[TMP0]], i32 16, i1 false)
// CHECK-NEXT: ret void
//
two_double_t two_double(__builtin_va_list list) {
return __builtin_va_arg(list, two_double_t);
}
// Scalar smaller than the slot size (C would promote a short to int)
typedef struct {
char x;
} one_char_t;
// CHECK-LABEL: @one_char(
// CHECK-NEXT: entry:
// CHECK-NEXT: [[RETVAL:%.*]] = alloca [[STRUCT_ONE_CHAR_T:%.*]], align 1
// CHECK-NEXT: [[LIST_ADDR:%.*]] = alloca ptr, align 4
// CHECK-NEXT: store ptr [[LIST:%.*]], ptr [[LIST_ADDR]], align 4
// CHECK-NEXT: [[ARGP_CUR:%.*]] = load ptr, ptr [[LIST_ADDR]], align 4
// CHECK-NEXT: [[ARGP_NEXT:%.*]] = getelementptr inbounds i8, ptr [[ARGP_CUR]], i32 4
// CHECK-NEXT: store ptr [[ARGP_NEXT]], ptr [[LIST_ADDR]], align 4
// CHECK-NEXT: call void @llvm.memcpy.p0.p0.i32(ptr align 1 [[RETVAL]], ptr align 4 [[ARGP_CUR]], i32 1, i1 false)
// CHECK-NEXT: [[COERCE_DIVE:%.*]] = getelementptr inbounds [[STRUCT_ONE_CHAR_T]], ptr [[RETVAL]], i32 0, i32 0
// CHECK-NEXT: [[TMP0:%.*]] = load i8, ptr [[COERCE_DIVE]], align 1
// CHECK-NEXT: ret i8 [[TMP0]]
//
one_char_t one_char(__builtin_va_list list) {
return __builtin_va_arg(list, one_char_t);
}
typedef struct {
short x;
} one_short_t;
// CHECK-LABEL: @one_short(
// CHECK-NEXT: entry:
// CHECK-NEXT: [[RETVAL:%.*]] = alloca [[STRUCT_ONE_SHORT_T:%.*]], align 2
// CHECK-NEXT: [[LIST_ADDR:%.*]] = alloca ptr, align 4
// CHECK-NEXT: store ptr [[LIST:%.*]], ptr [[LIST_ADDR]], align 4
// CHECK-NEXT: [[ARGP_CUR:%.*]] = load ptr, ptr [[LIST_ADDR]], align 4
// CHECK-NEXT: [[ARGP_NEXT:%.*]] = getelementptr inbounds i8, ptr [[ARGP_CUR]], i32 4
// CHECK-NEXT: store ptr [[ARGP_NEXT]], ptr [[LIST_ADDR]], align 4
// CHECK-NEXT: call void @llvm.memcpy.p0.p0.i32(ptr align 2 [[RETVAL]], ptr align 4 [[ARGP_CUR]], i32 2, i1 false)
// CHECK-NEXT: [[COERCE_DIVE:%.*]] = getelementptr inbounds [[STRUCT_ONE_SHORT_T]], ptr [[RETVAL]], i32 0, i32 0
// CHECK-NEXT: [[TMP0:%.*]] = load i16, ptr [[COERCE_DIVE]], align 2
// CHECK-NEXT: ret i16 [[TMP0]]
//
one_short_t one_short(__builtin_va_list list) {
return __builtin_va_arg(list, one_short_t);
}
// Composite smaller than the slot size
typedef struct {
_Alignas(2) char x;
char y;
} char_pair_t;
// CHECK-LABEL: @char_pair(
// CHECK-NEXT: entry:
// CHECK-NEXT: [[LIST_ADDR:%.*]] = alloca ptr, align 4
// CHECK-NEXT: store ptr [[LIST:%.*]], ptr [[LIST_ADDR]], align 4
// CHECK-NEXT: [[ARGP_CUR:%.*]] = load ptr, ptr [[LIST_ADDR]], align 4
// CHECK-NEXT: [[ARGP_NEXT:%.*]] = getelementptr inbounds i8, ptr [[ARGP_CUR]], i32 4
// CHECK-NEXT: store ptr [[ARGP_NEXT]], ptr [[LIST_ADDR]], align 4
// CHECK-NEXT: [[TMP0:%.*]] = load ptr, ptr [[ARGP_CUR]], align 4
// CHECK-NEXT: call void @llvm.memcpy.p0.p0.i32(ptr align 2 [[AGG_RESULT:%.*]], ptr align 2 [[TMP0]], i32 2, i1 false)
// CHECK-NEXT: ret void
//
char_pair_t char_pair(__builtin_va_list list) {
return __builtin_va_arg(list, char_pair_t);
}
// Empty struct
typedef struct {
} empty_t;
// CHECK-LABEL: @empty(
// CHECK-NEXT: entry:
// CHECK-NEXT: [[RETVAL:%.*]] = alloca [[STRUCT_EMPTY_T:%.*]], align 1
// CHECK-NEXT: [[LIST_ADDR:%.*]] = alloca ptr, align 4
// CHECK-NEXT: store ptr [[LIST:%.*]], ptr [[LIST_ADDR]], align 4
// CHECK-NEXT: [[ARGP_CUR:%.*]] = load ptr, ptr [[LIST_ADDR]], align 4
// CHECK-NEXT: [[ARGP_NEXT:%.*]] = getelementptr inbounds i8, ptr [[ARGP_CUR]], i32 0
// CHECK-NEXT: store ptr [[ARGP_NEXT]], ptr [[LIST_ADDR]], align 4
// CHECK-NEXT: call void @llvm.memcpy.p0.p0.i32(ptr align 1 [[RETVAL]], ptr align 4 [[ARGP_CUR]], i32 0, i1 false)
// CHECK-NEXT: ret void
//
empty_t empty(__builtin_va_list list) {
return __builtin_va_arg(list, empty_t);
}
typedef struct {
empty_t x;
int y;
} empty_int_t;
// CHECK-LABEL: @empty_int(
// CHECK-NEXT: entry:
// CHECK-NEXT: [[RETVAL:%.*]] = alloca [[STRUCT_EMPTY_INT_T:%.*]], align 4
// CHECK-NEXT: [[LIST_ADDR:%.*]] = alloca ptr, align 4
// CHECK-NEXT: store ptr [[LIST:%.*]], ptr [[LIST_ADDR]], align 4
// CHECK-NEXT: [[ARGP_CUR:%.*]] = load ptr, ptr [[LIST_ADDR]], align 4
// CHECK-NEXT: [[ARGP_NEXT:%.*]] = getelementptr inbounds i8, ptr [[ARGP_CUR]], i32 4
// CHECK-NEXT: store ptr [[ARGP_NEXT]], ptr [[LIST_ADDR]], align 4
// CHECK-NEXT: call void @llvm.memcpy.p0.p0.i32(ptr align 4 [[RETVAL]], ptr align 4 [[ARGP_CUR]], i32 4, i1 false)
// CHECK-NEXT: [[COERCE_DIVE:%.*]] = getelementptr inbounds [[STRUCT_EMPTY_INT_T]], ptr [[RETVAL]], i32 0, i32 0
// CHECK-NEXT: [[TMP0:%.*]] = load i32, ptr [[COERCE_DIVE]], align 4
// CHECK-NEXT: ret i32 [[TMP0]]
//
empty_int_t empty_int(__builtin_va_list list) {
return __builtin_va_arg(list, empty_int_t);
}
typedef struct {
int x;
empty_t y;
} int_empty_t;
// CHECK-LABEL: @int_empty(
// CHECK-NEXT: entry:
// CHECK-NEXT: [[RETVAL:%.*]] = alloca [[STRUCT_INT_EMPTY_T:%.*]], align 4
// CHECK-NEXT: [[LIST_ADDR:%.*]] = alloca ptr, align 4
// CHECK-NEXT: store ptr [[LIST:%.*]], ptr [[LIST_ADDR]], align 4
// CHECK-NEXT: [[ARGP_CUR:%.*]] = load ptr, ptr [[LIST_ADDR]], align 4
// CHECK-NEXT: [[ARGP_NEXT:%.*]] = getelementptr inbounds i8, ptr [[ARGP_CUR]], i32 4
// CHECK-NEXT: store ptr [[ARGP_NEXT]], ptr [[LIST_ADDR]], align 4
// CHECK-NEXT: call void @llvm.memcpy.p0.p0.i32(ptr align 4 [[RETVAL]], ptr align 4 [[ARGP_CUR]], i32 4, i1 false)
// CHECK-NEXT: [[COERCE_DIVE:%.*]] = getelementptr inbounds [[STRUCT_INT_EMPTY_T]], ptr [[RETVAL]], i32 0, i32 0
// CHECK-NEXT: [[TMP0:%.*]] = load i32, ptr [[COERCE_DIVE]], align 4
// CHECK-NEXT: ret i32 [[TMP0]]
//
int_empty_t int_empty(__builtin_va_list list) {
return __builtin_va_arg(list, int_empty_t);
}
// Need multiple va_arg instructions to check the postincrement
// Using types that are passed directly as the indirect handling
// is independent of the alignment handling in emitVoidPtrDirectVAArg.
// CHECK-LABEL: @multiple_int(
// CHECK-NEXT: entry:
// CHECK-NEXT: [[LIST_ADDR:%.*]] = alloca ptr, align 4
// CHECK-NEXT: [[OUT0_ADDR:%.*]] = alloca ptr, align 4
// CHECK-NEXT: [[OUT1_ADDR:%.*]] = alloca ptr, align 4
// CHECK-NEXT: [[OUT2_ADDR:%.*]] = alloca ptr, align 4
// CHECK-NEXT: store ptr [[LIST:%.*]], ptr [[LIST_ADDR]], align 4
// CHECK-NEXT: store ptr [[OUT0:%.*]], ptr [[OUT0_ADDR]], align 4
// CHECK-NEXT: store ptr [[OUT1:%.*]], ptr [[OUT1_ADDR]], align 4
// CHECK-NEXT: store ptr [[OUT2:%.*]], ptr [[OUT2_ADDR]], align 4
// CHECK-NEXT: [[ARGP_CUR:%.*]] = load ptr, ptr [[LIST_ADDR]], align 4
// CHECK-NEXT: [[ARGP_NEXT:%.*]] = getelementptr inbounds i8, ptr [[ARGP_CUR]], i32 4
// CHECK-NEXT: store ptr [[ARGP_NEXT]], ptr [[LIST_ADDR]], align 4
// CHECK-NEXT: [[TMP0:%.*]] = load i32, ptr [[ARGP_CUR]], align 4
// CHECK-NEXT: [[TMP1:%.*]] = load ptr, ptr [[OUT0_ADDR]], align 4
// CHECK-NEXT: store i32 [[TMP0]], ptr [[TMP1]], align 4
// CHECK-NEXT: [[ARGP_CUR1:%.*]] = load ptr, ptr [[LIST_ADDR]], align 4
// CHECK-NEXT: [[ARGP_NEXT2:%.*]] = getelementptr inbounds i8, ptr [[ARGP_CUR1]], i32 4
// CHECK-NEXT: store ptr [[ARGP_NEXT2]], ptr [[LIST_ADDR]], align 4
// CHECK-NEXT: [[TMP2:%.*]] = load i32, ptr [[ARGP_CUR1]], align 4
// CHECK-NEXT: [[TMP3:%.*]] = load ptr, ptr [[OUT1_ADDR]], align 4
// CHECK-NEXT: store i32 [[TMP2]], ptr [[TMP3]], align 4
// CHECK-NEXT: [[ARGP_CUR3:%.*]] = load ptr, ptr [[LIST_ADDR]], align 4
// CHECK-NEXT: [[ARGP_NEXT4:%.*]] = getelementptr inbounds i8, ptr [[ARGP_CUR3]], i32 4
// CHECK-NEXT: store ptr [[ARGP_NEXT4]], ptr [[LIST_ADDR]], align 4
// CHECK-NEXT: [[TMP4:%.*]] = load i32, ptr [[ARGP_CUR3]], align 4
// CHECK-NEXT: [[TMP5:%.*]] = load ptr, ptr [[OUT2_ADDR]], align 4
// CHECK-NEXT: store i32 [[TMP4]], ptr [[TMP5]], align 4
// CHECK-NEXT: ret void
//
void multiple_int(__builtin_va_list list, int *out0, int *out1, int *out2) {
*out0 = __builtin_va_arg(list, int);
*out1 = __builtin_va_arg(list, int);
*out2 = __builtin_va_arg(list, int);
}
// Scalars in structs are an easy way of specifying alignment from C
// CHECK-LABEL: @increasing_alignment(
// CHECK-NEXT: entry:
// CHECK-NEXT: [[LIST_ADDR:%.*]] = alloca ptr, align 4
// CHECK-NEXT: [[OUT0_ADDR:%.*]] = alloca ptr, align 4
// CHECK-NEXT: [[OUT1_ADDR:%.*]] = alloca ptr, align 4
// CHECK-NEXT: [[OUT2_ADDR:%.*]] = alloca ptr, align 4
// CHECK-NEXT: [[OUT3_ADDR:%.*]] = alloca ptr, align 4
// CHECK-NEXT: store ptr [[LIST:%.*]], ptr [[LIST_ADDR]], align 4
// CHECK-NEXT: store ptr [[OUT0:%.*]], ptr [[OUT0_ADDR]], align 4
// CHECK-NEXT: store ptr [[OUT1:%.*]], ptr [[OUT1_ADDR]], align 4
// CHECK-NEXT: store ptr [[OUT2:%.*]], ptr [[OUT2_ADDR]], align 4
// CHECK-NEXT: store ptr [[OUT3:%.*]], ptr [[OUT3_ADDR]], align 4
// CHECK-NEXT: [[TMP0:%.*]] = load ptr, ptr [[OUT0_ADDR]], align 4
// CHECK-NEXT: [[ARGP_CUR:%.*]] = load ptr, ptr [[LIST_ADDR]], align 4
// CHECK-NEXT: [[ARGP_NEXT:%.*]] = getelementptr inbounds i8, ptr [[ARGP_CUR]], i32 4
// CHECK-NEXT: store ptr [[ARGP_NEXT]], ptr [[LIST_ADDR]], align 4
// CHECK-NEXT: call void @llvm.memcpy.p0.p0.i32(ptr align 1 [[TMP0]], ptr align 4 [[ARGP_CUR]], i32 1, i1 false)
// CHECK-NEXT: [[TMP1:%.*]] = load ptr, ptr [[OUT1_ADDR]], align 4
// CHECK-NEXT: [[ARGP_CUR1:%.*]] = load ptr, ptr [[LIST_ADDR]], align 4
// CHECK-NEXT: [[ARGP_NEXT2:%.*]] = getelementptr inbounds i8, ptr [[ARGP_CUR1]], i32 4
// CHECK-NEXT: store ptr [[ARGP_NEXT2]], ptr [[LIST_ADDR]], align 4
// CHECK-NEXT: call void @llvm.memcpy.p0.p0.i32(ptr align 2 [[TMP1]], ptr align 4 [[ARGP_CUR1]], i32 2, i1 false)
// CHECK-NEXT: [[ARGP_CUR3:%.*]] = load ptr, ptr [[LIST_ADDR]], align 4
// CHECK-NEXT: [[ARGP_NEXT4:%.*]] = getelementptr inbounds i8, ptr [[ARGP_CUR3]], i32 4
// CHECK-NEXT: store ptr [[ARGP_NEXT4]], ptr [[LIST_ADDR]], align 4
// CHECK-NEXT: [[TMP2:%.*]] = load i32, ptr [[ARGP_CUR3]], align 4
// CHECK-NEXT: [[TMP3:%.*]] = load ptr, ptr [[OUT2_ADDR]], align 4
// CHECK-NEXT: store i32 [[TMP2]], ptr [[TMP3]], align 4
// CHECK-NEXT: [[ARGP_CUR5:%.*]] = load ptr, ptr [[LIST_ADDR]], align 4
// CHECK-NEXT: [[TMP4:%.*]] = getelementptr inbounds i8, ptr [[ARGP_CUR5]], i32 7
// CHECK-NEXT: [[ARGP_CUR5_ALIGNED:%.*]] = call ptr @llvm.ptrmask.p0.i32(ptr [[TMP4]], i32 -8)
// CHECK-NEXT: [[ARGP_NEXT6:%.*]] = getelementptr inbounds i8, ptr [[ARGP_CUR5_ALIGNED]], i32 8
// CHECK-NEXT: store ptr [[ARGP_NEXT6]], ptr [[LIST_ADDR]], align 4
// CHECK-NEXT: [[TMP5:%.*]] = load double, ptr [[ARGP_CUR5_ALIGNED]], align 8
// CHECK-NEXT: [[TMP6:%.*]] = load ptr, ptr [[OUT3_ADDR]], align 4
// CHECK-NEXT: store double [[TMP5]], ptr [[TMP6]], align 8
// CHECK-NEXT: ret void
//
void increasing_alignment(__builtin_va_list list, one_char_t *out0,
one_short_t *out1, int *out2, double *out3) {
*out0 = __builtin_va_arg(list, one_char_t);
*out1 = __builtin_va_arg(list, one_short_t);
*out2 = __builtin_va_arg(list, int);
*out3 = __builtin_va_arg(list, double);
}
// CHECK-LABEL: @decreasing_alignment(
// CHECK-NEXT: entry:
// CHECK-NEXT: [[LIST_ADDR:%.*]] = alloca ptr, align 4
// CHECK-NEXT: [[OUT0_ADDR:%.*]] = alloca ptr, align 4
// CHECK-NEXT: [[OUT1_ADDR:%.*]] = alloca ptr, align 4
// CHECK-NEXT: [[OUT2_ADDR:%.*]] = alloca ptr, align 4
// CHECK-NEXT: [[OUT3_ADDR:%.*]] = alloca ptr, align 4
// CHECK-NEXT: store ptr [[LIST:%.*]], ptr [[LIST_ADDR]], align 4
// CHECK-NEXT: store ptr [[OUT0:%.*]], ptr [[OUT0_ADDR]], align 4
// CHECK-NEXT: store ptr [[OUT1:%.*]], ptr [[OUT1_ADDR]], align 4
// CHECK-NEXT: store ptr [[OUT2:%.*]], ptr [[OUT2_ADDR]], align 4
// CHECK-NEXT: store ptr [[OUT3:%.*]], ptr [[OUT3_ADDR]], align 4
// CHECK-NEXT: [[ARGP_CUR:%.*]] = load ptr, ptr [[LIST_ADDR]], align 4
// CHECK-NEXT: [[TMP0:%.*]] = getelementptr inbounds i8, ptr [[ARGP_CUR]], i32 7
// CHECK-NEXT: [[ARGP_CUR_ALIGNED:%.*]] = call ptr @llvm.ptrmask.p0.i32(ptr [[TMP0]], i32 -8)
// CHECK-NEXT: [[ARGP_NEXT:%.*]] = getelementptr inbounds i8, ptr [[ARGP_CUR_ALIGNED]], i32 8
// CHECK-NEXT: store ptr [[ARGP_NEXT]], ptr [[LIST_ADDR]], align 4
// CHECK-NEXT: [[TMP1:%.*]] = load double, ptr [[ARGP_CUR_ALIGNED]], align 8
// CHECK-NEXT: [[TMP2:%.*]] = load ptr, ptr [[OUT0_ADDR]], align 4
// CHECK-NEXT: store double [[TMP1]], ptr [[TMP2]], align 8
// CHECK-NEXT: [[ARGP_CUR1:%.*]] = load ptr, ptr [[LIST_ADDR]], align 4
// CHECK-NEXT: [[ARGP_NEXT2:%.*]] = getelementptr inbounds i8, ptr [[ARGP_CUR1]], i32 4
// CHECK-NEXT: store ptr [[ARGP_NEXT2]], ptr [[LIST_ADDR]], align 4
// CHECK-NEXT: [[TMP3:%.*]] = load i32, ptr [[ARGP_CUR1]], align 4
// CHECK-NEXT: [[TMP4:%.*]] = load ptr, ptr [[OUT1_ADDR]], align 4
// CHECK-NEXT: store i32 [[TMP3]], ptr [[TMP4]], align 4
// CHECK-NEXT: [[TMP5:%.*]] = load ptr, ptr [[OUT2_ADDR]], align 4
// CHECK-NEXT: [[ARGP_CUR3:%.*]] = load ptr, ptr [[LIST_ADDR]], align 4
// CHECK-NEXT: [[ARGP_NEXT4:%.*]] = getelementptr inbounds i8, ptr [[ARGP_CUR3]], i32 4
// CHECK-NEXT: store ptr [[ARGP_NEXT4]], ptr [[LIST_ADDR]], align 4
// CHECK-NEXT: call void @llvm.memcpy.p0.p0.i32(ptr align 2 [[TMP5]], ptr align 4 [[ARGP_CUR3]], i32 2, i1 false)
// CHECK-NEXT: [[TMP6:%.*]] = load ptr, ptr [[OUT3_ADDR]], align 4
// CHECK-NEXT: [[ARGP_CUR5:%.*]] = load ptr, ptr [[LIST_ADDR]], align 4
// CHECK-NEXT: [[ARGP_NEXT6:%.*]] = getelementptr inbounds i8, ptr [[ARGP_CUR5]], i32 4
// CHECK-NEXT: store ptr [[ARGP_NEXT6]], ptr [[LIST_ADDR]], align 4
// CHECK-NEXT: call void @llvm.memcpy.p0.p0.i32(ptr align 1 [[TMP6]], ptr align 4 [[ARGP_CUR5]], i32 1, i1 false)
// CHECK-NEXT: ret void
//
void decreasing_alignment(__builtin_va_list list, double *out0, int *out1,
one_short_t *out2, one_char_t *out3) {
*out0 = __builtin_va_arg(list, double);
*out1 = __builtin_va_arg(list, int);
*out2 = __builtin_va_arg(list, one_short_t);
*out3 = __builtin_va_arg(list, one_char_t);
}
// Typical edge cases, none hit special handling in VAArg lowering.
typedef struct {
int x[16];
double y[8];
} large_value_t;
// CHECK-LABEL: @large_value(
// CHECK-NEXT: entry:
// CHECK-NEXT: [[LIST_ADDR:%.*]] = alloca ptr, align 4
// CHECK-NEXT: [[OUT_ADDR:%.*]] = alloca ptr, align 4
// CHECK-NEXT: store ptr [[LIST:%.*]], ptr [[LIST_ADDR]], align 4
// CHECK-NEXT: store ptr [[OUT:%.*]], ptr [[OUT_ADDR]], align 4
// CHECK-NEXT: [[TMP0:%.*]] = load ptr, ptr [[OUT_ADDR]], align 4
// CHECK-NEXT: [[ARGP_CUR:%.*]] = load ptr, ptr [[LIST_ADDR]], align 4
// CHECK-NEXT: [[ARGP_NEXT:%.*]] = getelementptr inbounds i8, ptr [[ARGP_CUR]], i32 4
// CHECK-NEXT: store ptr [[ARGP_NEXT]], ptr [[LIST_ADDR]], align 4
// CHECK-NEXT: [[TMP1:%.*]] = load ptr, ptr [[ARGP_CUR]], align 4
// CHECK-NEXT: call void @llvm.memcpy.p0.p0.i32(ptr align 8 [[TMP0]], ptr align 8 [[TMP1]], i32 128, i1 false)
// CHECK-NEXT: ret void
//
void large_value(__builtin_va_list list, large_value_t *out) {
*out = __builtin_va_arg(list, large_value_t);
}
typedef int v128_t __attribute__((__vector_size__(16), __aligned__(16)));
// CHECK-LABEL: @vector(
// CHECK-NEXT: entry:
// CHECK-NEXT: [[LIST_ADDR:%.*]] = alloca ptr, align 4
// CHECK-NEXT: [[OUT_ADDR:%.*]] = alloca ptr, align 4
// CHECK-NEXT: store ptr [[LIST:%.*]], ptr [[LIST_ADDR]], align 4
// CHECK-NEXT: store ptr [[OUT:%.*]], ptr [[OUT_ADDR]], align 4
// CHECK-NEXT: [[ARGP_CUR:%.*]] = load ptr, ptr [[LIST_ADDR]], align 4
// CHECK-NEXT: [[TMP0:%.*]] = getelementptr inbounds i8, ptr [[ARGP_CUR]], i32 15
// CHECK-NEXT: [[ARGP_CUR_ALIGNED:%.*]] = call ptr @llvm.ptrmask.p0.i32(ptr [[TMP0]], i32 -16)
// CHECK-NEXT: [[ARGP_NEXT:%.*]] = getelementptr inbounds i8, ptr [[ARGP_CUR_ALIGNED]], i32 16
// CHECK-NEXT: store ptr [[ARGP_NEXT]], ptr [[LIST_ADDR]], align 4
// CHECK-NEXT: [[TMP1:%.*]] = load <4 x i32>, ptr [[ARGP_CUR_ALIGNED]], align 16
// CHECK-NEXT: [[TMP2:%.*]] = load ptr, ptr [[OUT_ADDR]], align 4
// CHECK-NEXT: store <4 x i32> [[TMP1]], ptr [[TMP2]], align 16
// CHECK-NEXT: ret void
//
void vector(__builtin_va_list list, v128_t *out) {
*out = __builtin_va_arg(list, v128_t);
}
typedef struct BF {
float not_an_i32[2];
int A : 1;
char B;
int C : 13;
} BF;
// CHECK-LABEL: @bitfield(
// CHECK-NEXT: entry:
// CHECK-NEXT: [[LIST_ADDR:%.*]] = alloca ptr, align 4
// CHECK-NEXT: [[OUT_ADDR:%.*]] = alloca ptr, align 4
// CHECK-NEXT: store ptr [[LIST:%.*]], ptr [[LIST_ADDR]], align 4
// CHECK-NEXT: store ptr [[OUT:%.*]], ptr [[OUT_ADDR]], align 4
// CHECK-NEXT: [[TMP0:%.*]] = load ptr, ptr [[OUT_ADDR]], align 4
// CHECK-NEXT: [[ARGP_CUR:%.*]] = load ptr, ptr [[LIST_ADDR]], align 4
// CHECK-NEXT: [[ARGP_NEXT:%.*]] = getelementptr inbounds i8, ptr [[ARGP_CUR]], i32 4
// CHECK-NEXT: store ptr [[ARGP_NEXT]], ptr [[LIST_ADDR]], align 4
// CHECK-NEXT: [[TMP1:%.*]] = load ptr, ptr [[ARGP_CUR]], align 4
// CHECK-NEXT: call void @llvm.memcpy.p0.p0.i32(ptr align 4 [[TMP0]], ptr align 4 [[TMP1]], i32 12, i1 false)
// CHECK-NEXT: ret void
//
void bitfield(__builtin_va_list list, BF *out) {
*out = __builtin_va_arg(list, BF);
}
|