1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243
|
// C++-specific checks for the alignment builtins
// RUN: %clang_cc1 -triple=x86_64-unknown-unknown -std=c++11 -o - %s -fsyntax-only -verify
// Check that we don't crash when using dependent types in __builtin_align:
template <typename a, a b>
void *c(void *d) { // expected-note{{candidate template ignored}}
return __builtin_align_down(d, b);
}
struct x {};
x foo;
void test(void *value) {
c<int, 16>(value);
c<struct x, foo>(value); // expected-error{{no matching function for call to 'c'}}
}
template <typename T, long Alignment, long ArraySize = 16>
void test_templated_arguments() {
T array[ArraySize]; // expected-error{{variable has incomplete type 'fwddecl'}}
static_assert(__is_same(decltype(__builtin_align_up(array, Alignment)), T *), // expected-error{{requested alignment is not a power of 2}}
"return type should be the decayed array type");
static_assert(__is_same(decltype(__builtin_align_down(array, Alignment)), T *),
"return type should be the decayed array type");
static_assert(__is_same(decltype(__builtin_is_aligned(array, Alignment)), bool),
"return type should be bool");
T *x1 = __builtin_align_up(array, Alignment);
T *x2 = __builtin_align_down(array, Alignment);
bool x3 = __builtin_align_up(array, Alignment);
}
void test() {
test_templated_arguments<int, 32>(); // fine
test_templated_arguments<struct fwddecl, 16>();
// expected-note@-1{{in instantiation of function template specialization 'test_templated_arguments<fwddecl, 16L, 16L>'}}
// expected-note@-2{{forward declaration of 'fwddecl'}}
test_templated_arguments<int, 7>(); // invalid alignment value
// expected-note@-1{{in instantiation of function template specialization 'test_templated_arguments<int, 7L, 16L>'}}
}
template <typename T, long ArraySize>
void test_incorrect_alignment_without_instatiation(T value) {
int array[32];
static_assert(__is_same(decltype(__builtin_align_up(array, 31)), int *), // expected-error{{requested alignment is not a power of 2}}
"return type should be the decayed array type");
static_assert(__is_same(decltype(__builtin_align_down(array, 7)), int *), // expected-error{{requested alignment is not a power of 2}}
"return type should be the decayed array type");
static_assert(__is_same(decltype(__builtin_is_aligned(array, -1)), bool), // expected-error{{requested alignment must be 1 or greater}}
"return type should be bool");
__builtin_align_up(array); // expected-error{{too few arguments to function call, expected 2, have 1}}
__builtin_align_up(array, 31); // expected-error{{requested alignment is not a power of 2}}
__builtin_align_down(array, 31); // expected-error{{requested alignment is not a power of 2}}
__builtin_align_up(array, 31); // expected-error{{requested alignment is not a power of 2}}
__builtin_align_up(value, 31); // This shouldn't want since the type is dependent
__builtin_align_up(value); // Same here
__builtin_align_up(array, sizeof(sizeof(value)) - 1); // expected-error{{requested alignment is not a power of 2}}
__builtin_align_up(array, value); // no diagnostic as the alignment is value dependent.
(void)__builtin_align_up(array, ArraySize); // The same above here
}
// The original fix for the issue above broke some legitimate code.
// Here is a regression test:
typedef __SIZE_TYPE__ size_t;
void *allocate_impl(size_t size);
template <typename T>
T *allocate() {
constexpr size_t allocation_size =
__builtin_align_up(sizeof(T), sizeof(void *));
return static_cast<T *>(
__builtin_assume_aligned(allocate_impl(allocation_size), sizeof(void *)));
}
struct Foo {
int value;
};
void *test2() {
return allocate<struct Foo>();
}
// Check that pointers-to-members cannot be used:
class MemPtr {
public:
int data;
void func();
virtual void vfunc();
};
void test_member_ptr() {
__builtin_align_up(&MemPtr::data, 64); // expected-error{{operand of type 'int MemPtr::*' where arithmetic or pointer type is required}}
__builtin_align_down(&MemPtr::func, 64); // expected-error{{operand of type 'void (MemPtr::*)()' where arithmetic or pointer type is required}}
__builtin_is_aligned(&MemPtr::vfunc, 64); // expected-error{{operand of type 'void (MemPtr::*)()' where arithmetic or pointer type is required}}
}
void test_references(Foo &i) {
// Check that the builtins look at the referenced type rather than the reference itself.
(void)__builtin_align_up(i, 64); // expected-error{{operand of type 'Foo' where arithmetic or pointer type is required}}
(void)__builtin_align_up(static_cast<Foo &>(i), 64); // expected-error{{operand of type 'Foo' where arithmetic or pointer type is required}}
(void)__builtin_align_up(static_cast<const Foo &>(i), 64); // expected-error{{operand of type 'const Foo' where arithmetic or pointer type is required}}
(void)__builtin_align_up(static_cast<Foo &&>(i), 64); // expected-error{{operand of type 'Foo' where arithmetic or pointer type is required}}
(void)__builtin_align_up(static_cast<const Foo &&>(i), 64); // expected-error{{operand of type 'const Foo' where arithmetic or pointer type is required}}
(void)__builtin_align_up(&i, 64);
}
// Check that constexpr wrapper functions can be constant-evaluated.
template <typename T>
constexpr bool wrap_is_aligned(T ptr, long align) {
return __builtin_is_aligned(ptr, align);
// expected-note@-1{{requested alignment -3 is not a positive power of two}}
// expected-note@-2{{requested alignment 19 is not a positive power of two}}
// expected-note@-3{{requested alignment must be 128 or less for type 'char'; 4194304 is invalid}}
}
template <typename T>
constexpr T wrap_align_up(T ptr, long align) {
return __builtin_align_up(ptr, align);
// expected-note@-1{{requested alignment -2 is not a positive power of two}}
// expected-note@-2{{requested alignment 18 is not a positive power of two}}
// expected-note@-3{{requested alignment must be 2147483648 or less for type 'int'; 8589934592 is invalid}}
// expected-error@-4{{operand of type 'bool' where arithmetic or pointer type is required}}
}
template <typename T>
constexpr T wrap_align_down(T ptr, long align) {
return __builtin_align_down(ptr, align);
// expected-note@-1{{requested alignment -1 is not a positive power of two}}
// expected-note@-2{{requested alignment 17 is not a positive power of two}}
// expected-note@-3{{requested alignment must be 32768 or less for type 'short'; 1048576 is invalid}}
}
constexpr int a1 = wrap_align_up(22, 32);
static_assert(a1 == 32, "");
constexpr int a2 = wrap_align_down(22, 16);
static_assert(a2 == 16, "");
constexpr bool a3 = wrap_is_aligned(22, 32);
static_assert(!a3, "");
static_assert(wrap_align_down(wrap_align_up(22, 16), 32) == 32, "");
static_assert(wrap_is_aligned(wrap_align_down(wrap_align_up(22, 16), 32), 32), "");
static_assert(!wrap_is_aligned(wrap_align_down(wrap_align_up(22, 16), 32), 64), "");
constexpr long const_value(long l) { return l; }
// Check some invalid values during constant-evaluation
static_assert(wrap_align_down(1, const_value(-1)), ""); // expected-error{{not an integral constant expression}}
// expected-note@-1{{in call to 'wrap_align_down<int>(1, -1)'}}
static_assert(wrap_align_up(1, const_value(-2)), ""); // expected-error{{not an integral constant expression}}
// expected-note@-1{{in call to 'wrap_align_up<int>(1, -2)'}}
static_assert(wrap_is_aligned(1, const_value(-3)), ""); // expected-error{{not an integral constant expression}}
// expected-note@-1{{in call to 'wrap_is_aligned<int>(1, -3)'}}
static_assert(wrap_align_down(1, const_value(17)), ""); // expected-error{{not an integral constant expression}}
// expected-note@-1{{in call to 'wrap_align_down<int>(1, 17)'}}
static_assert(wrap_align_up(1, const_value(18)), ""); // expected-error{{not an integral constant expression}}
// expected-note@-1{{in call to 'wrap_align_up<int>(1, 18)'}}
static_assert(wrap_is_aligned(1, const_value(19)), ""); // expected-error{{not an integral constant expression}}
// expected-note@-1{{in call to 'wrap_is_aligned<int>(1, 19)'}}
// Check invalid values for smaller types:
static_assert(wrap_align_down(static_cast<short>(1), const_value(1 << 20)), ""); // expected-error{{not an integral constant expression}}
// expected-note@-1{{in call to 'wrap_align_down<short>(1, 1048576)'}}
// Check invalid boolean type
static_assert(wrap_align_up(static_cast<int>(1), const_value(1ull << 33)), ""); // expected-error{{not an integral constant expression}}
// expected-note@-1{{in call to 'wrap_align_up<int>(1, 8589934592)'}}
static_assert(wrap_is_aligned(static_cast<char>(1), const_value(1 << 22)), ""); // expected-error{{not an integral constant expression}}
// expected-note@-1{{in call to 'wrap_is_aligned<char>(1, 4194304)'}}
// Check invalid boolean type
static_assert(wrap_align_up(static_cast<bool>(1), const_value(1 << 21)), ""); // expected-error{{not an integral constant expression}}
// expected-note@-1{{in instantiation of function template specialization 'wrap_align_up<bool>' requested here}}
// Check constant evaluation for pointers:
_Alignas(32) char align32array[128];
static_assert(&align32array[0] == &align32array[0], "");
// __builtin_align_up/down can be constant evaluated as a no-op for values
// that are known to have greater alignment:
static_assert(__builtin_align_up(&align32array[0], 32) == &align32array[0], "");
static_assert(__builtin_align_up(&align32array[0], 4) == &align32array[0], "");
static_assert(__builtin_align_down(&align32array[0], 4) == __builtin_align_up(&align32array[0], 8), "");
// But it can not be evaluated if the alignment is greater than the minimum
// known alignment, since in that case the value might be the same if it happens
// to actually be aligned to 64 bytes at run time.
static_assert(&align32array[0] == __builtin_align_up(&align32array[0], 64), ""); // expected-error{{not an integral constant expression}}
// expected-note@-1{{cannot constant evaluate the result of adjusting alignment to 64}}
static_assert(__builtin_align_up(&align32array[0], 64) == __builtin_align_up(&align32array[0], 64), ""); // expected-error{{not an integral constant expression}}
// expected-note@-1{{cannot constant evaluate the result of adjusting alignment to 64}}
// However, we can compute in case the requested alignment is less than the
// base alignment:
static_assert(__builtin_align_up(&align32array[0], 4) == &align32array[0], "");
static_assert(__builtin_align_up(&align32array[1], 4) == &align32array[4], "");
static_assert(__builtin_align_up(&align32array[2], 4) == &align32array[4], "");
static_assert(__builtin_align_up(&align32array[3], 4) == &align32array[4], "");
static_assert(__builtin_align_up(&align32array[4], 4) == &align32array[4], "");
static_assert(__builtin_align_up(&align32array[5], 4) == &align32array[8], "");
static_assert(__builtin_align_up(&align32array[6], 4) == &align32array[8], "");
static_assert(__builtin_align_up(&align32array[7], 4) == &align32array[8], "");
static_assert(__builtin_align_up(&align32array[8], 4) == &align32array[8], "");
static_assert(__builtin_align_down(&align32array[0], 4) == &align32array[0], "");
static_assert(__builtin_align_down(&align32array[1], 4) == &align32array[0], "");
static_assert(__builtin_align_down(&align32array[2], 4) == &align32array[0], "");
static_assert(__builtin_align_down(&align32array[3], 4) == &align32array[0], "");
static_assert(__builtin_align_down(&align32array[4], 4) == &align32array[4], "");
static_assert(__builtin_align_down(&align32array[5], 4) == &align32array[4], "");
static_assert(__builtin_align_down(&align32array[6], 4) == &align32array[4], "");
static_assert(__builtin_align_down(&align32array[7], 4) == &align32array[4], "");
static_assert(__builtin_align_down(&align32array[8], 4) == &align32array[8], "");
// Achieving the same thing using casts to uintptr_t is not allowed:
static_assert((char *)((__UINTPTR_TYPE__)&align32array[7] & ~3) == &align32array[4], ""); // expected-error{{not an integral constant expression}}
static_assert(__builtin_align_down(&align32array[1], 4) == &align32array[0], "");
static_assert(__builtin_align_down(&align32array[1], 64) == &align32array[0], ""); // expected-error{{not an integral constant expression}}
// expected-note@-1{{cannot constant evaluate the result of adjusting alignment to 64}}
// Add some checks for __builtin_is_aligned:
static_assert(__builtin_is_aligned(&align32array[0], 32), "");
static_assert(__builtin_is_aligned(&align32array[4], 4), "");
// We cannot constant evaluate whether the array is aligned to > 32 since this
// may well be true at run time.
static_assert(!__builtin_is_aligned(&align32array[0], 64), ""); // expected-error{{not an integral constant expression}}
// expected-note@-1{{cannot constant evaluate whether run-time alignment is at least 64}}
// However, if the alignment being checked is less than the minimum alignment of
// the base object we can check the low bits of the alignment:
static_assert(__builtin_is_aligned(&align32array[0], 4), "");
static_assert(!__builtin_is_aligned(&align32array[1], 4), "");
static_assert(!__builtin_is_aligned(&align32array[2], 4), "");
static_assert(!__builtin_is_aligned(&align32array[3], 4), "");
static_assert(__builtin_is_aligned(&align32array[4], 4), "");
// TODO: this should evaluate to true even though we can't evaluate the result
// of __builtin_align_up() to a concrete value
static_assert(__builtin_is_aligned(__builtin_align_up(&align32array[0], 64), 64), ""); // expected-error{{not an integral constant expression}}
// expected-note@-1{{cannot constant evaluate the result of adjusting alignment to 64}}
// Check different source and alignment type widths are handled correctly.
static_assert(!__builtin_is_aligned(static_cast<signed long>(7), static_cast<signed short>(4)), "");
static_assert(!__builtin_is_aligned(static_cast<signed short>(7), static_cast<signed long>(4)), "");
// Also check signed -- unsigned mismatch.
static_assert(!__builtin_is_aligned(static_cast<signed long>(7), static_cast<signed long>(4)), "");
static_assert(!__builtin_is_aligned(static_cast<unsigned long>(7), static_cast<unsigned long>(4)), "");
static_assert(!__builtin_is_aligned(static_cast<signed long>(7), static_cast<unsigned long>(4)), "");
static_assert(!__builtin_is_aligned(static_cast<unsigned long>(7), static_cast<signed long>(4)), "");
static_assert(!__builtin_is_aligned(static_cast<signed long>(7), static_cast<unsigned short>(4)), "");
static_assert(!__builtin_is_aligned(static_cast<unsigned short>(7), static_cast<signed long>(4)), "");
// Check the diagnostic message
_Alignas(void) char align_void_array[1]; // expected-error {{invalid application of '_Alignas' to an incomplete type 'void'}}
|