1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299
|
// RUN: %clang_cc1 -std=c++23 -verify -fsyntax-only %s
template <typename T, typename U>
constexpr bool is_same = false;
template <typename T>
constexpr bool is_same<T, T> = true;
void f() {
int y;
static_assert(is_same<const int &,
decltype([x = 1] -> decltype((x)) { return x; }())>);
static_assert(is_same<int &,
decltype([x = 1] mutable -> decltype((x)) { return x; }())>);
static_assert(is_same<const int &,
decltype([=] -> decltype((y)) { return y; }())>);
static_assert(is_same<int &,
decltype([=] mutable -> decltype((y)) { return y; }())>);
static_assert(is_same<const int &,
decltype([=] -> decltype((y)) { return y; }())>);
static_assert(is_same<int &,
decltype([=] mutable -> decltype((y)) { return y; }())>);
auto ref = [&x = y](
decltype([&](decltype(x)) { return 0; }) y) {
return x;
};
}
void test_noexcept() {
int y;
static_assert(noexcept([x = 1] noexcept(is_same<const int &, decltype((x))>) {}()));
static_assert(noexcept([x = 1] mutable noexcept(is_same<int &, decltype((x))>) {}()));
static_assert(noexcept([y] noexcept(is_same<const int &, decltype((y))>) {}()));
static_assert(noexcept([y] mutable noexcept(is_same<int &, decltype((y))>) {}()));
static_assert(noexcept([=] noexcept(is_same<const int &, decltype((y))>) {}()));
static_assert(noexcept([=] mutable noexcept(is_same<int &, decltype((y))>) {}()));
static_assert(noexcept([&] noexcept(is_same<int &, decltype((y))>) {}()));
static_assert(noexcept([&] mutable noexcept(is_same<int &, decltype((y))>) {}()));
}
template<typename T>
void test_requires() {
int x;
[x = 1]() requires is_same<const int &, decltype((x))> {}
();
[x = 1]() mutable requires is_same<int &, decltype((x))> {}
();
[x]() requires is_same<const int &, decltype((x))> {}
();
[x]() mutable requires is_same<int &, decltype((x))> {}
();
[=]() requires is_same<const int &, decltype((x))> {}
();
[=]() mutable requires is_same<int &, decltype((x))> {}
();
[&]() requires is_same<int &, decltype((x))> {}
();
[&]() mutable requires is_same<int &, decltype((x))> {}
();
[&x]() requires is_same<int &, decltype((x))> {}
();
[&x]() mutable requires is_same<int &, decltype((x))> {}
();
[x = 1]() requires is_same<const int &, decltype((x))> {} ();
[x = 1]() mutable requires is_same<int &, decltype((x))> {} ();
}
void use() {
test_requires<int>();
}
void err() {
int y, z;
(void)[x = 1]<typename T>
requires(is_same<const int &, decltype((x))>) {};
(void)[x = 1]<typename T = decltype((x))>{};
(void)[=]<typename T = decltype((y))>{};
(void)[z]<typename T = decltype((z))>{};
}
void gnu_attributes() {
int y;
(void)[=]() __attribute__((diagnose_if(!is_same<decltype((y)), const int &>, "wrong type", "warning"))){}();
// expected-warning@-1 {{wrong type}} expected-note@-1{{'diagnose_if' attribute on 'operator()'}}
(void)[=]() __attribute__((diagnose_if(!is_same<decltype((y)), int &>, "wrong type", "warning"))){}();
(void)[=]() __attribute__((diagnose_if(!is_same<decltype((y)), int &>, "wrong type", "warning"))) mutable {}();
(void)[=]() __attribute__((diagnose_if(!is_same<decltype((y)), const int &>, "wrong type", "warning"))) mutable {}();
// expected-warning@-1 {{wrong type}} expected-note@-1{{'diagnose_if' attribute on 'operator()'}}
(void)[x=1]() __attribute__((diagnose_if(!is_same<decltype((x)), const int &>, "wrong type", "warning"))){}();
// expected-warning@-1 {{wrong type}} expected-note@-1{{'diagnose_if' attribute on 'operator()'}}
(void)[x=1]() __attribute__((diagnose_if(!is_same<decltype((x)), int &>, "wrong type", "warning"))){}();
(void)[x=1]() __attribute__((diagnose_if(!is_same<decltype((x)), int &>, "wrong type", "warning"))) mutable {}();
(void)[x=1]() __attribute__((diagnose_if(!is_same<decltype((x)), const int &>, "wrong type", "warning"))) mutable {}();
// expected-warning@-1 {{wrong type}} expected-note@-1{{'diagnose_if' attribute on 'operator()'}}
}
void nested() {
int x, y, z;
(void)[&](
decltype([&](
decltype([=](
decltype([&](
decltype([&](decltype(x)) {})) {})) {})) {})){};
(void)[&](
decltype([&](
decltype([&](
decltype([&](
decltype([&](decltype(y)) {})) {})) {})) {})){};
(void)[=](
decltype([=](
decltype([=](
decltype([=](
decltype([&]<decltype(z)> {})) {})) {})) {})){};
}
template <typename T, typename U>
void dependent(U&& u) {
[&]() requires is_same<decltype(u), T> {}();
}
template <typename T>
void dependent_init_capture(T x = 0) {
[ y = x + 1, x ]() mutable -> decltype(y + x)
requires(is_same<decltype((y)), int &>
&& is_same<decltype((x)), int &>) {
return y;
}
();
[ y = x + 1, x ]() -> decltype(y + x)
requires(is_same<decltype((y)), const int &>
&& is_same<decltype((x)), const int &>) {
return y;
}
();
}
template <typename T, typename...>
struct extract_type {
using type = T;
};
template <typename... T>
void dependent_variadic_capture(T... x) {
[... y = x, x... ](auto...) mutable -> typename extract_type<decltype(y)...>::type requires((is_same<decltype((y)), int &> && ...) && (is_same<decltype((x)), int &> && ...)) {
return 0;
}
(x...);
[... y = x, x... ](auto...) -> typename extract_type<decltype(y)...>::type requires((is_same<decltype((y)), const int &> && ...) && (is_same<decltype((x)), const int &> && ...)) {
return 0;
}
(x...);
}
void test_dependent() {
int v = 0;
int & r = v;
const int & cr = v;
dependent<int&>(v);
dependent<int&>(r);
dependent<const int&>(cr);
dependent_init_capture(0);
dependent_variadic_capture(1, 2, 3, 4);
}
void check_params() {
int i = 0;
int &j = i;
(void)[=](decltype((j)) jp, decltype((i)) ip) {
static_assert(is_same<const int&, decltype((j))>);
static_assert(is_same<const int &, decltype((i))>);
static_assert(is_same<int &, decltype((jp))>);
static_assert(is_same<int &, decltype((ip))>);
};
(void)[=](decltype((j)) jp, decltype((i)) ip) mutable {
static_assert(is_same<int &, decltype((j))>);
static_assert(is_same<int &, decltype((i))>);
static_assert(is_same<int &, decltype((jp))>);
static_assert(is_same<int &, decltype((ip))>);
static_assert(is_same<int &, decltype(jp)>);
static_assert(is_same<int &, decltype(ip)>);
};
(void)[a = 0](decltype((a)) ap) mutable {
static_assert(is_same<int &, decltype((a))>);
static_assert(is_same<int, decltype(a)>);
static_assert(is_same<int &, decltype(ap)>);
};
(void)[a = 0](decltype((a)) ap) {
static_assert(is_same<const int &, decltype((a))>);
static_assert(is_same<int, decltype(a)>);
static_assert(is_same<int&, decltype((ap))>);
};
}
template <typename T>
void check_params_tpl() {
T i = 0;
T &j = i;
(void)[=](decltype((j)) jp, decltype((i)) ip) {
static_assert(is_same<const int&, decltype((j))>);
static_assert(is_same<const int &, decltype((i))>);
static_assert(is_same<const int &, decltype((jp))>);
static_assert(is_same<const int &, decltype((ip))>);
};
(void)[=](decltype((j)) jp, decltype((i)) ip) mutable {
static_assert(is_same<int &, decltype((j))>);
static_assert(is_same<int &, decltype((i))>);
static_assert(is_same<int &, decltype((jp))>);
static_assert(is_same<int &, decltype((ip))>);
static_assert(is_same<int &, decltype(jp)>);
static_assert(is_same<int &, decltype(ip)>);
};
(void)[a = 0](decltype((a)) ap) mutable {
static_assert(is_same<int &, decltype((a))>);
static_assert(is_same<int, decltype(a)>);
static_assert(is_same<int &, decltype(ap)>);
};
(void)[a = 0](decltype((a)) ap) {
static_assert(is_same<const int &, decltype((a))>);
static_assert(is_same<int, decltype(a)>);
static_assert(is_same<int&, decltype((ap))>);
};
}
namespace GH61267 {
template <typename> concept C = true;
template<typename>
void f(int) {
int i;
[i]<C P>(P) {}(0);
i = 4;
}
void test() { f<int>(0); }
}
namespace GH65067 {
template <typename> class a {
public:
template <typename b> void c(b f) { d<int>(f)(0); }
template <typename, typename b> auto d(b f) {
return [f = f](auto arg) -> a<decltype(f(arg))> { return {}; };
}
};
a<void> e;
auto fn1() {
e.c([](int) {});
}
}
namespace GH63675 {
template <class _Tp> _Tp __declval();
struct __get_tag {
template <class _Tag> void operator()(_Tag);
};
template <class _ImplFn> struct __basic_sender {
using __tag_t = decltype(__declval<_ImplFn>()(__declval<__get_tag>()));
_ImplFn __impl_;
};
auto __make_basic_sender = []<class... _Children>(
_Children... __children) {
return __basic_sender{[... __children = __children]<class _Fun>(
_Fun __fun) -> decltype(__fun(__children...)) {}};
};
void __trans_tmp_1() {
__make_basic_sender(__trans_tmp_1);
}
}
|