1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174
|
// RUN: %clang_cc1 -std=c++2c -fsyntax-only -verify %s
namespace lambda_calls {
template <class>
concept True = true;
template <class>
concept False = false; // #False
template <class T> struct S {
template <class... U> using type = decltype([](U...) {}(U()...));
template <class U> using type2 = decltype([](auto) {}(1));
template <class U> using type3 = decltype([](True auto) {}(1));
template <class>
using type4 = decltype([](auto... pack) { return sizeof...(pack); }(1, 2));
template <class U> using type5 = decltype([](False auto...) {}(1)); // #Type5
template <class U>
using type6 = decltype([]<True> {}.template operator()<char>());
template <class U>
using type7 = decltype([]<False> {}.template operator()<char>()); // #Type7
template <class U>
using type8 = decltype([]() // #Type8
requires(sizeof(U) == 32) // #Type8-requirement
{}());
template <class... U>
using type9 = decltype([]<True>(U...) {}.template operator()<char>(U()...));
// https://github.com/llvm/llvm-project/issues/76674
template <class U>
using type10 = decltype([]<class V> { return V(); }.template operator()<U>());
template <class U> using type11 = decltype([] { return U{}; });
};
template <class> using Meow = decltype([]<True> {}.template operator()<int>());
template <class... U>
using MeowMeow = decltype([]<True>(U...) {}.template operator()<char>(U()...));
// https://github.com/llvm/llvm-project/issues/70601
template <class> using U = decltype([]<True> {}.template operator()<int>());
U<int> foo();
void bar() {
using T = S<int>::type<int, int, int>;
using T2 = S<int>::type2<int>;
using T3 = S<int>::type3<char>;
using T4 = S<int>::type4<void>;
using T5 = S<int>::type5<void>; // #T5
// expected-error@#Type5 {{no matching function for call}}
// expected-note@#T5 {{type alias 'type5' requested here}}
// expected-note@#Type5 {{constraints not satisfied [with auto:1 = <int>]}}
// expected-note@#Type5 {{because 'int' does not satisfy 'False'}}
// expected-note@#False {{because 'false' evaluated to false}}
using T6 = S<int>::type6<void>;
using T7 = S<int>::type7<void>; // #T7
// expected-error@#Type7 {{no matching member function for call}}
// expected-note@#T7 {{type alias 'type7' requested here}}
// expected-note@#Type7 {{constraints not satisfied [with $0 = char]}}
// expected-note@#Type7 {{because 'char' does not satisfy 'False'}}
// expected-note@#False {{because 'false' evaluated to false}}
using T8 = S<int>::type8<char>; // #T8
// expected-error@#Type8 {{no matching function for call}}
// expected-note@#T8 {{type alias 'type8' requested here}}
// expected-note@#Type8 {{constraints not satisfied}}
// expected-note@#Type8-requirement {{because 'sizeof(char) == 32' (1 == 32) evaluated to false}}
using T9 = S<int>::type9<long, long, char>;
using T10 = S<int>::type10<int>;
using T11 = S<int>::type11<int>;
int x = T11()();
using T12 = Meow<int>;
using T13 = MeowMeow<char, int, long, unsigned>;
static_assert(__is_same(T, void));
static_assert(__is_same(T2, void));
static_assert(__is_same(T3, void));
static_assert(__is_same(T4, decltype(sizeof(0))));
static_assert(__is_same(T6, void));
static_assert(__is_same(T9, void));
static_assert(__is_same(T10, int));
static_assert(__is_same(T12, void));
static_assert(__is_same(T13, void));
}
namespace GH82104 {
template <typename, typename... D> constexpr int Value = sizeof...(D);
template <typename T, typename... U>
using T14 = decltype([]<int V = 0>(auto Param) {
return Value<T, U...> + V + (int)sizeof(Param);
}("hello"));
template <typename T> using T15 = T14<T, T>;
static_assert(__is_same(T15<char>, int));
// FIXME: This still crashes because we can't extract template arguments T and U
// outside of the instantiation context of T16.
#if 0
template <typename T, typename... U>
using T16 = decltype([](auto Param) requires (sizeof(Param) != 1 && sizeof...(U) > 0) {
return Value<T, U...> + sizeof(Param);
});
static_assert(T16<int, char, float>()(42) == 2 + sizeof(42));
#endif
} // namespace GH82104
namespace GH89853 {
template <typename = void>
static constexpr auto innocuous = []<int m> { return m; };
template <auto Pred = innocuous<>>
using broken = decltype(Pred.template operator()<42>());
broken<> *boom;
template <auto Pred =
[]<char c> {
(void)static_cast<char>(c);
}>
using broken2 = decltype(Pred.template operator()<42>());
broken2<> *boom2;
template <auto Pred = []<char m> { return m; }>
using broken3 = decltype(Pred.template operator()<42>());
broken3<> *boom3;
static constexpr auto non_default = []<char c>(True auto) {
(void) static_cast<char>(c);
};
template<True auto Pred>
using broken4 = decltype(Pred.template operator()<42>(Pred));
broken4<non_default>* boom4;
} // namespace GH89853
namespace GH105885 {
template<int>
using test = decltype([](auto...) {
}());
static_assert(__is_same(test<0>, void));
} // namespace GH105885
namespace GH102760 {
auto make_tuple = []< class Tag, class... Captures>(Tag, Captures...) {
return []< class _Fun >( _Fun) -> void requires requires { 0; }
{};
};
template < class, class... _As >
using Result = decltype(make_tuple(0)(_As{}...));
using T = Result<int, int>;
} // namespace GH102760
} // namespace lambda_calls
|