File: SolverTest.h

package info (click to toggle)
llvm-toolchain-19 1%3A19.1.7-3
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 1,998,520 kB
  • sloc: cpp: 6,951,680; ansic: 1,486,157; asm: 913,598; python: 232,024; f90: 80,126; objc: 75,281; lisp: 37,276; pascal: 16,990; sh: 10,009; ml: 5,058; perl: 4,724; awk: 3,523; makefile: 3,167; javascript: 2,504; xml: 892; fortran: 664; cs: 573
file content (383 lines) | stat: -rw-r--r-- 10,985 bytes parent folder | download | duplicates (7)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
//===--- SolverTest.h - Type-parameterized test for solvers ---------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//

#ifndef LLVM_CLANG_ANALYSIS_FLOW_SENSITIVE_SOLVER_TEST_H_
#define LLVM_CLANG_ANALYSIS_FLOW_SENSITIVE_SOLVER_TEST_H_

#include "TestingSupport.h"
#include "clang/Analysis/FlowSensitive/Solver.h"
#include "gmock/gmock.h"
#include "gtest/gtest.h"

namespace clang::dataflow::test {

namespace {

constexpr auto AssignedTrue = Solver::Result::Assignment::AssignedTrue;
constexpr auto AssignedFalse = Solver::Result::Assignment::AssignedFalse;

using testing::_;
using testing::AnyOf;
using testing::Pair;
using testing::UnorderedElementsAre;

} // namespace

/// Type-parameterized test for implementations of the `Solver` interface.
/// To use:
/// 1.  Implement a specialization of `createSolverWithLowTimeout()` for the
///     solver you want to test.
/// 2.  Instantiate the test suite for the solver you want to test using
///     `INSTANTIATE_TYPED_TEST_SUITE_P()`.
/// See WatchedLiteralsSolverTest.cpp for an example.
template <typename SolverT> class SolverTest : public ::testing::Test {
protected:
  // Checks if the conjunction of `Vals` is satisfiable and returns the
  // corresponding result.
  Solver::Result solve(llvm::ArrayRef<const Formula *> Vals) {
    return SolverT().solve(Vals);
  }

  // Create a specialization for the solver type to test.
  SolverT createSolverWithLowTimeout();
};

TYPED_TEST_SUITE_P(SolverTest);

MATCHER(unsat, "") {
  return arg.getStatus() == Solver::Result::Status::Unsatisfiable;
}

MATCHER_P(sat, SolutionMatcher,
          "is satisfiable, where solution " +
              (testing::DescribeMatcher<
                  llvm::DenseMap<Atom, Solver::Result::Assignment>>(
                  SolutionMatcher))) {
  if (arg.getStatus() != Solver::Result::Status::Satisfiable)
    return false;
  auto Solution = *arg.getSolution();
  return testing::ExplainMatchResult(SolutionMatcher, Solution,
                                     result_listener);
}

TYPED_TEST_P(SolverTest, Var) {
  ConstraintContext Ctx;
  auto X = Ctx.atom();

  // X
  EXPECT_THAT(this->solve({X}),
              sat(UnorderedElementsAre(Pair(X->getAtom(), AssignedTrue))));
}

TYPED_TEST_P(SolverTest, NegatedVar) {
  ConstraintContext Ctx;
  auto X = Ctx.atom();
  auto NotX = Ctx.neg(X);

  // !X
  EXPECT_THAT(this->solve({NotX}),
              sat(UnorderedElementsAre(Pair(X->getAtom(), AssignedFalse))));
}

TYPED_TEST_P(SolverTest, UnitConflict) {
  ConstraintContext Ctx;
  auto X = Ctx.atom();
  auto NotX = Ctx.neg(X);

  // X ^ !X
  EXPECT_THAT(this->solve({X, NotX}), unsat());
}

TYPED_TEST_P(SolverTest, DistinctVars) {
  ConstraintContext Ctx;
  auto X = Ctx.atom();
  auto Y = Ctx.atom();
  auto NotY = Ctx.neg(Y);

  // X ^ !Y
  EXPECT_THAT(this->solve({X, NotY}),
              sat(UnorderedElementsAre(Pair(X->getAtom(), AssignedTrue),
                                       Pair(Y->getAtom(), AssignedFalse))));
}

TYPED_TEST_P(SolverTest, DoubleNegation) {
  ConstraintContext Ctx;
  auto X = Ctx.atom();
  auto NotX = Ctx.neg(X);
  auto NotNotX = Ctx.neg(NotX);

  // !!X ^ !X
  EXPECT_THAT(this->solve({NotNotX, NotX}), unsat());
}

TYPED_TEST_P(SolverTest, NegatedDisjunction) {
  ConstraintContext Ctx;
  auto X = Ctx.atom();
  auto Y = Ctx.atom();
  auto XOrY = Ctx.disj(X, Y);
  auto NotXOrY = Ctx.neg(XOrY);

  // !(X v Y) ^ (X v Y)
  EXPECT_THAT(this->solve({NotXOrY, XOrY}), unsat());
}

TYPED_TEST_P(SolverTest, NegatedConjunction) {
  ConstraintContext Ctx;
  auto X = Ctx.atom();
  auto Y = Ctx.atom();
  auto XAndY = Ctx.conj(X, Y);
  auto NotXAndY = Ctx.neg(XAndY);

  // !(X ^ Y) ^ (X ^ Y)
  EXPECT_THAT(this->solve({NotXAndY, XAndY}), unsat());
}

TYPED_TEST_P(SolverTest, DisjunctionSameVarWithNegation) {
  ConstraintContext Ctx;
  auto X = Ctx.atom();
  auto NotX = Ctx.neg(X);
  auto XOrNotX = Ctx.disj(X, NotX);

  // X v !X
  EXPECT_THAT(this->solve({XOrNotX}), sat(_));
}

TYPED_TEST_P(SolverTest, DisjunctionSameVar) {
  ConstraintContext Ctx;
  auto X = Ctx.atom();
  auto XOrX = Ctx.disj(X, X);

  // X v X
  EXPECT_THAT(this->solve({XOrX}), sat(_));
}

TYPED_TEST_P(SolverTest, ConjunctionSameVarsConflict) {
  ConstraintContext Ctx;
  auto X = Ctx.atom();
  auto NotX = Ctx.neg(X);
  auto XAndNotX = Ctx.conj(X, NotX);

  // X ^ !X
  EXPECT_THAT(this->solve({XAndNotX}), unsat());
}

TYPED_TEST_P(SolverTest, ConjunctionSameVar) {
  ConstraintContext Ctx;
  auto X = Ctx.atom();
  auto XAndX = Ctx.conj(X, X);

  // X ^ X
  EXPECT_THAT(this->solve({XAndX}), sat(_));
}

TYPED_TEST_P(SolverTest, PureVar) {
  ConstraintContext Ctx;
  auto X = Ctx.atom();
  auto Y = Ctx.atom();
  auto NotX = Ctx.neg(X);
  auto NotXOrY = Ctx.disj(NotX, Y);
  auto NotY = Ctx.neg(Y);
  auto NotXOrNotY = Ctx.disj(NotX, NotY);

  // (!X v Y) ^ (!X v !Y)
  EXPECT_THAT(this->solve({NotXOrY, NotXOrNotY}),
              sat(UnorderedElementsAre(Pair(X->getAtom(), AssignedFalse),
                                       Pair(Y->getAtom(), _))));
}

TYPED_TEST_P(SolverTest, MustAssumeVarIsFalse) {
  ConstraintContext Ctx;
  auto X = Ctx.atom();
  auto Y = Ctx.atom();
  auto XOrY = Ctx.disj(X, Y);
  auto NotX = Ctx.neg(X);
  auto NotXOrY = Ctx.disj(NotX, Y);
  auto NotY = Ctx.neg(Y);
  auto NotXOrNotY = Ctx.disj(NotX, NotY);

  // (X v Y) ^ (!X v Y) ^ (!X v !Y)
  EXPECT_THAT(this->solve({XOrY, NotXOrY, NotXOrNotY}),
              sat(UnorderedElementsAre(Pair(X->getAtom(), AssignedFalse),
                                       Pair(Y->getAtom(), AssignedTrue))));
}

TYPED_TEST_P(SolverTest, DeepConflict) {
  ConstraintContext Ctx;
  auto X = Ctx.atom();
  auto Y = Ctx.atom();
  auto XOrY = Ctx.disj(X, Y);
  auto NotX = Ctx.neg(X);
  auto NotXOrY = Ctx.disj(NotX, Y);
  auto NotY = Ctx.neg(Y);
  auto NotXOrNotY = Ctx.disj(NotX, NotY);
  auto XOrNotY = Ctx.disj(X, NotY);

  // (X v Y) ^ (!X v Y) ^ (!X v !Y) ^ (X v !Y)
  EXPECT_THAT(this->solve({XOrY, NotXOrY, NotXOrNotY, XOrNotY}), unsat());
}

TYPED_TEST_P(SolverTest, IffIsEquivalentToDNF) {
  ConstraintContext Ctx;
  auto X = Ctx.atom();
  auto Y = Ctx.atom();
  auto NotX = Ctx.neg(X);
  auto NotY = Ctx.neg(Y);
  auto XIffY = Ctx.iff(X, Y);
  auto XIffYDNF = Ctx.disj(Ctx.conj(X, Y), Ctx.conj(NotX, NotY));
  auto NotEquivalent = Ctx.neg(Ctx.iff(XIffY, XIffYDNF));

  // !((X <=> Y) <=> ((X ^ Y) v (!X ^ !Y)))
  EXPECT_THAT(this->solve({NotEquivalent}), unsat());
}

TYPED_TEST_P(SolverTest, IffSameVars) {
  ConstraintContext Ctx;
  auto X = Ctx.atom();
  auto XEqX = Ctx.iff(X, X);

  // X <=> X
  EXPECT_THAT(this->solve({XEqX}), sat(_));
}

TYPED_TEST_P(SolverTest, IffDistinctVars) {
  ConstraintContext Ctx;
  auto X = Ctx.atom();
  auto Y = Ctx.atom();
  auto XEqY = Ctx.iff(X, Y);

  // X <=> Y
  EXPECT_THAT(
      this->solve({XEqY}),
      sat(AnyOf(UnorderedElementsAre(Pair(X->getAtom(), AssignedTrue),
                                     Pair(Y->getAtom(), AssignedTrue)),
                UnorderedElementsAre(Pair(X->getAtom(), AssignedFalse),
                                     Pair(Y->getAtom(), AssignedFalse)))));
}

TYPED_TEST_P(SolverTest, IffWithUnits) {
  ConstraintContext Ctx;
  auto X = Ctx.atom();
  auto Y = Ctx.atom();
  auto XEqY = Ctx.iff(X, Y);

  // (X <=> Y) ^ X ^ Y
  EXPECT_THAT(this->solve({XEqY, X, Y}),
              sat(UnorderedElementsAre(Pair(X->getAtom(), AssignedTrue),
                                       Pair(Y->getAtom(), AssignedTrue))));
}

TYPED_TEST_P(SolverTest, IffWithUnitsConflict) {
  Arena A;
  auto Constraints = parseFormulas(A, R"(
     (V0 = V1)
     V0
     !V1
  )");
  EXPECT_THAT(this->solve(Constraints), unsat());
}

TYPED_TEST_P(SolverTest, IffTransitiveConflict) {
  Arena A;
  auto Constraints = parseFormulas(A, R"(
     (V0 = V1)
     (V1 = V2)
     V2
     !V0
  )");
  EXPECT_THAT(this->solve(Constraints), unsat());
}

TYPED_TEST_P(SolverTest, DeMorgan) {
  Arena A;
  auto Constraints = parseFormulas(A, R"(
     (!(V0 | V1) = (!V0 & !V1))
     (!(V2 & V3) = (!V2 | !V3))
  )");
  EXPECT_THAT(this->solve(Constraints), sat(_));
}

TYPED_TEST_P(SolverTest, RespectsAdditionalConstraints) {
  Arena A;
  auto Constraints = parseFormulas(A, R"(
     (V0 = V1)
     V0
     !V1
  )");
  EXPECT_THAT(this->solve(Constraints), unsat());
}

TYPED_TEST_P(SolverTest, ImplicationIsEquivalentToDNF) {
  Arena A;
  auto Constraints = parseFormulas(A, R"(
     !((V0 => V1) = (!V0 | V1))
  )");
  EXPECT_THAT(this->solve(Constraints), unsat());
}

TYPED_TEST_P(SolverTest, ImplicationConflict) {
  Arena A;
  auto Constraints = parseFormulas(A, R"(
     (V0 => V1)
     (V0 & !V1)
  )");
  EXPECT_THAT(this->solve(Constraints), unsat());
}

TYPED_TEST_P(SolverTest, ReachedLimitsReflectsTimeouts) {
  Arena A;
  auto Constraints = parseFormulas(A, R"(
     (!(V0 | V1) = (!V0 & !V1))
     (!(V2 & V3) = (!V2 & !V3))
  )");
  TypeParam solver = this->createSolverWithLowTimeout();
  ASSERT_EQ(solver.solve(Constraints).getStatus(),
            Solver::Result::Status::TimedOut);
  EXPECT_TRUE(solver.reachedLimit());
}

TYPED_TEST_P(SolverTest, SimpleButLargeContradiction) {
  // This test ensures that the solver takes a short-cut on known
  // contradictory inputs, without using max_iterations. At the time
  // this test is added, formulas that are easily recognized to be
  // contradictory at CNF construction time would lead to timeout.
  TypeParam solver = this->createSolverWithLowTimeout();
  ConstraintContext Ctx;
  auto first = Ctx.atom();
  auto last = first;
  for (int i = 1; i < 10000; ++i) {
    last = Ctx.conj(last, Ctx.atom());
  }
  last = Ctx.conj(Ctx.neg(first), last);
  ASSERT_EQ(solver.solve({last}).getStatus(),
            Solver::Result::Status::Unsatisfiable);
  EXPECT_FALSE(solver.reachedLimit());

  first = Ctx.atom();
  last = Ctx.neg(first);
  for (int i = 1; i < 10000; ++i) {
    last = Ctx.conj(last, Ctx.neg(Ctx.atom()));
  }
  last = Ctx.conj(first, last);
  ASSERT_EQ(solver.solve({last}).getStatus(),
            Solver::Result::Status::Unsatisfiable);
  EXPECT_FALSE(solver.reachedLimit());
}

REGISTER_TYPED_TEST_SUITE_P(
    SolverTest, Var, NegatedVar, UnitConflict, DistinctVars, DoubleNegation,
    NegatedDisjunction, NegatedConjunction, DisjunctionSameVarWithNegation,
    DisjunctionSameVar, ConjunctionSameVarsConflict, ConjunctionSameVar,
    PureVar, MustAssumeVarIsFalse, DeepConflict, IffIsEquivalentToDNF,
    IffSameVars, IffDistinctVars, IffWithUnits, IffWithUnitsConflict,
    IffTransitiveConflict, DeMorgan, RespectsAdditionalConstraints,
    ImplicationIsEquivalentToDNF, ImplicationConflict,
    ReachedLimitsReflectsTimeouts, SimpleButLargeContradiction);

} // namespace clang::dataflow::test

#endif // LLVM_CLANG_ANALYSIS_FLOW_SENSITIVE_TESTING_SUPPORT_H_