1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384
|
//===- unittests/Interpreter/InterpreterTest.cpp --- Interpreter tests ----===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// Unit tests for Clang's Interpreter library.
//
//===----------------------------------------------------------------------===//
#include "InterpreterTestFixture.h"
#include "clang/AST/Decl.h"
#include "clang/AST/DeclGroup.h"
#include "clang/AST/Mangle.h"
#include "clang/Frontend/CompilerInstance.h"
#include "clang/Frontend/TextDiagnosticPrinter.h"
#include "clang/Interpreter/Interpreter.h"
#include "clang/Interpreter/Value.h"
#include "clang/Sema/Lookup.h"
#include "clang/Sema/Sema.h"
#include "gmock/gmock.h"
#include "gtest/gtest.h"
using namespace clang;
int Global = 42;
// JIT reports symbol not found on Windows without the visibility attribute.
REPL_EXTERNAL_VISIBILITY int getGlobal() { return Global; }
REPL_EXTERNAL_VISIBILITY void setGlobal(int val) { Global = val; }
namespace {
class InterpreterTest : public InterpreterTestBase {
// TODO: Collect common variables and utility functions here
};
using Args = std::vector<const char *>;
static std::unique_ptr<Interpreter>
createInterpreter(const Args &ExtraArgs = {},
DiagnosticConsumer *Client = nullptr) {
Args ClangArgs = {"-Xclang", "-emit-llvm-only"};
ClangArgs.insert(ClangArgs.end(), ExtraArgs.begin(), ExtraArgs.end());
auto CB = clang::IncrementalCompilerBuilder();
CB.SetCompilerArgs(ClangArgs);
auto CI = cantFail(CB.CreateCpp());
if (Client)
CI->getDiagnostics().setClient(Client, /*ShouldOwnClient=*/false);
return cantFail(clang::Interpreter::create(std::move(CI)));
}
static size_t DeclsSize(TranslationUnitDecl *PTUDecl) {
return std::distance(PTUDecl->decls().begin(), PTUDecl->decls().end());
}
TEST_F(InterpreterTest, Sanity) {
std::unique_ptr<Interpreter> Interp = createInterpreter();
using PTU = PartialTranslationUnit;
PTU &R1(cantFail(Interp->Parse("void g(); void g() {}")));
EXPECT_EQ(2U, DeclsSize(R1.TUPart));
PTU &R2(cantFail(Interp->Parse("int i;")));
EXPECT_EQ(1U, DeclsSize(R2.TUPart));
}
static std::string DeclToString(Decl *D) {
return llvm::cast<NamedDecl>(D)->getQualifiedNameAsString();
}
TEST_F(InterpreterTest, IncrementalInputTopLevelDecls) {
std::unique_ptr<Interpreter> Interp = createInterpreter();
auto R1 = Interp->Parse("int var1 = 42; int f() { return var1; }");
// gtest doesn't expand into explicit bool conversions.
EXPECT_TRUE(!!R1);
auto R1DeclRange = R1->TUPart->decls();
EXPECT_EQ(2U, DeclsSize(R1->TUPart));
EXPECT_EQ("var1", DeclToString(*R1DeclRange.begin()));
EXPECT_EQ("f", DeclToString(*(++R1DeclRange.begin())));
auto R2 = Interp->Parse("int var2 = f();");
EXPECT_TRUE(!!R2);
auto R2DeclRange = R2->TUPart->decls();
EXPECT_EQ(1U, DeclsSize(R2->TUPart));
EXPECT_EQ("var2", DeclToString(*R2DeclRange.begin()));
}
TEST_F(InterpreterTest, Errors) {
Args ExtraArgs = {"-Xclang", "-diagnostic-log-file", "-Xclang", "-"};
// Create the diagnostic engine with unowned consumer.
std::string DiagnosticOutput;
llvm::raw_string_ostream DiagnosticsOS(DiagnosticOutput);
auto DiagPrinter = std::make_unique<TextDiagnosticPrinter>(
DiagnosticsOS, new DiagnosticOptions());
auto Interp = createInterpreter(ExtraArgs, DiagPrinter.get());
auto Err = Interp->Parse("intentional_error v1 = 42; ").takeError();
using ::testing::HasSubstr;
EXPECT_THAT(DiagnosticOutput,
HasSubstr("error: unknown type name 'intentional_error'"));
EXPECT_EQ("Parsing failed.", llvm::toString(std::move(Err)));
auto RecoverErr = Interp->Parse("int var1 = 42;");
EXPECT_TRUE(!!RecoverErr);
}
// Here we test whether the user can mix declarations and statements. The
// interpreter should be smart enough to recognize the declarations from the
// statements and wrap the latter into a declaration, producing valid code.
TEST_F(InterpreterTest, DeclsAndStatements) {
Args ExtraArgs = {"-Xclang", "-diagnostic-log-file", "-Xclang", "-"};
// Create the diagnostic engine with unowned consumer.
std::string DiagnosticOutput;
llvm::raw_string_ostream DiagnosticsOS(DiagnosticOutput);
auto DiagPrinter = std::make_unique<TextDiagnosticPrinter>(
DiagnosticsOS, new DiagnosticOptions());
auto Interp = createInterpreter(ExtraArgs, DiagPrinter.get());
auto R1 = Interp->Parse(
"int var1 = 42; extern \"C\" int printf(const char*, ...);");
// gtest doesn't expand into explicit bool conversions.
EXPECT_TRUE(!!R1);
auto *PTU1 = R1->TUPart;
EXPECT_EQ(2U, DeclsSize(PTU1));
auto R2 = Interp->Parse("var1++; printf(\"var1 value %d\\n\", var1);");
EXPECT_TRUE(!!R2);
}
TEST_F(InterpreterTest, UndoCommand) {
Args ExtraArgs = {"-Xclang", "-diagnostic-log-file", "-Xclang", "-"};
// Create the diagnostic engine with unowned consumer.
std::string DiagnosticOutput;
llvm::raw_string_ostream DiagnosticsOS(DiagnosticOutput);
auto DiagPrinter = std::make_unique<TextDiagnosticPrinter>(
DiagnosticsOS, new DiagnosticOptions());
auto Interp = createInterpreter(ExtraArgs, DiagPrinter.get());
// Fail to undo.
auto Err1 = Interp->Undo();
EXPECT_EQ("Operation failed. Too many undos",
llvm::toString(std::move(Err1)));
auto Err2 = Interp->Parse("int foo = 42;");
EXPECT_TRUE(!!Err2);
auto Err3 = Interp->Undo(2);
EXPECT_EQ("Operation failed. Too many undos",
llvm::toString(std::move(Err3)));
// Succeed to undo.
auto Err4 = Interp->Parse("int x = 42;");
EXPECT_TRUE(!!Err4);
auto Err5 = Interp->Undo();
EXPECT_FALSE(Err5);
auto Err6 = Interp->Parse("int x = 24;");
EXPECT_TRUE(!!Err6);
auto Err7 = Interp->Parse("#define X 42");
EXPECT_TRUE(!!Err7);
auto Err8 = Interp->Undo();
EXPECT_FALSE(Err8);
auto Err9 = Interp->Parse("#define X 24");
EXPECT_TRUE(!!Err9);
// Undo input contains errors.
auto Err10 = Interp->Parse("int y = ;");
EXPECT_FALSE(!!Err10);
EXPECT_EQ("Parsing failed.", llvm::toString(Err10.takeError()));
auto Err11 = Interp->Parse("int y = 42;");
EXPECT_TRUE(!!Err11);
auto Err12 = Interp->Undo();
EXPECT_FALSE(Err12);
}
static std::string MangleName(NamedDecl *ND) {
ASTContext &C = ND->getASTContext();
std::unique_ptr<MangleContext> MangleC(C.createMangleContext());
std::string mangledName;
llvm::raw_string_ostream RawStr(mangledName);
MangleC->mangleName(ND, RawStr);
return mangledName;
}
TEST_F(InterpreterTest, FindMangledNameSymbol) {
std::unique_ptr<Interpreter> Interp = createInterpreter();
auto &PTU(cantFail(Interp->Parse("int f(const char*) {return 0;}")));
EXPECT_EQ(1U, DeclsSize(PTU.TUPart));
auto R1DeclRange = PTU.TUPart->decls();
NamedDecl *FD = cast<FunctionDecl>(*R1DeclRange.begin());
// Lower the PTU
if (llvm::Error Err = Interp->Execute(PTU)) {
// We cannot execute on the platform.
consumeError(std::move(Err));
return;
}
std::string MangledName = MangleName(FD);
auto Addr = Interp->getSymbolAddress(MangledName);
EXPECT_FALSE(!Addr);
EXPECT_NE(0U, Addr->getValue());
GlobalDecl GD(FD);
EXPECT_EQ(*Addr, cantFail(Interp->getSymbolAddress(GD)));
cantFail(
Interp->ParseAndExecute("extern \"C\" int printf(const char*,...);"));
Addr = Interp->getSymbolAddress("printf");
EXPECT_FALSE(!Addr);
// FIXME: Re-enable when we investigate the way we handle dllimports on Win.
#ifndef _WIN32
EXPECT_EQ((uintptr_t)&printf, Addr->getValue());
#endif // _WIN32
}
static Value AllocateObject(TypeDecl *TD, Interpreter &Interp) {
std::string Name = TD->getQualifiedNameAsString();
Value Addr;
// FIXME: Consider providing an option in clang::Value to take ownership of
// the memory created from the interpreter.
// cantFail(Interp.ParseAndExecute("new " + Name + "()", &Addr));
// The lifetime of the temporary is extended by the clang::Value.
cantFail(Interp.ParseAndExecute(Name + "()", &Addr));
return Addr;
}
static NamedDecl *LookupSingleName(Interpreter &Interp, const char *Name) {
Sema &SemaRef = Interp.getCompilerInstance()->getSema();
ASTContext &C = SemaRef.getASTContext();
DeclarationName DeclName = &C.Idents.get(Name);
LookupResult R(SemaRef, DeclName, SourceLocation(), Sema::LookupOrdinaryName);
SemaRef.LookupName(R, SemaRef.TUScope);
assert(!R.empty());
return R.getFoundDecl();
}
TEST_F(InterpreterTest, InstantiateTemplate) {
// FIXME: We cannot yet handle delayed template parsing. If we run with
// -fdelayed-template-parsing we try adding the newly created decl to the
// active PTU which causes an assert.
std::vector<const char *> Args = {"-fno-delayed-template-parsing"};
std::unique_ptr<Interpreter> Interp = createInterpreter(Args);
llvm::cantFail(Interp->Parse("extern \"C\" int printf(const char*,...);"
"class A {};"
"struct B {"
" template<typename T>"
" static int callme(T) { return 42; }"
"};"));
auto &PTU = llvm::cantFail(Interp->Parse("auto _t = &B::callme<A*>;"));
auto PTUDeclRange = PTU.TUPart->decls();
EXPECT_EQ(1, std::distance(PTUDeclRange.begin(), PTUDeclRange.end()));
// Lower the PTU
if (llvm::Error Err = Interp->Execute(PTU)) {
// We cannot execute on the platform.
consumeError(std::move(Err));
return;
}
TypeDecl *TD = cast<TypeDecl>(LookupSingleName(*Interp, "A"));
Value NewA = AllocateObject(TD, *Interp);
// Find back the template specialization
VarDecl *VD = static_cast<VarDecl *>(*PTUDeclRange.begin());
UnaryOperator *UO = llvm::cast<UnaryOperator>(VD->getInit());
NamedDecl *TmpltSpec = llvm::cast<DeclRefExpr>(UO->getSubExpr())->getDecl();
std::string MangledName = MangleName(TmpltSpec);
typedef int (*TemplateSpecFn)(void *);
auto fn =
cantFail(Interp->getSymbolAddress(MangledName)).toPtr<TemplateSpecFn>();
EXPECT_EQ(42, fn(NewA.getPtr()));
}
TEST_F(InterpreterTest, Value) {
std::vector<const char *> Args = {"-fno-sized-deallocation"};
std::unique_ptr<Interpreter> Interp = createInterpreter(Args);
Value V1;
llvm::cantFail(Interp->ParseAndExecute("int x = 42;"));
llvm::cantFail(Interp->ParseAndExecute("x", &V1));
EXPECT_TRUE(V1.isValid());
EXPECT_TRUE(V1.hasValue());
EXPECT_EQ(V1.getInt(), 42);
EXPECT_EQ(V1.convertTo<int>(), 42);
EXPECT_TRUE(V1.getType()->isIntegerType());
EXPECT_EQ(V1.getKind(), Value::K_Int);
EXPECT_FALSE(V1.isManuallyAlloc());
Value V1b;
llvm::cantFail(Interp->ParseAndExecute("char c = 42;"));
llvm::cantFail(Interp->ParseAndExecute("c", &V1b));
EXPECT_TRUE(V1b.getKind() == Value::K_Char_S ||
V1b.getKind() == Value::K_Char_U);
Value V2;
llvm::cantFail(Interp->ParseAndExecute("double y = 3.14;"));
llvm::cantFail(Interp->ParseAndExecute("y", &V2));
EXPECT_TRUE(V2.isValid());
EXPECT_TRUE(V2.hasValue());
EXPECT_EQ(V2.getDouble(), 3.14);
EXPECT_EQ(V2.convertTo<double>(), 3.14);
EXPECT_TRUE(V2.getType()->isFloatingType());
EXPECT_EQ(V2.getKind(), Value::K_Double);
EXPECT_FALSE(V2.isManuallyAlloc());
Value V3;
llvm::cantFail(Interp->ParseAndExecute(
"struct S { int* p; S() { p = new int(42); } ~S() { delete p; }};"));
llvm::cantFail(Interp->ParseAndExecute("S{}", &V3));
EXPECT_TRUE(V3.isValid());
EXPECT_TRUE(V3.hasValue());
EXPECT_TRUE(V3.getType()->isRecordType());
EXPECT_EQ(V3.getKind(), Value::K_PtrOrObj);
EXPECT_TRUE(V3.isManuallyAlloc());
Value V4;
llvm::cantFail(Interp->ParseAndExecute("int getGlobal();"));
llvm::cantFail(Interp->ParseAndExecute("void setGlobal(int);"));
llvm::cantFail(Interp->ParseAndExecute("getGlobal()", &V4));
EXPECT_EQ(V4.getInt(), 42);
EXPECT_TRUE(V4.getType()->isIntegerType());
Value V5;
// Change the global from the compiled code.
setGlobal(43);
llvm::cantFail(Interp->ParseAndExecute("getGlobal()", &V5));
EXPECT_EQ(V5.getInt(), 43);
EXPECT_TRUE(V5.getType()->isIntegerType());
// Change the global from the interpreted code.
llvm::cantFail(Interp->ParseAndExecute("setGlobal(44);"));
EXPECT_EQ(getGlobal(), 44);
Value V6;
llvm::cantFail(Interp->ParseAndExecute("void foo() {}"));
llvm::cantFail(Interp->ParseAndExecute("foo()", &V6));
EXPECT_TRUE(V6.isValid());
EXPECT_FALSE(V6.hasValue());
EXPECT_TRUE(V6.getType()->isVoidType());
EXPECT_EQ(V6.getKind(), Value::K_Void);
EXPECT_FALSE(V2.isManuallyAlloc());
Value V7;
llvm::cantFail(Interp->ParseAndExecute("foo", &V7));
EXPECT_TRUE(V7.isValid());
EXPECT_TRUE(V7.hasValue());
EXPECT_TRUE(V7.getType()->isFunctionProtoType());
EXPECT_EQ(V7.getKind(), Value::K_PtrOrObj);
EXPECT_FALSE(V7.isManuallyAlloc());
Value V8;
llvm::cantFail(Interp->ParseAndExecute("struct SS{ void f() {} };"));
llvm::cantFail(Interp->ParseAndExecute("&SS::f", &V8));
EXPECT_TRUE(V8.isValid());
EXPECT_TRUE(V8.hasValue());
EXPECT_TRUE(V8.getType()->isMemberFunctionPointerType());
EXPECT_EQ(V8.getKind(), Value::K_PtrOrObj);
EXPECT_TRUE(V8.isManuallyAlloc());
Value V9;
llvm::cantFail(Interp->ParseAndExecute("struct A { virtual int f(); };"));
llvm::cantFail(
Interp->ParseAndExecute("struct B : A { int f() { return 42; }};"));
llvm::cantFail(Interp->ParseAndExecute("int (B::*ptr)() = &B::f;"));
llvm::cantFail(Interp->ParseAndExecute("ptr", &V9));
EXPECT_TRUE(V9.isValid());
EXPECT_TRUE(V9.hasValue());
EXPECT_TRUE(V9.getType()->isMemberFunctionPointerType());
EXPECT_EQ(V9.getKind(), Value::K_PtrOrObj);
EXPECT_TRUE(V9.isManuallyAlloc());
}
} // end anonymous namespace
|